δ - Soft open set in Soft topological Space

دلتا المفتوحة المنعمة في الفضاءات التبولوجية الناعمة

Iktifa Diaa Jaleel Open Educational College \ Mathematics Department , Iraq .

Abstract:

In this paper we introduce a new type of an open set in topological space (δ - soft open set in soft in soft topological space). Then we use it to define some relate notions and prove some important theorem in topology using this new concept.

الخلاصة:

يؤسس هذا البحث العلاقة بين الفضاءات التبولوجية الناعمة وبين المجموعة المفتوحة الناعمة في الفضاءات الناعمة مؤسس هذا البحث بعض التعاريف ذات المهمة التي تخص هذا الموضوع وبعض الملاحظات .

Introduction

This paper consists basic definitions relate to soft topology such as (soft open set , soft interior , soft closed set , soft limit point and soft neighborhood) with new definition δ -Soft open set .

Now let us define the base stone definition of our work as let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \cong F_A$ then F_B is said to be δ -Soft open set in soft topological space iff $F_B \cong F_B^{\sim \circ}$.

The following generalization is formulated using \propto -open set in topological space and δ -Soft open set in soft topological space .

Also in this article we prove some theorems relate to these notions.

Basic Definitions

1.1 Definition [1]:

A soft F_A on the universe U is define by the set of ordered pairs $F_A = \{(x, f_A(x)) : x \in E, f_A(x) \in p(U)\}$.

Where $f_A: E \to p(U)$ such that $f_A(x) = \emptyset$ if $x \notin A$ and p(U) is the power set of U.

The value of $f_A(x)$ may be arbitrary . some of them may be empty some may have non empty intersection .

The set of all soft sets over U will be denoted by S(U).

1.2 Example:

Suppose that there are six houses in the universe

 $U = \{h_1, h_2, h_3, h_4, h_5, h_6\}$ under consideration, and that

 $E=\{x_1,x_2,x_3,x_4,x_5\}$ is a set of decision parameters. The x_i (i= 1,2,3,4,5) stand for the parameters "expensive", "beautiful", "wooden", "cheap", and "in green surroundings", respectively.

Consider the mapping f_A given by "houses (.)", where (.) is to be filled in by one of the parameters $x_i \in E$, for instance f_A (e_1) mean "houses (expensive)", and its functional value is the set $\{h \in U: h \text{ is an expensive house}\}$.

Suppose that $A = \{x_1, x_3, x_4\} \subseteq E$ and $f_A(x_1) = \{h_2, h_4\}$, $f_A(x_3) = U$, and $f_A(x_4) = \{h_1, h_3, h_5\}$, then, we can view the Soft set F_A as consisting of the following collection of approximations:

$$F_A = \{(x_1, \{h_2, h_4\}), (x_3, U), (x_4, \{h_1, h_3, h_5\})\}$$

1.3 Definition : [1]

Let $F_A \in S(U)$ the soft power set of F_A is defined by $\tilde{p}(F_A) = \{F_{A_i} : F_{A_i} \subseteq F_A, i \in I \subseteq N\}$ and its cardinality is defined by

$$|\tilde{p}(F_A)| = \sum_{x \in E} |f_A(x)|$$

Where $|f_A(x)|$ is the cardinality of $f_A(x)$

1.4 Example :

```
Let U = \{u_1, u_2, u_3\}, E = \{x_1, x_2, x_3\}, A = \{x_1, x_2\} \subseteq E and F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2, u_3\})\}
. Then
F_{A_1} = \{(x_1, \{u_1\})\}
F_{A_2} = \{(x_1, \{u_2\})\}
F_{A_3} = \{(x_1, \{u_1, u_2\})\}
F_{A_4} = \{(x_2, \{u_2\})\}
F_{A_5} = \{(x_2, \{u_3\})\}
F_{A_6} = \{(x_2, \{u_2, u_3\})\}
F_{A_7} = \{(x_1, \{u_1\}), (x_2, \{u_2\})\}
F_{A_8} = \{(x_1, \{u_1\}), (x_2, \{u_3\})\}
F_{A_9} = \{(x_1, \{u_1\}), (x_2, \{u_2, u_3\})\}
F_{A_{10}} = \{(x_1, \{u_2\}), (x_2, \{u_2\})\}
F_{A_{11}} = \{(x_1, \{u_2\}), (x_2, \{u_3\})\}
F_{A_{12}} = \{(x_1, \{u_2\}), (x_2, \{u_2, u_3\})\}
F_{A_{13}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2\})\}
F_{A_{14}} = \{(x_1, \{u_1, u_2\}), (x_2, \{u_3\})\}
F_{A_{15}} = F_A = \{(x_1, \{u_1, u_2\}), (x_2, \{u_2, u_3\})\}
F_{A_{16}} = F_{\emptyset}
Are all soft subset of F_A-so |\tilde{p}(F_A)| = 2^4 = 16
```

1.5 Definition [1]

Let $F_A \in S(U)$. A soft topology on F_A , denoted by $\tilde{\tau}$ is a collection of soft subsets of F_A having the following properties

i-
$$F_{\emptyset}$$
, $F_A \in \tilde{\tau}$
ii- $\{F_{A_i} \subseteq F_A : i \in I \subseteq \mathbb{N}\} \subseteq \tilde{\tau} \Longrightarrow \bigcup_{i \in I}^{\sim} F_{A_i} \in \tilde{\tau}$
iii- $\{F_{A_i} \subseteq F_A : 1 \le i \le n, n \in \mathbb{N}\} \subseteq \tilde{\tau} \Longrightarrow \bigcap_{i=1}^n F_{A_i} \in \tilde{\tau}$
The pair $(F_A, \tilde{\tau})$ is called a soft topological space.

1.6 Example:

Let us consider the soft subset of F_A that are given in (Example 1.3) Then $\tilde{\tau}_1 = \{F_\emptyset, F_A\}$, $\tilde{\tau}_2 = \tilde{p}(F_A)$, and $\tilde{\tau}_3 = \{F_\emptyset, F_A, F_{A_2}, F_{A_{11}}, F_{A_{13}}\}$ are soft topologies on F_A .

1.7 Definition : [1]

Let $(F_A, \tilde{\tau})$ be a soft topological space, Then every element of $\tilde{\tau}$ is called a soft open set. clearly F_\emptyset , F_A are soft open set.

1.8 Definition : [1]

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \subseteq F_A$. Then the soft interior of F_B , denoted F_B° is define as the soft union of all soft open subsets of F_B .

Note that F_B° is the biggest soft open set is contain by F_B .

1.9 Example:

Let us consider the soft topology

$$\begin{split} \tilde{\tau}_3 &= \left\{ F_{\emptyset}, F_A, F_{A_2}, F_{A_{11}}, F_{A_{13}} \right\}, \\ \text{If } F_B &= F_{A_{12}} = \left\{ (x_1, \{u_2\}) \text{ , } (x_2, \{u_2, u_3\}) \text{ } \right\} \\ \text{then } F_B^\circ &= F_\emptyset \ \widetilde{\cup} \ F_{A_2} \ \widetilde{\cup} \ F_{A_{11}} = F_{A_{11}} \\ &= F_\emptyset \ \widetilde{\cup} \ \left\{ (x_1, \{u_2\}) \right\} \ \widetilde{\cup} \ \left\{ (x_1, \{u_2\}) \text{ , } (x_2, \{u_3\}) \right\} \\ &= \left\{ (x_1, \{u_2\}) \text{ , } (x_2, \{u_3\}) \right\} \end{split}$$

1.10 Definition : [1]

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \subseteq F_A$. Then the soft closure of F_B , denoted \overline{F}_B is define as the soft intersection of all soft closed superset of F_B .

Note that \bar{F}_B is the smallest soft closed set of F_B .

1.11 Example :

Let us consider the soft topology

$$\begin{split} \tilde{\tau}_3 &= \left\{ F_{\emptyset}, F_A, F_{A_2}, F_{A_{11}}, F_{A_{13}} \right\}, \\ \text{If } F_B &= F_{A_9} = \left\{ \left(x_1, \{u_1\} \right), \left(x_2, \{u_2, u_3\} \right) \right\} \text{ then } \\ F_{A_2} &= \left\{ \left(x_1, \{u_2\} \right) \right\} \Longrightarrow F_{A_2}^{\tilde{c}} = \left\{ \left(x_1, \{u_2\} \right), \left(x_2, U \right), \left(x_3, U \right) \right\} \\ \text{and } F_{\emptyset}^{\tilde{c}} &= F_{\tilde{E}} \text{ are soft closed super set of } F_B \ . \\ \text{Hence } \bar{F}_B &= F_{A_2}^{\tilde{c}} \ \widetilde{\cap} \ F_{\tilde{E}} = F_{A_2}^{\tilde{c}} \end{split}$$

1.12 Definition : [3]

Let $(F_A, \tilde{\tau})$ be a soft topological space and $\propto \in F_A$. There is a soft open set F_B such that $\propto \in F_B$. Then F_B is called a soft open neighborhood (or soft neighborhood) of \propto . These f of all soft neighborhoods of \propto denoted $\tilde{v}(\propto)$ is called $\tilde{v}(\propto) = \{F_B, F_B \in \tilde{\tau}, \propto \in F_B\}$.

1.13 Example :

Let us consider the $(F_A, \tilde{\tau}_3)$ in Example (1.5) and $\propto = (x_1, \{u_1, u_2\}) \in F_A$ Then $\tilde{v}(\propto) = \{F_A, F_{A_{13}}\}$.

1.14 Definition : [3]

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \cong F_A$ and $\alpha \in F_A$. If every neighborhood of α soft intersects F_B in some points other then α it self, then α is called a soft limit point of F_B , The set of all limit point of F_B is denoted by \hat{F}_B .

In other words, if $(F_A, \tilde{\tau})$ is a soft topological space F_B , $F_C \cong F_A$ and $\alpha \in F_A$ then $\alpha \in \hat{F}_B \iff F_C \cap (F_B \setminus \{\alpha\}) \neq F_\emptyset$ for all $F_C \in \tilde{v}(\alpha)$.

A new definition for soft topology

1.15 Definition:

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \cong F_A$. Then F_B is said to be δ -Soft open set in soft topological space iff $F_B \cong F_B^{\cong_{\delta}^{\circ}}$.

1.16 Example:

Let us consider the soft topology
$$\begin{split} \tilde{\tau}_3 &= \left\{ F_{\emptyset}, F_A, F_{A_2}, F_{A_{11}}, F_{A_{13}} \right\}, \\ \text{If } F_B &= F_{A_{12}} = \left\{ (x_1, \{u_2\}) \;, (x_2, \{u_2, u_3\}) \;\right\} \\ \text{then } F_B^\circ &= F_\emptyset \; \widetilde{\cup} \; F_{A_2} \; \widetilde{\cup} \; F_{A_{11}} \\ &= F_\emptyset \; \widetilde{\cup} \; \left\{ (x_1, \{u_2\}) \;\right\} \; \widetilde{\cup} \; \left\{ (x_1, \{u_2\}) \;, (x_2, \{u_3\}) \right\} \\ &= \left\{ (x_1, \{u_2\}) \;, (x_2, \{u_3\}) \right\} \\ F_{A_{11}}^{\tilde{c}} &= \left\{ (x_1, \{u_1, u_3\}) \;, (x_2, \{u_1, u_2\}) \;, (x_3, U) \right\} \\ F_B^{\simeq_\circ} &= F_{A_{11}}^{\tilde{c}} \; \widetilde{\cap} \; F_E = F_{A_{11}}^{\tilde{c}} \\ F_B^{\simeq_\circ} &= F_{A_{11}} = \left\{ (x_1, \{u_2\}) \;, (x_2, \{u_3\}) \right\} \end{split}$$

2.1 Some Theorem of δ -soft open set in soft topological space

2.1.1 Theorem:

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \subseteq F_A$. Then δ -Soft interior of $F_B = \widetilde{\cup} \{F_G, F_G, \delta$ -Soft open set, $F_G \subseteq F_B\}$.

Proof: Let $\alpha \in \delta$ -Soft interior of F_B iff F_B is δ -Soft neighborhood of F_B , $\alpha \in \delta$ -Soft interior of F_B iff there exists δ -Soft open set of F_G such that $\alpha \in F_G \subseteq F_B$, $\alpha \in \delta$ -Soft interior of F_B iff $\alpha \in \mathcal{F}_G : F_G$ is δ -Soft open set δ .

Hence $\delta\text{-Soft}$ interior of $F_B=\widetilde{\cup}\ \{F_G:\ F_G\text{ is }\delta\text{-Soft open set }F_G\ \widetilde{\subseteq}\ F_B\}$.

2.1.2 Theorem:

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \cong F_A$ Then

- (a) δ -Soft interior of F_B is an δ -Soft open set .
- (b) δ -Soft interior of F_B is the largest δ -Soft open set contained in F_B .
- (c) F_B is δ -Soft open set iff δ -Soft interior of $F_B = F_B$.

Proof:

- (a) Let α beany or bitrary point of δ -Soft interior of F_B . Then α is an δ -Soft interior point of F_B . Hence by definition , F_B is a δ -Soft nbd. of α . Then there exist an δ -Soft open set $F_G \ni \alpha \in F_G \subset F_B$, since F_G is δ -Soft open , it is δ -Soft nbd. of each of its points and so F_B is also a δ -Soft nbd. of each point of F_G . It follows that every point of F_G is an δ -Soft interior point of F_B so that $F_G \subset \delta$ -Soft interior of F_B , Thus it is shown that to each $\alpha \in \delta$ -Soft interior of F_B . Hence δ -Soft interior of F_B is a δ -Soft nbd. of each of its points and con sequently δ -Soft interior of F_B is δ -Soft open set .
- (b) Let F_G beany δ -Soft open subset of A and let $\alpha \in F_G$ so that $\alpha \in F_G \subset F_B$. Since F_G is δ -Soft open, F_B is a δ -Soft nbd. of α and consequently α is an δ -Soft interior point of F_B . Hence $\alpha \in \delta$ -Soft interior of F_B . Thus we have shown that $\alpha \in F_B \implies \alpha \in \delta$ -Soft interior of F_B and so $F_F \subset \delta$ -Soft interior of $F_B \subset F_B$. Hence δ -Soft interior of F_B contains every δ -Soft open subset of F_B and it is therefore is the largest δ -Soft open subset of F_B .
- (c) Let $F_B = \delta$ -Soft interior of F_B By (a) δ -Soft interior of F_B is an δ -Soft open set and therefore F_B is also δ -Soft open .

Conversely let F_B be δ -Soft open , then F_B is surely identical with the largest δ -Soft open sub set of F_B . But By (b) δ -Soft interior of F_B is the largest δ -Soft open sub set of F_B .

Hence $F_B = \delta$ -Soft interior of F_B

2.1.3 Theorem :

Let $(F_A, \tilde{\tau})$ be a soft topological space and $F_B \cong F_A$. Then δ -Soft interior of F_B equals these f of all those pair element of F_B which are not δ -Soft limit point of $\alpha - F_B$.

2.1.4 Theorem:

Let $(F_A, \tilde{\tau})$ be a soft topological space and F_B , F_C be any subsets of F_A then

- (a) δ -Soft interior of $F_B = F_B$, δ -Soft interior of $F_\emptyset = F_\emptyset$
- (b) δ -Soft interior of $F_B \cong F_B$.
- (c) If $F_B \cong F_C$, then δ -Soft interior of $F_B \cong \delta$ -Soft interior of F_C .
- (d) δ -Soft interior of $(F_B \cap F_C) = \delta$ -Soft interior of $F_B \cap \delta$ -Soft interior of F_C .
- (e) δ -Soft interior of $F_B \ \widetilde{\cup} \ \delta$ -Soft interior of $F_C \ \widetilde{\subseteq} \ \delta$ -Soft interior of $(F_B \cup F_C)$.
- (f) δ -Soft interior of (δ -Soft interior of F_B) = δ -Soft interior of F_B .

Proof:

- (a) Since F_A and F_{\emptyset} are δ -Soft open sets, so by above theorem δ -Soft interior of $F_B = F_B$, δ -Soft interior of $F_{\emptyset} = F_{\emptyset}$.
- (b) If $\alpha \in \delta$ -Soft interior of F_B , then F_B δ -Soft neighborhood of F_B , so $\alpha \in F_B$, Hence δ -Soft interior of $F_B \cong F_B$.
- (c) Let $\alpha \in \delta$ -Soft interior of F_B , then F_B δ -Soft neighborhood of F_B , since $F_B \subseteq F_C$, so F_C is also a δ -Soft neighborhood of F_B , this implies $\alpha \in \delta$ -Soft interior of F_C , hence δ -Soft interior of F_C .
- (d) Since $F_B \cap F_C \subseteq F_B$, and $F_B \cap F_C \subseteq F_C$, we have by theorem (c) δ -Soft interior of $(F_B \cap F_C) \subseteq \delta$ -Soft interior of F_B and δ -Soft interior of $(F_B \cap F_C) \subseteq \delta$ -Soft interior of F_C .

Hence

Since F_B and F_C are δ -soft neighborhood of F_B , so the intersection $F_B \cap F_C$ is also δ -soft neighborhood of F_B .

Hence δ -soft interior $(F_B \cap F_C)$, thus $\alpha \in \delta$ -Soft interior $F_B \cap \delta$ -Soft interior of F_C , $\alpha \in \delta$ -Soft interior $(F_B \cap F_C)$

 δ -Soft interior of $(F_B \cap F_C) = \delta$ -Soft interior of $F_B \cap \delta$ -Soft interior of F_C .

(e) So by (c) we have $F_B \cong F_B \widetilde{\cup} F_C$, then δ -Soft interior $F_B \cong \delta$ -Soft interior ($F_B \widetilde{\cup} F_C$) $F_C \cong F_B \widetilde{\cup} F_C$, then δ -Soft interior $F_C \cong \delta$ -Soft interior ($F_B \widetilde{\cup} F_C$)

Hence δ -Soft interior of $F_B \widetilde{\cup} \delta$ -Soft interior of $F_C \widetilde{\subseteq} \delta$ -Soft interior of $(F_B \cup F_C)$.

2.1.5 Theorem:

Let $(F_A, \tilde{\tau})$ be a soft topological space and F_B , F_C be any subsets of F_A then

- (a) δ -Soft cl $(F_{\emptyset}) = F_{\emptyset}$.
- (b) $F_B \cong \delta$ -Soft cl (F_{\emptyset}) .
- (c) If $F_B \cong F_C$, then δ -Soft cl $(F_B) \cong \delta$ -Soft cl (F_C) .
- (d) δ -Soft cl $(F_B \cap F_C) \subseteq \delta$ -Soft cl $(F_B) \cap \delta$ -Soft cl (F_C) .
- (e) δ -Soft cl (δ -Soft cl (F_R)) = δ -Soft cl (F_R).

Proof:

- (a) Since F_{\emptyset} is δ -Soft closed, we have δ -Soft cl $(F_{\emptyset}) = F_{\emptyset}$.
- (b) By above theorem (a), hence $F_B \cong \delta$ -Soft cl (F_B) .

- (c) By (b), $F_C \subseteq \delta$ -Soft cl (F_C) , since $F_B \subseteq F_C$, then $F_B \subseteq \delta$ -Soft cl (F_C) But δ -Soft cl (F_C) is Soft closed set, thus δ -Soft cl (F_C) is δ -Soft closed set containing F_B , since δ -Soft cl (F_B) is the smallest δ -Soft closed set containing F_B , we have δ -Soft cl $(F_B) \subseteq \delta$ -Soft cl (F_C) .
- (d) Since $F_B \cong F_B \widetilde{\cup} F_C$ and $F_C \cong F_B \widetilde{\cup} F_C$ We have δ -Soft cl $(F_B) \cong \delta$ -Soft cl $(F_B \cup F_C)$ and δ -Soft cl (F_C) by (c).

Hence δ -Soft cl (F_B) $\widetilde{\cup}$ δ -Soft cl (F_C) δ -Soft cl (F_B) $\widetilde{\cup}$ (F_C) (1)

Since δ -Soft cl (F_B) and δ -Soft cl (F_C) are \propto -Soft closed set, and δ -Soft cl (F_B) \widetilde{U} δ -Soft cl (F_C) is also δ -Soft closed set and by (b)

 $F_B \cong \delta$ -Soft cl (F_B) , $F_C \cong \delta$ -Soft cl (F_C)

This implies that $F_B \widetilde{\cup} F_C \cong \delta$ -Soft cl $(F_B) \widetilde{\cup} \delta$ -Soft cl (F_C) .

Thus δ -Soft cl (F_B) $\widetilde{\cup}$ δ -Soft cl (F_C) is δ -Soft closed set containing F_B $\widetilde{\cup}$ F_C , since δ -Soft cl $(F_B \widetilde{\cup} F_C)$ is the smallest δ -Soft closed set containing $F_B \widetilde{\cup} F_C$.

Therefore δ -Soft cl $(F_B \ \widetilde{\cup} \ F_C) \ \widetilde{\subseteq} \ \delta$ -Soft cl $(F_B) \ \widetilde{\cup} \ \delta$ -Soft cl (F_C)(2)

From (1) and (2), we have

 δ -Soft cl $(F_B \widetilde{\cup} F_C) = \delta$ -Soft cl $(F_B) \cup \delta$ -Soft cl (F_C)

(e) Since $F_B \cap F_C \subseteq F_B$, then δ -Soft cl $(F_B \cap F_C) \subseteq \delta$ -Soft cl (F_B) by (c) and $F_B \cap F_C \subseteq F_C$, then δ -Soft cl $(F_B \cap F_C) \subseteq \delta$ -Soft cl (F_C) by (c) Hence δ -Soft cl $(F_B \cap F_C) \subseteq \delta$ -Soft cl $(F_B) \cap \delta$ -Soft cl (F_C)

References

- 1) N. Çağman, S. Enginolu, soft matrix theory and its decision making, computers and mathematics with application 59 (2010).
- 2) Kelly, J.L., "General Topology", Van. Nostrands Princeton, 1963.
- 3) D.A. Molodtov, soft set theory-first results, computers and mathematics with Applications 37 (1999).