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Convex and monotone approximation on ordered vector space
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Abstract

The main aim of this paper is to introduce a result for the shape preserving for function in L,
space on the ordered vector space in terms of the K-th modulus of smoothness.
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1. Introduction and Basic Definitions

In leviaten [4] introduced point wise estimations for convex polynomial approximation.

In Gal [2] defined linear operators to prove direct theorem for approximation on normed linear
space.

In Gal [3] used classical operators to prove shape preserving estimations in terms of the global
smoothness.

In Kopotun, Leviatan, and Shevchuk [5] introduced an articale for the convex polynomial
approximation in the uniform norm for real continuous function.

George and Sorin [1] proved a direct inequality for the convex shape preserving approximation
of continuous function on ordered space. The direct inequality is a result on the constrained
uniform approximation in terms of the first order modulus of smoothness.

In our work, we improve the result of George and sorin [1] for functions in L,, spaces with
p < 1, and prove direct inequality in terms of k-th modulus of smoothness.

The following definition are needed.

Definition 1.1:[1]
Let (Y, || - |ly) be a normed space. The algebraic polynomial of degree not exceeding n € N
and coefficients Cx in Y has the form

P, (x) =Y1_cpx®, x €[a,b].

Definition 1.2;

If fisamapon [—1,1] and of value in Y. Then kth Ditzian—-Totik modulus of smoothness of f
defind by

05(f;8)p = sup_[|Bioeof @],
where §2(x) = 1 — x2 and

Y
If1l, = sup ( ?zlﬁlf(xi)lp) p,xi € [—1,1] where x; are not equally spaced knots.
nenN
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lx; — x4 < % . c EIR*
L,[-11] = {f:[-11] = V;IIfll, < =}

Definition 1.3:
For a map on [—1,1] and value on Y, the K-th modulus of smoothness is defined by

we(f;6)p = Sup {sup{”A f(x)|| x, x + kh € [-1,1]}}
Here 8 F(x) = St o(~1) : )f(x+1h)

2. Constrained Approximation

On the normed space (Y, || - |ly) let us define the order relation <, by the relation that satisfy:
1. Ifx <y y,a=0,then ax <y ay;
2. Ifx <yyandz <, w,thenx+z <, y +w.

Definition 2.1:
Themap fon[a,b] ,with valueinY , is called

(i) increasing on [a, b] if x < y ,then f(x) <y f(¥);

(ii) convexon [a,b] iIf flax+ (1 —a)y) <y af(x)+ (1 —a)f (),
Vx,y € [a,b],a € [0,1].

Theorem 2,2:

If fisaconvex mapinL,[—1,1] ,p <1 ,n € N there exists a convex algebraic polynomial B, of
degree not exceeding n satisfying ||f — B,|l,, < C(p)wg(f; 1/n),
where C(,,)is a constant depending on p and it may vary on each step.

k

Proof: let P,(f)(x) = X", 5;B;(x) , Where s; = #% ,
j=0,..,n and B;(x) are convex functions of value in IR and x € [-1,1]
Now assume x, y in[—1,1], with x < yand that fis convex on [—1,1]. It follows that 0y < s;,

which immediately then
n

Pu(Plax + (1 - @)yl = ) siB;ax+ (1 - a)y),
j=1
<y Xj15i[aBi(0) + (1 — )B; ()]
= aXj=15Bj(x) + (1 —a) Xj-;5;B;(x)
= aP,(f)(x) + (1 - )R(H()
This implies that B, (f) is convex on [—1,1].
Let us now true the light to the estimate

Zn:f(x) Z 5B,(H0)

If () = POl =

ARS(x))
j=1f(x) = Zj- ozkh—),fj() B;(f)(x)
Tk o =1 I(M)F -7y AR F ()R () ()
oD (5)

Yoy A (x)[1-R; (N ()]
Tfoo(- 1)k (I;)

<x ColIZj=1 80/ (o)l
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SX C(p)wk(f; 5)19
This ends the proof of the estimate. ]

Corollary 2.3:
If fis an increasing map on [-1,1] and of value in Y , and let n € N, then there exists an
increasing polynomial of degree not exceeding n such that

If )<y f(y) then P, (f)(x)<y P (f)(¥)

Proof: Let f be an increasing function in L,[—1,1] then so as P,(f)(x) = X7, s;B;(x) , using the
same lines of the proof of theorem (2.2) we can get the proof of the result above.
B (f)(x) = Xj-15iBj(x) <xXj=15Bi () =P,(H)(¥) n
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