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Abstract 

          The ability of Staphylococcus aureus (S. aureus) to acquire variety and many virulence 

genes that leads to its the ability to cause  different diseases in many hosts species, these bacteria 

have many mechanisms for antibiotic resistance and their ability to produce biofilm and gain 

various genes through integrons, that will lead to difficult treatment. Consequently, the acquisition 

of the mecA gene made it more virulent and resistant to antibiotics, and this indicates that the 

spread of these bacteria in human and animal communities besides health institutions and their 

frequent transmission between these communities may have a problem of dealing with it. 
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 ، الحيوية الأغشية تكوين قدرة ، إنتيجرون ارتباط ، المقاومة آلية ، الضراوة قدرة: عامة نظرة

 الذهبية العنقودية المكورات بين الميثيسيلين مقاومة وخصائص

فرقان الاعرجي         عبدالله عبيس الحاتمي    انس اسماعيل الموسوي     
 الخلاصة: 

 في الأمراض إحداث على القدرة أعطتها الضراوة الجينات من العديد اكتساب على Staphylococcus aureus قدرة إن

 إنتاج على وقدرتها الحيوية المضادات لمقاومة الآليات من العديد لديها البكتيريا هذه أن جانب إلى ، الكائنات الحية من العديد

 اكتساب فإن ، ذلك إلى بالإضافة. للغاية صعبًا العلاج يجعل مما ،  integronsخلال من مختلفة جينات واكتساب الحيوية الأغشية

 البشرية المجتمعات في البكتيريا هذه انتشار أن إلى يشير وهذا ، الحيوية للمضادات ومقاومة ضراوة أكثر اجعلهي mecA الجين

.معه التعامل يصعب خطرًا يشكل قد المجتمعات هذه بين المتكرر وانتقالها الصحية المؤسسات جانب إلى والحيوانية

.S. aureus ، mecA gene: المفتاحية الكلمات

introduction 

The first observation and culturing 

of Staphylococci were done by Koch 

(1843-1910) and Pasteur (1822-1895), a 

few years later a Scottish surgeon named 

Sir Ogston (1844-1929) made the first 

detailed studies on this bacteria, He 

noticed under the microscope a cluster of 

round cells and described their causative 

role in the formation of an abscess, this 

genus of pus-forming bacteria named by 

Sir Ogston based on their appearance 

under the microscope (Ogston, 1882; 

Ogston, 1984; Licitra, 2013), the first 

isolation and growing of S. aureus 

species was by Rosenbach (1842-1923) 
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and according to the yellowish color of 

its colony named it as aurum that means 

gold (Rosenbach, 1884; Licitra, 2013). a 

few years later, Chapman (1930) 

introduced the tube coagulase test for 

differentiation of S. aureus from the less 

virulent staphylococci (5). In 1928, 

Alexander Fleming noticed that S. 

aureus couldn’t grow with Penicillium 

mold in the same place (6), therefore, 10 

years later large quantities of penicillin 

were purified to begin treatment trials 

(7,8). The genus Staphylococcus belongs 

taxonomically to the family 

Staphylococcaceae from the order 

bacillales member of the class of bacilli 

belonging to the phylum firmicutes, this 

classification was according to 

Phylogenetic relationships of the genus 

Staphylococcus constructed on sequence 

analysis of 16S  rRNA gene (9). 

Staphylococci are gram-positive cocci 

organized in clusters that resemble a 

bunch of grapes (10). The 

Staphylococcaceae genus containing 

more than 80 species and subspecies, 

The coagulase-positive such as S. 

aureus, coagulase-negative such as S. 

saprophyticus, S. epidermidis, and the 

coagulase variable like S. hyicus, that 

causing infections for both humans and 

animals, indeed, the more interesting one 

is S. aureus that has spherical cell 0.5–

1.5 μm in diameter (11,12).  

Macroscopically, it has a significant 

golden-yellow appearance that was 

found to be associated with increased 

virulence character (13). It grows will at 

37Co on routine laboratory media and its 

facultative anaerobe that grow in the 

presence of O2 and CO2 better with 

raised, opaque and round colony, many 

strains of S. aureus produce coagulase 

that differentiate it from other coagulase-

negative staphylococci (14). S. aureus 

bacteria can grow between the range of 

temperature (15◦C-45◦C) and at high 

concentration of sodium chloride (NaCl) 

reach to 15 %. However, high 

temperatures above 45 degrees and a 

decrease under 10 Celsius degrees will 

affect on the growth of these bacteria 

naturally, In addition, these bacteria was 

resistant to high osmolarity and 

detergents such as alcohol and have the 

ability to ferment mannitol sugar, 

therefore, it grows on the mannitol salt 

agar that rich in NaCl and mannitol 

sugar. Moreover, S. aureus has the 

potential to grow on most culture media 

including Blood agar, Nutrient agar, 

Mannitol salt agar, Tryptic soy agar, 

Brain heart infusion agar, Luria Bertani 

agar, and MacConkey agar, 

Consequently, it has many 

characteristics on each culture medium, 

for example on the blood agar produced 

beta-hemolysis, golden colonies on 

nutrients and mannitol salt agar, and 

many other forms depending on the 

culture medium (15,16). To observe their 

morphology and unique colour, the 

typical colonies obtained on the media 

mentioned above are subjected to Gram 

staining. After that, the suspected 

isolates could be submitted to the 

catalase test for catalase enzyme 

determination and its activity, and 

confirm  rabbit plasma clotting using 

coagulase tests to detect the bound and 

free coagulase proteins, In fact, a large 

number of automated systems and 

commercial kits based on mini 

biochemical tests are commonly used 

nowadays to identify this bacterial 

species in both diagnostic and research 

laboratories, including the API Staph 

system kit, the VITEK1 system, the 

VITEK2 system and many others, but 

the molecular methods remain the 
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golden standard in all fields of 

identification (17). 

General pathogenesis and virulence 

factors 

S. aureus is a natural colonizer of 

the humans and animals skin, it may 

cause several pyogenic and systemic 

infections, it’s an intra- and extracellular 

microorganism, this characteristic is 

probably involved in bacterial tolerance, 

antibiotic safeguarding, and evasion of 

immune system defenses. Its genetic 

flexibility acts as an exciting ground for 

adaptation. S. aureus virulence factors 

were characterized by numerous 

pathogenic processes leading to host 

structures being adhered to, and targeted, 

accompanied by internalization, 

intracellular stability, and immune 

avoidance (18). This species could cause 

various cases of localized infections such 

as wound infection, carbuncle, and 

cellulitis, however, it can spread inside 

the bloodstream to different organs 

causing sepsis and many other serious 

systemic conditions like osteomyelitis, 

endocarditis, septic arthritis, and 

epidural abscess (19). S. aureus possess 

a huge number of virulence factors that 

facilitate the attachment to the host 

tissue, evading the host immunity, 

promote the tissue invasion, and induce 

toxicosis. Their characteristics, factors, 

and their functions are summarized in 

Table 1. 

Prevalence of S. aureus in animals 

S. aureus colonizes various 

biological tissues in different animals 

and humans in various conditions, as 

30% of people are carriers of S. aureus 

bacteria, in cows, this percentage reaches 

35% while may reach 90% in poultry, 

moreover, the animals can act as a 

reservoir for this pathogen and can 

transmit it to humans (20,21). Many 

reports suggested that the phenotypic 

properties of S. aureus species vary 

depending on the host of origin, six 

biotypes have been described that vary 

in their phenotypic characteristics 

including,  β-hemolysis human, human, 

bovine, caprine, avian-abattoir, and non-

specific host biotypes (22). the evolution 

of S. aureus with its human host over 

time gives it the ability to infect animals 

on multiple occasions, the ability to 

jump from one host to another will 

ultimately led to creating specific strain 

lineages that can spread and adapt within 

new animal hosts (23). 

antibiotic resistance mechanisms 
The main targets for antibiotics in 

the genus staphylococci were the cell 

envelope, ribosome, and nucleic acids. 

Resistance occurs either through 

mutation in chromosome genes or 

through horizontal transfer of resistance 

determinants encoded through mobile 

genetic elements such as transposons, 

plasmids, and the staphylococcal 

chromosome cassette (SCC). The trait of 

resistance can result from (i) preventing 

the drug from binding to its target by 

altering this target itself, (ii) activating 

chromosomally encoded multidrug 

resistance efflux pumps, (iii) reducing 

drug access to its target through multiple 

mutations which change the structure 

and composition of the cell wall and/or 

cell membrane, however, the 

mechanisms that responsible for 

horizontally acquired resistance result 

from : (i) alternation and inactivation of 

drugs by enzymatic effectiveness, (ii) 

enzymatic alternation of the drug 

binding site, (iii) efflux pump, (iv) 

acquisition of a novel drug-resistant 

target using bypass mechanisms, (v) 

protect the target by drug displacement. 

(24). The diversity of the mechanisms of 
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S. aureus resistance to antimicrobial 

drugs led to penicillin resistance within 

10 years of its discovery. By the 1960s, 

more than 80% of S. aureus isolates had 

gained penicillin resistance, which led to 

the introduction of semi-synthetic 

penicillins. The first, methicillin in 1961, 

followed by other derivatives, such as 

oxacillin, cloxacillin, and dicloxacillin 

(25). 

The emergence of methicillin 

resistance among S. aureus 

Jevons reported a strain of S. aureus 

that was resistant to methicillin, soon 

after its discovery (26) an altered 

penicillin-binding protein 2α (PBP2α) 

with a low affinity for beta-lactam 

antibiotics has been encoded with the 

mecA gene which responsible for 

Methicillin resistance in staphylococci 

(27). several studies showed that MRSA 

is generated when Methicillin-sensitive 

Staphylococcus aureus (MSSA) acquire 

the mecA gene. Recently, a new 

homologue of mecA gene, called 

mecALGA251 in reference, to the S. aureus 

LGA251 isolates from which it was 

described, it has also acted as methicillin 

resistance, it was renamed to mecC 

(Laurent et al., 2012; arrison et al., 2013; 

Petersen et al., 2013; Paterson et al., 

2014). The mecA gene included a large 

mobile genetic elements designated as 

SCCmec (the staphylococcal cassette 

chromosome mec), MRSA strains are 

thought to have arisen through 

horizontally transferred SCCmec from 

coagulase-negative staphylococcus 

species (32). Since 1961, the spread of 

MRSA clones worldwide reaching an 

pandemic situation in most developed 

countries, it is not identified whether this 

is due to differentiation from just a 

single particular clone or the insertion of 

SCCmec into multiple clones (33). 

mainly, MRSA clones have emerged 

from healthcare-associated (HA) origin, 

but in the 1990s  and the early 2000s  in 

Australia, USA, and Europe, MRSA 

infections have been documented in 

people with no previous medical 

exposure, and these strains have been 

named as community-associated (CA) 

MRSA (34). 

Table (1): Virulence factors of S. aureus and its characteristics (35). 
function factors characteristics 

facilitate the 

attachment to the 

tissue of a host 

Cell surface components Involved in host immune evasion, this family of surface proteins which interact 

with host molecules such as fibrinogen and fibronectin, therefore, facilitating 

the attachment to host tissue. protein A, fibronectin-binding protein A and B, 
collagen-binding protein, and clumping factors A and B are the most common 

examples of this family of virulence factors.  

Breaking/evading the 

host immunity 

Polysaccharide 

microcapsule 

surrounding the bacterial cell wall and has an anti-phagocytic activity. 

Protein A (SpA) It has many biologic characteristics like anti-complement activity, chemotactic 

properties, as well as it is anti-phagocytic protein, limits the host immune 

response, induces hypersensitivity reactions and platelet damage, also it was 
amplified the natural killer activity of human lymphocytes, the (SpA) 

nonspecifically bind to the Fc domain of immunoglobulin and act as a 

superantigen. 

 (PVL) associated with CA-MRSA, causing leukocyte lysis and tissue necrosis that 

allow this pathogen to cause skin and soft-tissue infections (STIs), this toxin 

has a two-component slow (S) subunit and fast (F) subunit, which work 
together to induces pore formation in the cell membrane of leukocyte cells 

producing necrosis. 

α-toxin (α hemolysin) This toxin has significant leucocytic properties and helping in the scavenging of 

iron in the cells, a pore former exotoxin causing leakage in the cell membrane 
of the host and death. 

Chemotaxis-inhibitory An extracellular protein that inhibits neutrophils and monocytes chemotaxis 
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proteins activity. 

Tissue invasion Extracellular adherence 
protein 

An extracellular protein binds to the host cell matrix, plasma proteins & 
endothelial cells. these proteins can stop the action of host defenses and 

promote adherence to tissues also promote the pathogenesis of staphylococcal 

abscesses, bacteremia, and endocarditis such as coagulase enzyme. 

Lipase, protease, 

Hyaluronidase, 

Staphylokinase, and 
phospholipase C 

 

Extracellular enzymes which causing tissue destruction, and therefore helping 

in tissue penetration. 

Induces toxinosis Enterotoxins It is a group of toxins that have emetic activity, the most common one is 

enterotoxin type A (SEA) that cause  staphylococcal food poisoning worldwide, 
enterotoxin group are considered superantigen and encoded on mobile genetic 

elements (MGEs), including plasmids, pathogenicity islands, prophages, or by 

chromosomal genes located near the SCCmec element 

Toxic shock syndrome 

toxin -1 

Its exotoxin has superantigen properties that cause dangerous consequences, 

characterized by high fever, rash, diarrhea, vomiting, and death, which was first 

recognized in women that use vaginal tampons. This superantigen causing 
shock by attracting large numbers of T lymphocyte to the site of infection 

leading to the release of a huge amount of cytokines. 

Exfoliative toxins A and 

B 

Serine proteases which break down skin desmosomal proteins and cause 

staphylococcal scalded skin syndrome (SSSS), a disease especially affecting 
infant's 

 

Staphylococcal Chromosomal Cassette 

mec (SCCmec) 

A specific type of mobile genetic 

elements (MGEs) that codes for the 

resistance of methicillin’s, it was 

detected in almost all MRSA strains. 

SCCmec elements integrate at the 

bacterial chromosome attachment site 

(attBscc) found nearby the origin of 

replication, at the 3’ end of unknown 

function open reading frame X (orfX) 

(36–38). The attachment site also 

contains the integration site sequence 

(ISS) that consisting of a core of 15 base 

pair sequence, it was essential for 

cassette chromosome recombinase (ccr), 

ISS was found in direct repeat sequences 

at leſt and right of SCCmec junctions of 

the integrated SCCmec element, 

SCCmec elements share the similar 

arrangement of structure, that composed 

of two crucial parts, mec complex that 

composed of mecA operon and its 

regulators, and ccr gene complexes that 

encoding the site-specific recombinases, 

these two confer resistance for 

methicillin and the mobility of the 

SCCmec cassette, also these genes 

surrounded by three- highly variable- 

joining regions (J1 to J3) which may 

convey further resistance determinants to 

antimicrobial agents. The composition of 

almost all SCCmec elements shares the 

same general organization: orfX-J3-mec-

J2-ccr-J1. (38–41). 

Classification of SCCmec elements: 

Typing or classification of SCCmec 

elements is based on the association 

between mec gene complex classes and 

ccr gene complex types, and each  

SCCmec type can be subtyping 

depending on variations in their J 

regions within the same cassette (39). In 

this context, mec genes complex 

classified according to regulatory 

genes (mecR1 and mecI), and insertion 

sequence IS431 downstream of mecA, 

Certain variants of the mec gene 

complex contain insertion of either 

IS1272 or IS431 at the 3′ portion of 

mecR, so it's classified into six different 

classes  (A, B, C1, C2, D, and E) 

(38,39,42), mentioned in Table 2. While 

the ccr gene complex that composed of 

the ccr gene(s) encoding for invertase-

resolvase enzymes that can catalyze 

and/or insert of SCCmec into the 

chromosome of a Staphylococcus strain, 
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thus These recombinases are responsible 

for cassette mobilization, ccr complexes 

surrounding by open reading frames 

(ORFs), that have unknown functions. 

(38,43,44). 

Table (2): mec gene complexes of 

S. aureus (39,45) 
Mec 

complexes  

Characterization  SCC

mec types  

Class A IS431-mecA-mecR1-mecI II, 

III, VIII 

Class B IS431-mecA-ΔmecR1-
IS1272 

I, IV, 
VI 

Class C1 IS431-mecA-ΔmecR1-

IS431(two of IS431 in one 

direction) 

VII, 

X 

Class C2 IS431-mecA-ΔmecR1-

IS431(two of IS431 in 

opposite direction) 

V, IX 

Class D IS431- mecA-ΔmecR1 - 

Class E blaZ-mecALGA251-

mecR1LGA251-mecILGA251 

XI 

It was classified into (A, B, and C) 

Based on allelic variations, one carrying 

two neighboring genes, ccrA, and ccrB, 

and the second carrying ccrC, both A 

and B genes have been typed into four 

and five allotypes respectively, 

designated as type 1 (ccrA1B1), type 2 

(ccrA2B2), type 3 (ccrA3B3) up to type 

8,  these types have been identified 

based on their nucleotide similarity, on 

the other hand, ccrC has shown high 

nucleotide similarity and is assigned to 

only one allotype (ccrC1) (39,40,46). 

Meanwhile, the joining regions (J), 

previously called “junkyard” regions, 

was classified as (J1, J2, and J3) 

according to their location within the 

SCCmec element, it is located in the 

same position in all SCCmec elements 

(J1-ccr complex-J2-mec complex-J3), 

anyway, these components are 

nonessential and may contain 

determinants for additional antimicrobial 

resistance, but the variation of these J 

regions are used for determining 

SCCmec subtypes (39,45). As discussed 

above, SCCmec elements classified into 

types and subtypes according to variants 

in their composition, therefore type I 

defined as (1B) because of type 1 ccr 

gene complex and class B mec gene 

complexes, the other types are defined as 

in table 3, and backbone structure 

organization of SCCmec elements in S. 

aureus will appear like in figure 1. 

Table (3): SCCmec types (39,47) 
ccr gene complex mec gene complex SCCmec type 

1 (A1B1) B I 

2 (A2B2) A II 

3 (A3B3) A III 

2 (A2B2) B IV 

5 (C) C2 V 

4 (A4B4) B VI 

5 (C) C1 VII 

4 (A4B4) A VIII 

1 (A1B1) C2 IX 

7 (A1B6) C1 X 

8 (A1B3) E XI 

 

SCCmec typing methods 

Generally, the global spreading of 

MRSA is driven by the dissemination of 

several clones with a similar genetic 

heritage, several epidemiological studies 

revealed that multilocus sequence typing 

(MLST) and spa typing are needed for 

appropriate clone detection, as well as 

SCCmec typing (48). The SCCmec 

typing methods were developed along 

with the new descriptions of the 

SCCmec types and introducing the novel 
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techniques or approaches for their study. 

This can be differentiated by three 

different SCCmec typing techniques: 

methods based on multiplex PCR; 

methods based on the restriction 

enzymes digestion; and methods based 

on real-time PCR (47). 

(i)restriction enzymes digestion 

methods: This method was of 

significant use for epidemiological 

studies before the structure of the 

SCCmec element was described, the 

microbial DNA is extracted and digested 

with specific enzyme and then the 

resultant fragment patterns are 

compared. There are actually some 

principles for the use of restrictive 

digestion enzymes in conjunction with 

PCR, such as multi-enzyme PCR-

amplified fragment length polymorphism 

(ME-AFLP), or PCR amplification of 

the ccrB gene in combination with 

restriction fragment-length 

polymorphism (RFLP) in SCCmec 

typing method (49,50). It is, however, 

just a pattern-based typing which could 

be an interesting tool for pre-screening 

an extensive selection of strains, but is 

already not adequately sensitive to 

assign SCCmec type properly for 

epidemiological purposes as it 

recognizes no characteristic features for 

SCCmec elements already described, 

mec class description in combination 

with ccr class is important for proper 

SCCmec assignment. It appears the 

SCCmec typing scheme based on the 

digestion of restriction enzymes is 

therefore no longer superior. The most 

promising methods used today for PCR-

based typing (47). 

(ii)typing methods based on PCR: 

Different methods for investigating the 

mec gene complex have been developed, 

many methods are based on PCR 

mapping of cassette genetic elements 

like ccr complex, mec complex, and J 

region. There are other methods that 

include sequencing internal fragments of 

recombinant genes (51). 

(iii)Real-time PCR based typing methods: 

This approach, based on the rapid 

molecular beacon real-time PCR assay, 

it’s built on the concept of SCCmec 

types as a combination of the ccr 

allotype and the mec class complex (47). 

Hospital-associated MRSA (HA-

MRSA) 

Beta-lactam resistance among S. 

aureus strains has increased significantly 

in hospitalized patients, MRSA strains 

associated with infections in intensive 

care units, and long hospitalization. In 

the hospital environment, patients and 

health care staff are a potential source of 

MRSA compared to other populations 

(53,54). HA-MRSA was an actual issue 

in the nosocomial setting worldwide, and 

the spread of MRSA among countries 

was widely recorded (55). these strains 

are mainly related to bacteremia, urinary 

tract infections (UTIs), pneumonia, and 

many acute and chronic infections, 

Nosocomial MRSA strains are mainly 

recorded in adult patients, but also in 

pediatric and neonatal intensive care 

units (56–58). HA-MRSA infrequently 

possesses PVL-encoding genes and 

typically belongs to SCCmec types I, II, 

and III (59,60). MRSA isolates were 

marked as HA-MRSA if they were 

isolated from a sample collected two or 

more days after a hospital stay; a patient 

who has had a history of hospital stays, 

dialysis, surgical intervention, or long-

term treatment, throughout the time of 

the culture; the patient has an indwelling 

device, or the patient had a previous 

infection of MRSA, all other isolates of 
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MRSA are regarded as CA-MRSA  

(Sato et al., 2017).  

Community-associated MRSA (CA-

MRSA) 

During 1993, the first CA-MRSA 

originated in Australia, but officially 

isolated from four American children 

who died without nosocomial exposure 

history (62). CA-MRSA strains are 

genotypically newer and more virulent 

than HA-MRSA, which emerged during 

the late 1990s as a significant cause of 

skin and soft tissue infections in healthy 

and relatively young individuals without 

previous hospital exposure (60). CA-

MRSA strains are susceptible to many 

antibiotic families except for β-lactams 

and cause skin and soft-tissue infections 

(SSTIs) in 90% of cases. CA-MRSA 

isolates also show frequent PVL toxin 

production and mostly carry smaller 

types of SCCmec (IV, V, and VI) 

compared to HA-MRSA and exhibit 

higher fitness, improved capacity to 

colonize multiple body sites, and are 

easier to spread (55). Infections with 

CA-MRSA appear to occur in younger 

patients and are particularly associated 

with skin and soft-tissue infections 

(SSTIs) and toxic shock syndrome. 

Nevertheless, there are records of 

serious, life-threatening cases linked to 

several pathological conditions, such as 

necrotizing fasciitis and necrotizing 

pneumonia (63). While it has been 

predicted that CA-MRSA will replace 

HA-MRSA in hospitals, statistical 

models predict coexistence between the 

two strains given the high discharge and 

hospitalization levels that improve 

hospital-community interactions (64). 

Indeed, CA-MRSA strains already 

detected in Hospitals (65,66), table 4 

summarized the main differences 

between CA-MRSA and HA-MRSA. 
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Fig (1): SCCmec elements basic structure (52) 

 

 

 

 

 

Livestock-Associated MRSA (LA-

MRSA) 

There have been a few reports of 

MRSA colonization in livestock animals 

since the very first evidence of MRSA in 

mastitis in 1972 (67), recently, MRSA 
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has been increasingly documented as an 

emerging problem in veterinary 

circumference and several strains of 

MRSA were isolated internationally 

from cattle, poultry, horses and pigs 

(68), Besides its association with food-

producing animals, it may colonize other 

host species, and may also cause 

infections for humans in contact with 

MRSA colonization animals (61), and 

has been detected in a variety of food 

products as well as in clinical cases of 

livestock animals, including chicken 

meat, meat products, bovine milk, and 

bovine mastitis (69). Different clones of 

LA-MRSA may carry different types of 

SCCmec elements (IV, V, and XI) in a 

different country (45,70), furthermore, 

SCCmec type IX, containing mecC also 

have been found in this very specific 

strain (71). However, Sequencing studies 

have revealed that specific clone of 

MRSA that cause infections for different 

animals also may carry the type VIII 

SCCmec elements  (43,72) 

In addition, a study conducted by 

Price et al on the whole-genome 

sequencing of LA-MRSA isolates from 

different geographical environments, 

from humans and livestock, showing that 

LA-MRSA originated from a human 

MSSA and jumped to animals (73). 

There is significant evidence that 

animals can serve as a reservoir for the 

emergence of many human pathogenic 

MRSA clones capable of widespread 

distribution, as happened 40 years ago 

with bovine strains of S. aureus (CC97), 

which jumped from animals to humans 

and became a human epidemic (Spoor et 

al., 2013).

Table (4) differences between CA-MRSA and HA-MRSA (75) 
Features  CA-MRSA HA-MRSA 

Antibiotic Susceptibility more Susceptible Resistant 

Spreading Mostly in younger patients with 

no previous interaction with 

health care institutions 

Older Patients in regular health-

care contact 

infections Skin and soft tissue infections 

(SSTIs), and necrotizing 

pneumonia 

Septicemia, pneumonia, 

ventilator-associated pneumonia, 

surgical site infections 

PVL Positive Negative 

SCCmec types IV, V, and VI I, II, and III 

 

Association of integrons type I in S. 

aureus 

Horizontal gene transfer (HGT) means 

the ability to transfer genes from one 

bacteria to another of the same genus 

and/or species (76), HGT by antibiotic-

resistant determinants carried on the 

MGEs, such as plasmids, transposons, 

multidrug resistance genomic islands, 

and integrons was an essential feature of 

antimicrobial resistance distribution in 

bacteria (77). The integrons are a 

double-stranded DNA capable of 

acquiring gene cassettes designed to 

carry genes of drug resistance via a site-

specific recombination process (78). All 

integrons are composed of three main 

components: (i) The integrase (IntI gene) 

that plays a significant role in the genetic 

cassettes recombination (79), (ii) The 

recombination site (aatI gene) which 

recognized by the integrase, and 

conceder a receptor site for gene cassette 

integration by site-specific 
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recombination (80,81), (iii) The 

promoter (Pc gene) which is responsible 

for the transcription and expression of 

genetic cassettes within the integron 

(82). The circular gene cassettes are 

segments of DNA which can be 

incorporated by the integrase gene 

between attI and attC (integron 

composition described in figure 2-3), 

This process can also be reversible, 

which results in the deletion of gene 

cassettes (83).  

S. aureus biofilm formation ability 

The Biofilms are multicellular 

networks of bacteria, where planktonic 

cells join themselves to strong surfaces 

(sessile state) and consequently multiply 

and amass in multilayer cell bunches 

installed in exceptional three‐
dimensional structures as mushrooms or 

towers isolated by fluid‐filled channels 

(84,85). Biofilms are considered as a 

piece of the typical life pattern of            

S. aureus, the arrangement of biofilms 

inside host tissues and on embedded 

clinical devices prompts constant 

diseases because of their obstinacy to 

antimicrobial treatments and host 

immune responses (86).  Collecting 

proof demonstrates that by embracing 

this way of life, microorganisms in 

biofilms increase a few points of interest 

over planktonic cells. For instance, 

biofilms can shield this organism from 

the activity of antimicrobial medications, 

proteases released by host defense cells, 

and environmental stress factors (87). S. 

aureus biofilm arrangement has been 

appeared to proceed through five‐stage 

formative steps as follows: attachment, 

multiplication, exodus, maturation, and 

spread again (88). 

Biofilm comprised of bacterial cells 

adhere to a layer extracellular polymeric 

secretions (EPS) which composed of 

exopolysaccharide, water channels, and 

environmental DNA (eDNA), that plays 

an important role in nutrient distribution, 

its development, and structure 

constancy, moreover, the presence of 

diffusive barrier EPS and/or neutralizing 

enzyme increases the resistance against 

antimicrobial agents in the biofilm 

community (89). 

Figure (2-3): Schematic diagram represents integron acquisition of new gene 

cassettes by site-specific recombination mediated by the integrase protein (81).
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