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Abstract 

Edge computing is used with cloud computing as an extension to increase the performance of delay-sensitive applications such as 

autonomous vehicles, healthcare systems, video surveillance systems, ..etc. The fast increase in the Internet of Things (IoT) devices 

increases the amount of data transferred in the network. IoT devices are resource-constrained in terms of energy consumption and 

computation capability. Data processing near IoT devices enabled by edge devices. Hence reduces the transmission power of sending 

data to the cloud and causes delays due to the cloud being placed far away from the devices. Most real-time applications depend on 

artificial intelligence (AI) techniques, increasing the computations on IoT-edge devices. Conversely, if this AI workload is executed 

on the cloud, the delay increase causes degradation in application performance. How to decide where the computation is done in an 

IoT, edge and cloud network is an important issue. The purpose of optimizing the workload allocation decision is to increase the 

application performance in terms of Quality of Experience (QoE) and Quality of Service (QoS); hence, the major goal is to reduce the 

delay time while maintaining the accuracy of the AI systems. As presented in this review, many researchers focus on proposing a 

workload allocation decision based on AI techniques. In contrast, other research focuses on the AI workload, hence presenting a 

method for partitioning the AI model to increase the system's accuracy in the resource constraint devices (end device and edge server). 

Many other researches also used the AI model for resource allocation and provisioning between edge servers and the cloud. In this 

review, the integration between AI and edge–cloud environment is investigated, the AI workload allocation methods are presented and 

analyzed, a brief overview of the application of deep learning in edge-cloud computing is also presented, and many challenges that 

need to be addressed for the AI application are discussed. Many issues and challenges are also presented for optimizing the edge. 
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I. INTRODUCTION 

Internet of things (IoT) devices such as smartphones, sensors, and wearable devices are limited in many aspects, such as energy and 

computational resources. Offload processing and storage are affected by these limitations. Hence the processes moved from these 

resource-constrained devices to the cloud since the cloud offers on-demand and scalable service. From other aspects, the cloud is 

located far away from the devices causing high communication latency [1]. The increasing in IoT applications that depend on real-

time computing power and low latency needed edge-computing systems. These applications include healthcare, smart cities, artificial 

intelligence, robotics, and augmented reality. Edge computing (EC) is a technology that enables both storage and computation near 

devices. This technology minimizes the latency requirements for the application. For example, for safety-critical vehicular 

applications, blind intersection warnings, emergency vehicular assistance, lane changing assistance, and forward collision warnings, 

the maximum acceptable latency is 3 to 10 milliseconds for good performance [2], [3]. Most of the data in EC are processed at the 

edge, and only a small amount of data is sent to the cloud, causing a reduction in bandwidth requirements. The number of data 

generated by edge-based IoT applications is huge and continues to grow, which requires intelligent management of this big data [4].  

EC facilitates the fluidity of devices and applications spread across various locations. Among its applications are instant analysis of 

data gathered by portable devices, seamless content dissemination to moving vehicles, and the supervision of the environment using 

widespread wireless sensor networks (WSN) [1]. 

Fig. 1 presents the general architecture of the EC system. Edge device which interacts with a human being or the environment to 

collect data. A good computing capacity is needed for the devices to process the workload. The edge server will be in the same 

location as the edge device participating in the workload process. An edge gateway also performs network-related functions like 

protocol translations, tunnelling, firewall protection, or wireless connection to edge devices. The Cloud server is a centralized server 
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[5]. It is not required for the server to be in the same location or closer to the edge device. Just the critical data will be sent to a 

centralized server also used for training in case of application requires a complex DL model. 

 
                                                                          Figure 1: Edge computing system architecture. 

 

The data generated from IoT sensors need to be analyzed in real-time. Artificial intelligence (AI) technology can be used for that 

purpose. Manly Deep-learning, part of AI technology, requires computation resources to run quickly, so it is implemented on EC to 

meet the low-latency and high computation requirements of DL on edge devices. It also provides more benefits like bandwidth 

efficiency, scalability, and privacy. The type of analysis performed on data produced by sensors in an IoT system depends on the 

particular IoT domain; DL is effective in a number of those domains. A few examples are predicting electricity demand on a smart 

grid, tracking human activity using wearable sensors, and pedestrian traffic in smart cities. Several IoT applications, like those already 

stated, provide various streams of data that must be processed and combined, usually including time and spatial correlations that 

should be employed by machine learning [6].  The workload allocation among edge servers for each Internet of Things (IoT) 

application influences how quickly requests are processed due to the restricted processing or storage capabilities on the edge devices 

side. As a result, when the edge server's access devices are deployed widely, the workload distribution becomes a crucial aspect 

influencing the quality of the user experience (QoE) [7]. The AI application increased and integrated with EC systems in more than 

one way to increase the application's performance. Many approaches have been adopted to increase the performance of the AI 

application hence decreasing the response time, increasing the quality of experience, and increasing the application accuracy while 

decreasing the energy consumption enabling these applications to work in a resource constraint environment.  

In this paper, the methods for workload allocation decisions are investigated to present the recent work that focuses on increasing the 

QoS and QoE of AI applications in an IoT-edge-cloud environment. The methods presented aim to decrease the response time of the 

application tasks, decrease the energy consumption of end devices, or increase the application accuracy deployed on IoT-edge devices, 

more details are presented in section VI.  

The remainder of this paper is structured as follows: Section II offers an elaborate presentation of EC concepts. Section III presents the 

AI technology, while Section IV presents the type of workload for AI applications. In Sections V and VI, the inference methods for AI 

application and the methods for workload allocation are introduced, respectively. The open issues and challenges are presented in 

Section VII. Finally, the conclusion is presented in Section VIII. 

 

II. EDGE COMPUTING 
 

Lately, there has been a growing fascination with the utilization of edge-clouds for various functionalities. Edge computing (EC), 

which involves data processing at the periphery of the network, has gained prominence alongside the rapid expansion of the Internet 

of Things (IoT) and the increasing demand for sophisticated cloud services. EC serves to address the need for prompt responses, 

constraints on battery life, reduced bandwidth costs, and the assurance of data security and privacy [8]. As data generation at the 

network's edge becomes more frequent, conducting data processing at this location proves to be more efficient. As cloud computing 

might not always suffice for data processing in such scenarios, prior initiatives like micro data centers [9], [10], cloudlets [11], and fog 

computing [12] have been introduced to the community. The term "edge computing" encompasses the technologies that facilitate 

computation on downstream data for cloud services and upstream data for IoT services, situated at the periphery of the network. In 

this context, the "edge" pertains to any computing and networking resources positioned between cloud data centers and data sources. 

For example, smart home gateways serve as intermediaries between inanimate devices and the cloud, while cloudlets, also known as 

small-scale data centers, function as intermediaries between mobile devices and the cloud. EC emphasizes the need for processing to 

occur in close proximity to data sources. 

EC and fog computing are interchangeable, but EC has a stronger focus on the object's side, while fog computing has a stronger focus 

on the infrastructure side. Under the EC paradigm, objects fulfill the roles of both data producers and consumers. Things can conduct 

computing operations from the cloud at the edge and request services and content from it. Edge can distribute requests and delivery 
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services from the cloud to users and conduct computing offloading, data storage, caching, and processing. To effectively fulfill the 

requirements for service, such as dependability, security, and privacy protection, the edge itself must be carefully built. 

With EC, the aim is to locate the processing close to the data sources. Compared to the conventional cloud-based computing 

paradigm, this has many advantages. Here, the possible advantages are presented using a few early community results. By shifting 

processing from the cloud to the edge, researchers created a framework for running a facial recognition application as a proof-of-

concept. In [13], The response time was decreased from 900 to 169 ms. Ha et al. [14] found that using cloudlets to offload 

computational workloads improved response times by 80 and 200 ms for wearable cognitive aid. Moreover, cloudlet unloading could 

lower energy use by 30% to 40%. The prototype developed by clonecloud in [15] might cut running time and energy consumption for 

tested apps by 20 percent by combining migration with merging, partitioning, and on-demand instantiation of partitioning across the 

mobile device and the cloud. 

EC systems connect computing, network resources, and storage at the edge of the network, facilitating developers' rapid creation and 

deployment of edge apps. These systems are motivated by the visions of the IoT and 5G communications. Both industry and 

academics are paying close attention to EC systems. To investigate fresh research possibilities and aid users in choosing appropriate 

EC platforms for certain applications. Existing EC systems are divided into three types: push from the cloud, pull from IoT, and 

hybrid cloud edge, which collectively produce advancements in system design, programming methods, and various applications [16]. 

In the Push from the cloud category, cloud providers shift computation and services closer to the customer to take advantage of 

proximity, speed up reaction times, and enhance user experience. Systems like Cloudlet [11], Cachier [17], AirBox [18], and 

CloudPath [19] are examples. Several conventional cloud computing service providers are actively working to bring cloud services 

closer to customers and shorten the distance between clients and the cloud to prevent losing market share to mobile EC. While the pull 

from IoT handles the massive volume of data created by IoT devices, IoT apps pull computation and services from the remote cloud to 

the network's edge. PCloud [20], ParaDrop [21], FocusStack [22], and SpanEdge [23] are examples of representative systems. Because 

of advancements in embedded Systems-on-a-Chip (SoCs), many IoT devices are becoming increasingly powerful, allowing them to 

execute complex algorithms and embedded operating systems. Several IoT device makers incorporate machine learning and even DL 

capabilities. IoT devices may effectively share processing, network resources, and storage while utilizing EC platforms and tools 

while maintaining independence. Finally, the Hybrid category represents the combination of cloud and edge benefits. It provides a 

strategy for achieving worldwide optimal outcomes and minimal response time in modern, sophisticated applications and services. 

Firework [24] and Cloud-Sea Computing Systems [25] represent representative systems. Cloud services offer the strength and 

flexibility needed to run complex analytics on IoT data. In contrast, EC solutions employ the processing power of IoT devices to filter, 

pre-process, and gather IoT data. 

 

III. ARTIFICIAL INTELLIGENCE TECHNIQUES 

 

Artificial intelligence (AI) is a technology that gives machines a certain level of intellect so that they may carry out jobs much like 

people [26]. Even though data mining (DM) and heuristic-based algorithms [27] have been major contributors to AI for IoT solutions 

throughout the years, it is important to note that while DM and ML both use huge amounts of data, ML and DL focus on simulating 

the human learning process. In contrast, DM is intended to extract the rules from the data [28], [29]. DL is a higher-level intelligence 

and indicates the future direction of AI compared to DM. 

DL is a subfield of machine learning that focuses on developing AI systems using programming techniques modelled after the human 

brain's anatomy and physiology. DL can handle vast amounts of data and allows computers to make judgments in the same way 

humans do, hence efficiently performing tasks such as prediction and classification [30]. Because of its multilayer nature, DL has a 

more potent capacity to extract high-level characteristics from large amounts of data [31]. Various DL applications and goals have led 

to the development of several DL architectures. Architectures within the domain of DL, such as deep neural networks, deep belief 

networks, deep reinforcement learning, recurrent neural networks, convolutional neural networks, and transformers, have found 

extensive applications across diverse fields. These applications encompass board game algorithms, computer vision tasks, the realms 

of the Internet of Things (IoT), speech recognition systems, natural language processing, robotics, autonomous vehicles, healthcare 

applications, and the domain of machine translation [32]–[35]. They are also used in various industries, including finance, retail, and 

marketing, to solve complex problems and improve decision-making. 

In edge-cloud computing, DL algorithms are typically deployed on edge devices or gateways, able to transfer data and models 

between the edge and cloud as needed enabling real-time processing and decision-making while reducing the latency and bandwidth 

requirements of transmitting data to the cloud. Neural networks in DL are designed with multiple layers, allowing the network to learn 

hierarchical representations of data. This allows DL algorithms to perform highly accurate tasks such as image and speech recognition, 

natural language processing, and predictive modelling. The trained of DL algorithms can be either supervised or unsupervised learning 

tasks. Supervised learning algorithms are trained on labeled data, where the desired output is already known. On the other hand, 

unsupervised learning algorithms are trained on unlabeled data and attempt to find patterns and relationships in the data without prior 

knowledge of the output. The success of DL is largely due to the availability of large amounts of labeled data, as well as advances in 

computing power and algorithms that make it possible to train deep neural networks in a reasonable amount of time. However, DL 

algorithms can also be computationally intensive, requiring specialized hardware and software to run effectively. 
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The emergence of numerous DL-based intelligent services and applications has significantly transformed various facets of human life, 

primarily owing to the inherent advantages of DL in natural language processing (NLP) and computer vision (CV). These 

breakthroughs are not only a consequence of DL's advancement but also intricately linked to the rapid expansion of data availability 

and processing capabilities. However, despite these achievements, the accessibility of intelligent services remains limited for several 

use cases, such as smart city initiatives, the Internet of Vehicles (IoVs), and more, largely due to cost-related factors. Consequently, 

the training and inference procedures of DL models in the cloud necessitate the transmission of substantial data volumes from devices 

or users to the cloud, resulting in significant network bandwidth consumption. Moreover, the issue of latency has impeded the 

widespread deployment of intelligent services. This is particularly evident in time-sensitive applications, like collaborative 

autonomous driving, which demand swift access to cloud services, a feature that is typically not assured and might not always be 

available [37]. Reliability is also important because many industrial scenarios require highly reliable intelligent services, even if 

network connections are lost. Most cloud computing applications rely on wireless communications and backbone networks to connect 

users to services. Furthermore, privacy is important since the data needed for DL may contain a lot of sensitive information. Smart 

cities and households depend on privacy protections. 

Allocating workloads is one of the most effective and efficient strategies to boost the performance of the cloud computing system. 

Moreover, it examines one of the most serious challenges of our day [38]. Several methods have been proposed to overcome this 

assumption, and the most effective ones have been applied by utilizing DL technology [39]. Also, optimizing the edge to implement 

the intelligent edge is an important issue in recent research, enabling the complex AI model to work efficiently in resource constraint 

devices. On the other hand, decision-making plays an important role in application performance in the edge cloud system since many 

recent researches focus on workload allocation decisions among end devices, edge servers, and cloud centers. 

 

 

IV. TYPE OF AI APPLICATION WORKLOAD 

 
As mentioned previously, the AI application benefits greatly from EC. In addition, DL algorithms can be used in congestion with 

edge-clouds to enhance management and provide better performance from many applications, especially for delay-sensitive 

applications. This combination is used by various researchers in various projects, such as autonomous vehicles, medical devices, smart 

watches, IoT sensors, etc. The major applications that benefit from the edge are presented in this section. This application, in general, 

generates AI workload by its end devices and is sent to the edge–cloud server for processing. Such as these applications are Computer 

Vision, including object detection and recognition, image and video compression, natural language processing, Predictive 

Maintenance, Anomaly Detection, and Personalized Recommendations. 

A- Computer Vision 

DL algorithms can be used for image classification, object detection, and recognition, which is the fundamental task of computer 

vision on edge devices such as cameras or mobile devices. In addition, the edge server enables real-time image and video stream 

processing. For example, video surveillance, item counting, and vehicle recognition require computer vision tasks. Such data comes 

naturally from cameras at the network edge [40]. The frame rate of real-time inference in computer vision can sometimes be described 

in terms of the camera's frame rate, typically 30 to 60 frames per second [41]. Also, uploading camera data to the cloud raises privacy 

issues, particularly if the video frames contain private documents or private information, which is another reason to do computing 

locally. The third benefit of EC for computer vision jobs is scalability. If many cameras transmit huge video streams, the uplink's 

bandwidth to a cloud becomes restricted. Vigil [42], an innovative illustration of an edge system for computer vision application that 

utilizes the power of edge computing. The Vigil system comprises a wireless camera network that captures images and sends them to 

edge EC nodes for processing. The EC nodes then use intelligent algorithms to select the frames that require further analysis, reducing 

the amount of data that needs to be transmitted to the cloud. In Vigil, EC is used for two reasons: to scale as the number of cameras 

grows and to consume less bandwidth than the naive strategy, which is uploading all frames to the cloud for analysis. The edge-based 

video analysis is also motivated by scalability in VideoEdge [43]. They employ a tiered architecture of edge and cloud compute nodes 

to aid with load balancing while retaining high prediction accuracy. Commercial devices, like Amazon DeepLens [40], employ an 

edge-based strategy, performing the detection of images locally to reduce latency time and only uploading scenes of interest to the 

cloud for distant viewing if an intriguing object is discovered, thereby conserving bandwidth [6]. 

B- Natural Language Processing 

DL algorithms can be used to perform natural language processing tasks, such as sentiment analysis and language translation, on edge 

devices. DL has also gained popularity for tasks involving natural language processing [44], such as speech synthesis [45], named 

entity recognition [46] (which involves recognizing the many components of a phrase), and machine translation [46]. Recent systems 

have been able to attain latency for conversational AI on the order of hundreds of milliseconds [47]. Visual question-and-answer 

systems [48] exist at the nexus of computer vision and natural language processing, is to ask queries about images and obtain natural 

language responses. Depending on how information is displayed, different latency requirements apply; For instance, conversational 

responses are best given within 10 milliseconds, whereas a response to a typed Web inquiry can wait up to 200 milliseconds [49]. As 

Examples of natural language processing applications performed on edge are Voice assistants like Apple Siri and Amazon Alexa. 
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Even if some of the processing carried out by these voice assistants takes place in the cloud, wake words like "Hello Siri" are 

recognized by on-device processing. If the wake-word is found, the speech recording is only forwarded to the cloud for additional 

processing, query answer, and interpretation. Two on-device DNNs are used in AppleSiri's wake-word processing to categorize voice, 

including silence, general speech, and wake-word [50]. The first DNN uses a low-power and has fewer layers (5 levels, 32 units). 

When the output of the first DNN exceeds a certain level, the main processor activates a second, more potent DNN (5 layers, 192 

units). Methods for wake-word recognition need to be further modified to function on even less powerful devices, like an Arduino or 

smartwatch. A single DNN is utilized on the Apple Watch, and its hybrid structure borrows from the two-pass method. Researchers at 

Microsoft optimized an RNN model for wake-word ("Hello Cortana") detection to fit in a small amount of RAM for voice processing 

on an Arduino [51]. Overall, while EC is employed for wake-word recognition on edge devices, a professional translator can interpret 

5 times faster. The latency also needs to be addressed for more complicated natural language jobs [6]. 

C- Network Functions 

It has been suggested to use DL for network operations, including intrusion detection [52], [53], and wireless scheduling [54]. By 

definition, these systems operate at the network edge and have strict latency requirements. For instance, to prevent establishing a 

bottleneck, An intrusion detection system must perform detection at a line rate, such as 40 s, to actively respond to a detected attack by 

blocking malicious packets [55]. Yet, the intrusion detection system's latency requirements are less stringent if it runs in the passive 

mode. To instantly decide which packets to send where a wireless scheduler needs to run at a line rate. An additional example of a 

network function that can make advantage of DL at the network edge is network caching. In an EC situation, various end devices in 

the same geographic area could make numerous requests to the same remote server for the same material. The perceived response time 

and network traffic can be greatly decreased by caching such items at an edge server. Deep reinforcement learning or DL for content 

popularity prediction are the two most common ways to implement DL in a caching system [56]. For instance, Saputra et al. [57] 

employed DL to forecast the popularity of content. The cloud gathers data on content popularity from all of the edge caches to train 

the DL model. On the other hand, deep reinforcement learning for caching ignores popularity prediction and relies only on reward 

signals from its activities. To train deep reinforcement learning for caching, Chen et al. [58] used the cache hit rate as the reward [6]. 

D- Internet of Things 

In many industries, including smart cities, the grid, and wearables for healthcare, an automatic understanding of IoT sensor data is 

sought. The specific IoT domain will determine the type of analysis done on these data, but DL has proved successful in several of 

them. As examples, consider pedestrian traffic in a smart city [59], electrical demand prediction in a smart grid [60], and human 

activity detection from wearable sensors [58]. One distinction in the IoT environment is that several data streams might need to be 

combined and processed and that machine learning should use the space and time correlation that these data streams often have. One 

framework for fusing IoT data that takes advantage of spatiotemporal correlations is DeepSens [59]. Convolutional neural networks 

(CNNs) are used in a hierarchy in the DeepSens architecture to record numerous sensor modalities, while recurrent neural networks 

(RNNs) are used to collect temporal correlations; this generic architecture may be used for a variety of applications that call for 

numerous sensor inputs, such as vehicle tracking, the detection of human activity, and biometric identification. Another field of study 

in the IoT and DL focuses on compressing DL models to fit onto computationally constrained end devices like the Raspberry Pi or 

Arduino, which often have little memory and low-power CPUs. This line of research addresses the challenge of deploying DL models 

to devices with constrained resources. Techniques such as pruning, quantization, and knowledge distillation have been proposed to 

reduce the size of DL models while maintaining acceptable accuracy levels. These techniques have the potential to bring the benefits 

of DL to resource-constrained devices and enable innovative IoT applications. DeepThings [61] tests with the Raspberry Pi 3, while 

DeepIoT [62] utilizes Intel's Edison board. In the survey by Mohammadi et al., additional instances of using DL in IoT contexts, such 

as in industry, agriculture, and smart homes, are provided [63]. When IoT sensors are located in public areas, like the Hudson Yards 

smart city construction in New York City, serious privacy problems might arise; these concerns can be addressed using EC combined 

with IoT devices. The technology seeks to combine a variety of sensors, such as those that measure temperature, noise, and air quality, 

coupled with cameras to provide marketers an estimate of the number of individuals who watched commercials and how long they 

were seen, as well as their mood based on facial expressions. The potential for misuse of such data raises serious concerns about 

privacy infringement, highlighting the need for greater security and privacy protection measures. EC can help address these concerns 

by processing data locally on the device, reducing the need to transmit sensitive information to centralized servers. By performing 

computation and analysis closer to the source of data, EC can help protect sensitive information, reducing the risk of data breaches and 

other privacy violations. The adoption of EC in IoT devices can help enable innovative and valuable IoT applications while ensuring 

user privacy and security. Nonetheless, privacy advocates have issued serious cautions in response to this [64]. IoT processing on the 

edge is driven by privacy concerns, even if real-time analysis of IoT sensor data is not necessarily required and sensor connection 

bandwidth needs are often low (unless cameras are involved) [6]. 

E- Virtual Reality and Augmented Reality 

DL has emerged as a promising approach to predict a user's perspective within the immersive world of 360-degree virtual reality (VR) 

in order to create a seamless and engaging user experience. This involves the real-time computation of predictions, enabling the 

selection of the most relevant sections from the 360° video content [65], [66]. DL also finds utility in the realm of augmented reality 

(AR), where it serves to identify objects of interest within the user's field of vision and seamlessly overlay virtual elements onto the 
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real world. In both AR and VR scenarios, the critical performance metric is the "motion-to-photons" delay, representing the time lag 

between a user's movements and the corresponding update on the display [67], [68]. This delay typically needs to be minimal, ranging 

from tens to hundreds of milliseconds [69]. The motion-to-photons latency acts as an upper limit for the timing demands imposed on 

DL because various other components within the AR/VR system can introduce substantial latency [70]. Furthermore, the specific 

application and nature of user interactions can also influence the motion-to-photons delay requirements. Ensuring satisfactory 

performance often necessitates edge computing (EC) to prevent significant delays, as offloading AR computations to remote servers 

could result in delays spanning hundreds of milliseconds [6], [71]. 

 

V. AI  WORKLOAD  INFERENCE  PROCES 

 
Several methods have been utilized to speed up the processing of the tasks generated by the AI application, hence speeding up the 

inference process. To meet the stringent latency requirements of various applications, several architectures have been proposed for 

performing deep neural network (DNN) inference. These architectures are designed to optimize the computation and memory 

requirements of DNN models, enabling them to perform inference with minimal latency. There are three types of computation 

locations. The first type is by executing the task on-device, where DNNs are run on the end device. The second type involves carrying 

out the workload in edge server-based architectures, where data is executed on edge servers. The last type involves collaborative 

computation involving end devices, edge servers, and the cloud [6]. 

Moreover, the speed-up execution of the tasks can be done by enhancing the model design, model compression, or hardware 

specification in case of execution on the end device. In the case of execution in an edge server, the speed-up process can be achieved 

by applying preprocess and resource management. Finally, in the case of computing across layers (end device- edge server, cloud), 

optimizing the offloading, DNN partitioning, distributed computing, and workload allocation decisions among the layers. These topics 

will be covered in more detail in the next sections.  

A- Execution on the edge device 

The DL algorithm's delay when applied to a device with limited resources has been the subject of extensive research. By lowering the 

DNN's latency while running on the end devices or edge servers, such initiatives could positively affect the entire edge ecosystem. 

Regarding the model design, the researchers focus on producing models with a smaller number of parameters in the deep neural 

network (DNN) architecture. This is particularly important when building DNN models for resource-constrained devices, where 

reducing memory usage and execution latency is critical. However, reducing the number of parameters can also reduce model 

accuracy. Therefore, researchers aim to balance model complexity and accuracy, seeking to produce models optimized for specific 

devices and applications. By optimizing DNN models for resource-constrained devices, machine learning researchers can enable new 

applications that were previously impractical, opening up new opportunities for innovation in fields such as IoT, mobile devices, and 

wearable technology. There are numerous methods for doing this, description of a few well-liked computer vision-based DL models 

for devices with limited resources is presented. These models include MobileNets [72], solid-state drive (SSD) [73], YOLO [74], and 

SqueezeNet [75]. The convolution filters are divided into two easier operations by MobileNets, which lowers the number of 

computations required. SqueezeNet uses specialized convolution filters to downsample the data. Single-shot detectors like YOLO and 

SSD anticipate the class and location of the object simultaneously, which is substantially faster than doing these tasks one at a time. 

To facilitate quick bootstrapping, users can leverage pre-trained models with pre-trained weights, readily available from open-source 

machine learning systems such as Tensorflow [76] and Caffe [77]. While in the case of the Model Compression aspect, considered as 

another method for enabling DNNs on edge devices is by compressing the DNN model. These techniques often aim to compress the 

existing DNN models with minimal compromise on accuracy in relation to the original model. Techniques for compressing models, 

such as parameter quantization, parameter trimming, and knowledge distillation, are commonly employed. The following is a succinct 

overview of various strategies. By switching from floating-point values to low-bit width numbers and compressing the parameters of 

an existing DNN, parameter quantization avoids the expensive floating-point multiplications., pruning entails deleting the least 

significant parameters (such as those that are almost zero). Both solo and cooperative considerations of the quantization and pruning 

techniques have been made [78]. DeepIoT [79] and CMSISNN [80] are techniques for optimizing deep learning structures for 

deployment on edge and mobile devices. DeepIoT prunes DL structures, removing unnecessary connections to reduce complexity. 

CMSISNN quantizes DL models, reducing precision to save memory and improve performance on ARM Cortex-M processors 

commonly used in IoT devices. Both aim to improve performance and reduce resource requirements for DL models on IoT devices. 

To hasten DNN performance, it additionally improves data reuse in matrix multiplication. For an RNN model, Han et al. [81] 

suggested quantization and pruning, resulting in a 10 speedup and quantization inducing a 2 speedup. Lane and Bhattacharya [82] 

compacted the neural network, and a smaller DNN that mimics the behavior of a larger, more potent DNN is created by knowledge 

distillation [83]. To accomplish this, the smaller DNN is trained using the output predictions generated by the larger DNN. 

Fundamentally, the reduced-size DNN closely approximates the function learned by the larger DNN. Another technique known as fast 

exiting computes the initial layers and leverages the outcomes to produce approximate classification results [84]. The combinations of 

these model compression strategies have been examined in several papers. To meet application needs and adhere to mobile resource 

limits, Adadeep [85] automatically selects between various compression algorithms, including pruning and the unique filter structures 
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borrowed from SqueezeNet and MobileNet. Quantization and GPU caching of results from intermediary layers are combined in 

DeepMon [86]. To reduce duplicate computations and speed up execution, caching makes use of the observation that a visual input's 

variation across frames is minimal. As a result, it is possible to reuse previously computed results in the current frame. Finally, in the 

Hardware improvement aspect, To expedite DL inference, hardware makers are utilizing already-existing technology like GPUs and 

CPUs as well as creating specialized application-specific integrated circuits (ASICs), like Google's Tensor Processing Unit (TPU) 

[87]. Another recently suggested custom ASIC is ShiDianNao [88], which focuses on energy- and latency-efficient memory accesses. 

It is part of the DianNao [89] family, a collection of DNN accelerators. Still, it is designed for embedded devices, which is 

advantageous in the context of EC. Based on a field programmable gate array (FPGA), DNN accelerators are still another promising 

strategy since FPGA allows for quick processing while keeping flexibility [88]. These specialized ASIC and FPGA designs are 

typically more energy efficient than conventional GPUs and CPUs, which are built to support a wide range of applications while 

consuming more energy. For application developers to take use of the hardware accelerations, vendors also offer software tools. To 

take advantage of Intel processors, which include Intel's GPUs, CPUs, FPGAs, and visual processing unit, chip manufacturers have 

produced software tools, such as Intel's OpenVINO Toolkit [90], [91]. Another entrant in this market is Nvidia's EGX platform [92], 

which supports a variety of Nvidia hardware, from compact Jetson Nanos to potent T4 servers. The Neural Processing software 

development kit (SDK) from Qualcomm is made to work with their Snapdragon processors [93]. There are other universal libraries 

designed for mobile devices that are independent of any particular hardware, such as RSTensorFlow [94], which accelerates DL 

matrix multiplication using the GPU. Moreover, software methods for effectively utilizing hardware have been devised. For example, 

Lane et al. [95] accelerated execution by decomposing DNNs and allocating them to different local processors (such as GPU and CPU 

). The good survey by Sze et al. [96] provides more information on hardware-accelerated DL. 

B-  Edge Server Computation 

Using big, powerful DNNs with real-time execution requirements on edge devices is still difficult owing to resource constraints (e.g., 

power, memory, and compute), even with the hardware speedup and compression strategies discussed above. So, it becomes sense to 

think about shifting DNN calculations from end devices to stronger systems, like the cloud or edge servers. The cloud is ineffective 

for edge applications that demand quick responses, though [97]. The edge server becomes the go-to assistant because it is close to the 

users and can react to their requests rapidly. Offloading all computing from end devices to the edge server is the simplest way to use 

the edge server. When this happens, the end devices send their data to a nearby edge server, where it is processed and then receive the 

results. To assess wireless signals, Wang et al. [98], for instance, constantly offloaded DNNs to the edge server. Data preprocessing 

can help reduce data redundancy when transmitting data to an edge server, reducing communication time. Glimpse [99] controls 

which camera frames are offloaded using change detection while offloading all DNN computation to a nearby edge server. Glimpse 

will carry out frame tracking locally on the end device if no changes are found. Real-time object identification on mobile devices is 

made feasible by this preprocessing, which enhances the capability of the system to analyze data. Similarly, Liu et al.  [100] propose 

two preprocessing procedures used to create a food identification system: first, fuzzy pictures were removed, and then the image was 

cropped only to contain the relevant elements. Both preprocessing phases can reduce the quantity of data offloaded and are rapid. In 

computer vision, feature extraction is a standard preprocessing step, and because DNNs function as feature extractors, it does not 

applicable in the context of DL. Also, Edge Resource Management is utilized. Hence DNN tasks from various end devices must run 

and be effectively managed on shared computing resources when DNN computations are performed on edge servers. The 

compromises between precision, speed, and other performance indicators, like the number of requests served, have been the focus of 

numerous studies looking into this problem field. A pioneering endeavor in this domain, Video Storm [101], assesses these trade-offs 

to determine the optimal DNN configuration for each request, aligning with the objectives of minimizing latency while preserving 

accuracy. Additionally, Chameleon [102] enables the real-time modification of configurations during the input streaming of videos. 

Furthermore, VideoEdge [43] explores the joint optimization of all DNN hyper parameters and distributed computation across a 

hierarchy of cloud and edge servers. Mainstream addresses a similar issue of balancing accuracy and latency trade-offs on edge 

servers [103]. Still, their solution uses transfer learning to cut down on the CPU power required for each request. Furthermore, transfer 

learning allows different applications to use the DNN model's lower common layers while computing higher layers that are specialized 

to each application, lowering the overall computation required. 

C- Computing Across Edge Devices 

While edge servers can improve the processing speed of DNNs, intelligent offloading can sometimes be used as an alternative to 

having edge devices run DNNs on the edge servers. There are various offloading scenarios to consider, such as binary offloading, 

which involves making a decision on whether to offload the entire DNN or not. Another scenario is partial offloading, where 

partitioned DNNs are considered, and a decision is made on which portion of the DNN calculations should be offloaded. This can be 

especially useful for edge devices that have limited computational capabilities, as offloading certain parts of the DNN to more 

powerful devices can help improve inference times while reducing the burden on edge devices. By employing intelligent offloading 

techniques, developers can achieve optimal performance for their DNN applications while taking into account the limitations and 

capabilities of their edge devices. The third option is Hierarchical Architectures, where offloading is performed across a combination 

of edge devices, edge servers, and cloud, and finally, Distributed Computing Approaches, where the DNN computation is distributed 

across multiple peer devices.  
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Offloading the DNN model, current methods, like Deep Decision [104], [105], and MCDNN [106], utilize an offloading technique 

based on optimization with restrictions on network latency and bandwidth, device energy, and cost. These choices are based on 

evaluating the trade-offs between the various DNN models' input size, accuracy, latency, and energy consumption. The selection of 

various DNN models can be made from the existing, well-liked models, or new model variants can be created by distilling existing 

information or by "mixing and matching" DNN layers from various models [106]. Even in the context of EC [107], Offloading is a 

well-researched topic in networking, and it has also been explored in the context of deep neural network (DNN) offloading. One of the 

benefits of DNN offloading is the added flexibility of choosing not just where to run the model but also which specific DNN model or 

part of the model to execute. However, determining whether to offload or not depends on various factors, such as the amount of data, 

available technology, the specific DNN model being used, and the quality of the network. Making the decision to offload requires 

careful consideration of these factors to ensure that the chosen approach will be efficient and effective. As technology evolves and 

new DNN models are developed, researchers will continue to explore the potential benefits and limitations of offloading and develop 

new techniques to optimize the process for different applications. 

Partitioning the DNN Models, A Fractional Offloading technique that takes advantage of DNNs' distinctive structure, particularly their 

layers, can also be considered. These model partitioning techniques involve computing certain layers on the device and others by an 

edge server or in the cloud. Utilizing the computing cycles of other edge devices may potentially reduce latency; however, it is 

important to ensure that the delay in relaying intermediate findings to the DNN division point still results in overall net gains. The idea 

behind model partitioning is that once the DNN model's initial few layers have been calculated, Since the intermediate findings are 

very small in size, sending them to an edge server over the network is quicker than sending the initial raw data [61]. The methods that 

divide after the initial layers are motivated by this. One study that intelligently chooses how to divide the DNN into layers while 

considering network conditions is Neurosurgeon [108]. The DNN can be divided into segments along the input dimension in addition 

to layers. Because the input and output data sizes and the memory footprint of each partition may be freely set, rather than the 

minimum partition size being determined by the discrete DNN layer sizes, such input-wise partitioning enables fine-grained 

partitioning. This is crucial for ultra-lightweight gadgets like IoT sensors, which might not have enough memory to store a full DNN 

layer. Nevertheless, input-wise partitioning might lead to greater data reliance because computing subsequent DNN layers require data 

from nearby partitions. MoDNN [109] and DeepThings [61] are two examples of input-wise partitioning. These partial offloading 

methods using DNN partitioning are generally similar to earlier, non-DNN offloading methods like MAUI [10] and Odessa [110], 

which break down an application into its jobs and choose which tasks to run where depending on energy and/or latency concerns. The 

choice of how to divide the constituent subtasks in the DL scenario is new, as the DNN can be separated into layers, inputs, or perhaps 

other yet-to-be-explored ways. 

In the case of Edge Devices and the Cloud, DL computation can be carried out both on edge devices and in the cloud. While purely 

offloading to the cloud may not meet the real-time demands of the DL applications under consideration, careful use of the cloud's 

potent compute capabilities may be able to reduce the overall processing time. Approaches in this domain frequently take into account 

DNN partitioning, where certain layers can function on an edge server, an end device, or the cloud, as opposed to making a binary 

decision on whether to perform computation on the edge server or cloud. The DNN model was split in two by Li et al.  [31]; the edge 

server computes the lower layers of the DNN model, and the cloud computes the higher layers. After receiving and processing the 

input data using lower-layer DNN, the edge server delivers the intermediate results to the cloud. After computing the upper layers, the 

final results are sent back to the end devices via the cloud. Such solutions use both the edge server and the cloud, with the cloud 

helping with computationally demanding queries and boosting the edge server's processing pace while reducing network traffic 

between the cloud and the edge server. Moreover, DDNN [111] combines this with the quick departing notion to spread processing 

across a hierarchy of end devices, edge servers, and the cloud. So that not all calculation requests are sent to the cloud. 

The edge server frequently serves clients located in a small geographic region, indicating that their input data and, thus, their DNN 

outputs may be comparable, which is a distinctive feature of EC. In the case of image recognition, Precog [112] leverages this 

comprehension by deploying more concise, targeted image classification models onto end devices, guided by recent insights from 

other devices serviced by the same edge server. Should the on-device classification prove unsuccessful, the query is relayed to the 

edge server with all classification models available. They deliberate on the potential application of their classification model 

placement decisions to DNNs, despite their evaluation not directly involving DNNs. This approach entails a fusion of both weaker and 

stronger classification models, akin to knowledge distillation for compressed models, providing a comprehensive examination of the 

specific models required on end devices within edge environments. 

The methodologies outlined above primarily take into account offloading processing from end devices to other, more capable devices 

(e.g., the cloud and the edge servers). Another approach to addressing the challenge of DNN processing in resource-constrained 

environments involves distributed computing. In this case, DNN computations can be distributed across multiple edge devices to 

improve processing time and reduce the workload of individual devices. For instance, DNN executions are distributed utilizing fine-

grained partitioning on lightweight end devices like Android smartphones and Raspberry Pi by MoDNN [109] and DeepThings [61]. 

Based on the end devices' computational power and/or memory, the DNN partition decision is made. With DeepThings creating a 

load-balancing heuristic and MoDNN employing a methodology similar to MapReduce, the input data are distributed to helpers at 

runtime under load-balancing principles. Online adjustments can be made to the data assignment to the assistance devices to consider 

dynamic shifts in the availability of computational resources or network conditions. More formal distributed system approaches could 

be used to provide verifiable performance guarantees in these cases. 
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VI. METHODS FOR WORKLOAD ALLOCATION 

 

Cloud computing was the first technology to offer computation offloading. The definition states that the execution of some or all 

computing duties is delegated to the cloud from terminal devices with low processing capability. The issue of terminal devices with 

low processing capability delegating some or all of their computing activities to the edge is known as computation offloading in EC 

[113]. The primary factors to be taken into account are whether or not which nodes, how much, and to which terminal devices will 

offload are all defined. Offloading computing tackles the problems of few resources and excessive energy consumption in terminal 

devices. The assumption that the default server has adequate processing capacity and is unconcerned with its energy usage or network 

stability is one of several made by traditional techniques of offloading computation in cloud computing. The computational offloading 

issue in EC, where edge devices and servers have constrained processing capabilities, cannot be solved using standard approaches 

based on the above assumptions [114]. Offloading techniques for computation that are reasonable can cut down on latency and energy 

use. As a result, computation offloading is a crucial study area for EC optimization [115]. 

This section presents the recent work on workload allocation decision methods. Table 1 summarizes the methods considered in this 

work for workload allocation. The workload allocation decisions depend on many factors, such as network condition, device 

capability, model complexity,...etc. Where to execute a given workload is considered an np-hard problem, especially in the multi-end 

device and multi-server case. Many research efforts have been made to reduce energy consumption, decrease delay response time, 

improve result accuracy, or achieve more than one of these goals. Many researchers use a mathematically based approach for 

workload allocation decisions. In [116], Investigations are made on the workload distribution issue in an IoT edge-cloud computing 

system. They develop a latency-based task allocation issue that offers the best workload distributions across local edge servers, 

neighboring edge servers, and the cloud to ensure low energy usage and delay. Then, a delay-based workload allocation (DBWA) 

algorithm based on Lyapunov drift-plus-penalty theory is used to solve the issue. Also, To determine the best decision, several other 

researchers use the Lyapunov optimization technique [117]–[119]. Resource allocation and compute offloading are also seen in certain 

research as optimization issues, such as linear programming [120] and mixed integer non-linear programming [121]–[123]. Other 

traditional methods include the alternating direction method of multipliers (ADMM) [124], Stack-elberg game [125], and so on. These 

methods are mathematically complex and computationally intensive compared to the methods that use AI technology for offloading 

decisions as present in Fig. 2. 

 

 
                                                                                 Figure 2: Workload allocation methods. 

 

In [126] and [127], the authors present two algorithms to optimize the workload allocation for AI applications. The first algorithm is 

for a single workload, and the second is for a multi-job workload. The algorithms aim to reduce the response time for latency-sensitive 

applications by deciding where to deploy the online process among the device, edge server, or the cloud. The experiment used six 

edge AI workloads from Edge AIBench experiments [128]. The AI workloads are short-of-breath alerts, patient phenotype 

classification, life-death prediction, face recognition, lane detection, and action detection. The author also used priority as a factor for 

making a decision. Hence in a multi-job scenario, each workload has a different priority. The type of AI model and dataset differs for 

each application chosen based on the application. The training process is always implemented on the cloud (offline process) then the 

pre-trained model sends to the devices. The online process includes inference and prediction. The algorithm depends on four factors to 

determine where to execute the inference process: the computational ability of the cloud server, edge server, and device, the 

complexity of the AI model, the size of the dataset, and the network latency. The proposed algorithm is compared with the three-based 

method of execution (execute all workload on the cloud, execute all the workload on the edge device or on the device). The result 

shows that the multi-job algorithm outperforms the other approach by 33% up to 63%. In [129], the authors proposed a method 

consisting of two-stage to allocate the workload to the edge server or the cloud server. The edge server, called the auxiliary network, 

contains a lightweight DNN, while the cloud server, called the principle network, contains a powerful DNN. The authors present a 

method to estimate the confidence level (trustworthiness) of the prediction made in the auxiliary network. If the confidence level of 
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the prediction is higher than the predefined threshold, then there is no need to send the workload to the principal network. If the 

confidence level is lower than the predefined threshold, then the workload should send to the principal network for more accurate 

prediction. The threshold is determined based on kernel density estimation (KDE). The authors balance the accuracy with the power 

constraint of the edge devices; hence if more workload is processed in the auxiliary network, the power consumption is reduced since 

there is no transmission to the principal network, but at the same time, the accuracy of predictions is reduced since the DNN model is 

lightweight. The powerful DNN model is computationally heavy compared to the power constraint of the edge. In the case of 

executing all workloads in the principal network, power consumption increased because of the principal network's transmission but 

achieved high inference accuracy. The DNN models used for the experiment are residual network (ResNet) [128] and wide residual 

network (WRN) [131], with the data sets CIFAR-10 and CIFAR-100 [132]. The proposed methods are compared with two methods 

which are CDL [133] and BranchyNet [132]. The authors used two combinations of a network. The first one is ResNet-18 as an 

auxiliary network and ResNet-110 as a principal network. In the second combination, WRN-28 as an auxiliary network, and WRN-10 

as a principal network. The author also used the big Snapdragon 835 core to estimate the power consumption of the edge as well as the 

Wi-Fi model as the transmission media model. Utilizing the entire energy utilized by the application processor, the transmission 

medium, and the overall latency of inference with the transmission, the power consumption of the edge device is assessed. In 

comparison to earlier studies, the results demonstrate an accuracy improvement of up to 3.93%. In [134], the authors present a 

machine learning-based approach to workload allocation decisions in vehicular EC, the authors used a two-stage mechanism based on 

the classification of the task will be success or failure if it's executed on edge or cloud respectively. While the second stage is 

predicting the response time for the execution in each layer and selecting the minimum response time layer. For the prediction layer, a 

linear regression model was used. The metric that the author depends on is the network bandwidth, data size, and delay time. In [135], 

the authors proposed an algorithm to reduce energy consumption and task processing time for IoT scenarios in mobile EC 

environments, the authors suggest a dynamic cost model. the suggested algorithm TEMS, which takes into account energy use, 

processing time, data transmission costs, and energy in standby devices. To get better execution times at cheaper costs, the task 

scheduling selects a cloud or mobile edge computing (MEC) server or local IoT device. The evaluation of the simulated environment 

reduced energy usage by up to 51.6% and increased task completion efficiency by up to 86.6%. In [136], the authors suggest an IoT-

edge-cloud network computation offloading strategy using mobile vehicles. The vehicles determine whether to calculate the tasks 

locally, on a MEC server, or in a cloud computing center once the sensing devices generate and transmit the tasks to them. Decisions 

on compute offloading are made using the deep reinforcement learning approach based on the utility function of energy usage and 

transmission latency. The experimental findings demonstrate that the suggested strategy maximizes reward and minimizes delay while 

implementing task offloading of sensing devices by fully using the existing infrastructures. In [138], the binary offloading decision 

between the wireless device and edge server is presented to minimize the MEC network's system utility. Use the deep supervised 

learning-based computational offloading (DSLO) technique for dynamic computational workloads in MEC networks. To faster the 

model convergence process and increase the model's robustness, batch normalization is also used. The authors take into account a 

MEC network with several wireless devices and a single edge server, where each MEC scenario is distinguished by a certain job 

weighting factor. Each wireless device in the network decides in real-time whether to conduct computing activities locally or offload 

them to the edge server. The numerical findings demonstrate that DSLO can swiftly adapt to new MEC conditions and only needs a 

small number of training samples. In [138], the authors propose a two-stage workload allocation method for an IoT-edge-cloud 

environment. The proposed methods, Distributed Deep Meta learning-driven Task Offloading (DDMTO), are based on deep neural 

network (DNN) for two-stage binary decision and deep meta-learning for training the initial parameter model. The model decides if to 

compute the task locally or offload the task to the server. If the decision is to offload the task, another decision will make to decide if 

to execute on the edge server or the cloud. The result shows that the DDMTO method outperforms the other earlier strategy, such as 

MO-BFO, DMRO, and DDTO.  In [139], The authors proposed a method based on Double Deep Q-Network (DDQN) algorithm for 

workload allocation in an edge-cloud environment called DDQNEC. The decision makes to send the tasks to the edge server or the 

cloud center. The objective is to minimize delay and meet computation and communication needs in edge-cloud computing by 

employee one of the reinforcement learning method. DDQNEC makes offloading decisions dynamically depending on resource 

utilization, network state, and task constraints. Simulation results demonstrate that DDQNEC outperforms heuristic approaches 

regarding task failure, task offloading, and resource utilization. In [140], The author provides a workload allocation method to tradeoff 

between energy consumption and delay. The proposed method called deep Post-Decision State (PDS)-learning, that depend on Deep 

Q-Network (DQN) for IoT-edge-cloud computing. The proposed method outperforms multiple other methods considered in the work 

in terms of job failure rate by 5.7%, delay by 4.5%, cost by 4.6%, energy consumption by 3.9% and computational overhead by 6.1%. 

The recommendation to use a specific method rather than others depends on the used scenario and application. Generally in a very 

high dynamic environment with a high number of edge devices and end devices the reinforcement learning, Q-learning and deep 

learning models show high performance compared to the baseline approach while in a static environment a linear regression model 

show enhancement compared to the baseline approach. 
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Table 1: Summary of the methods used for workload allocation decision 

Ref/ 

year 
Method Goal Technology 

Performance 

analysis 
Implementation tools 

[136]/ 

2020 

Determine whether to calculate 

the tasks locally, on an edge 

server, or in a cloud computing 

center.  

Transmission 

delay and 

energy 

consumption. 

Deep 

reinforcement 

learning  

Achieved the lowest 

delay compared to 

the baseline strategy 

Simulation - The 

network consists of 100 

sensing devices, 6–20 

automobiles, 50 MEC 

servers, and 1 cloud 

center. 

[134]/ 

2020 

Determine whether to offload the 

workload to the edge server or the 

cloud via WAL or cellular 

network. 

Achieve the 

lowest response 

time for the 

successfully 

executed task 

Machin 

learning – 

linear 

regression 

Achieved minimum 

response time and 

high task completion 

compared to other 

methods 

Simulation - 

EdgeCloudSim simulator 

[126]/ 

2021 

Determine where to deploy the AI 

workload among cloud server, 

edge server, or user devices 

considering AI model complexity, 

size of the dataset, the network 

condition, and the computational 

ability of the cloud, server, and 

end device. 

Minimize 

response time 

for latency-

sensitive 

applications. 

Deep learning 

Minimize the 

response time by up 

to 63% compared to 

the basic approach. 

Simulation -  

TensorFlow, keras and 

Edge AIBench. 

[129]/ 

2021 

Balances the accuracy with the 

power constraint of the edge 

devices by putting a lightweight 

DNN model in an auxiliary 

network and a powerful DNN in a 

principle network.  

Given a power 

limitation, 

increase the 

system's 

inference 

accuracy. 

 

Deep learning 

Improve inference 

accuracy up to 3.93% 

Simulation – python 

using ResNet model and 

WRN model with  

CIFAR-10 and CIFAR-

100 datasets, 

respectively. 

[135]/ 

2021 

The suggested algorithm 

considers energy use, processing 

time, data transmission costs, and 

energy in standby devices. To get 

better execution times at cheaper 

costs, the task scheduling selects a 

cloud or mobile edge computing 

(MEC) server or local IoT device. 

Reduce energy 

consumption 

and task 

processing time. 

 

Heuristic 

algorithm 

Reduced energy 

usage by up to 51.6% 

and increased task 

completion efficiency 

by up to 86.6%. 

Hardware 

implementation - IoT 

devices- Arduino Mega 

MEC - 5 Raspberry Pi 4 

Cloud - Intel Xeon 

Cascade Lake. 

 

[137]/ 

2022 

Consider a MEC network with 

multiple wireless devices and one 

edge server. Each MEC situation 

is characterized by a specific task 

weight. In real-time, each wireless 

device in the network decides 

whether to perform computations 

locally or transfer them to an edge 

server. 

By optimizing 

both offloading 

decisions and 

bandwidth 

allocation 

simultaneously, 

the overall 

system utility of 

the MEC 

network can be 

improved. 

Deep learning 

The numerical 

findings demonstrate 

that DSLO can 

swiftly adapt to new 

MEC conditions and 

only needs a small 

number of training 

samples. 

Simulation - CVX 

toolbox in Matlab for 

dataset creation and DL 

implementation tool (not 

mentioned)  

[138]/ 

2022 

Consider N IoT device, one edge 

server, and one cloud center. 

Decide whether to execute the 

task locally on the IoT device or 

send the task for further 

processing. If the decision is to 

offload the task, then the second 

stage is to decide if to send the 

task to the edge server or the 

Reduce energy 

consumption 

and task 

processing time 

Deep Neural 

Network 

(DNN) and 

Deep Meta-

learning 

The result shows that 

the DDMTO method 

outperforms the other 

earlier strategy, such 

as MO-BFO, DMRO, 

and DDTO. 

 

Simulation- Tensor flow 

and libraries of MLTs 
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cloud center.  

[139]/ 

2023 

Use the Double Deep Q-Network 

(DDQN) algorithm for edge-

cloud (DDQNEC) to decide 

where to execute the tasks in the 

edge server or the cloud.    

Minimize delay 

and meet the 

communication 

and 

computation 

device 

constraint.  

Deep 

reinforcement 

learning  

DDQNEC 

outperforms heuristic 

approaches in terms 

of resource 

utilization, task 

offloading, and task 

rejection 

Simulation-using Python 

and PyTorch 

[140]/ 

2023 

IoT-edge offloading scenarios 

Proposes the deep Post-Decision 

State (PDS)-learning algorithm, a 

new learning method that 

combines the PDS-learning 

method with the traditional DQN.. 

When the edge network wasn't 

available or didn't have the 

processing capacity to perform 

new activities, the proposed 

technique chose to use the cloud 

center instead. 

A compromise 

between high 

latency and 

constrained 

computing 

power while 

maintaining 

data integrity 

when 

offloading. 

Double deep 

Q-learning 

The proposed method 

outperforms other 

methods considered 

in the work in terms 

of job failure rate by 

5.7%, delay by 4.5%, 

cost by 4.6%, energy 

consumption by 

3.9%, and 

computational 

overhead by 6.1%. 

Simulation-using Keras 

and TensorFlow 

 

VII. OPEN ISSUES AND CHALLENGES 
 

There are still several obstacles to overcome the integration of edge-cloud systems with AI technology, such as putting DL on edge 

and execution location of tasks. The location of execution could be on end devices, edge servers, or a mix of end devices, edge 

servers, and the cloud. Future work must address and consider various difficulties adapting AI with edge clouds and delivering 

optimum performance. The most recent challenges will be briefly described here.  

Problem with optimization: Numerous goals may be accomplished by merging the DL algorithm with the edge cloud. These goals 

include lowering energy consumption, improving latency, and boosting accuracy. Finding a solution that balances all of these 

important aspects of the system is an extraordinarily challenging task [141].   

Datasets lack: to create an optimal DL system, large and relevant datasets need to guide the application's learning from them. Finding 

the ideal and appropriate dataset is crucial and regarded as one of the most crucial aspects of a DL system. Creating one's dataset is 

often a laborious and time-consuming effort. In recent years, several researchers have used transfer learning methodologies. Which 

focuses on using the dataset from another project for training the system while using the dataset from the target system for the 

development and testing stages [142], [143]. 

Diversity of DL algorithms: There are many distinct kinds of DL algorithms, and each has its own set of characteristic twists and 

turns. When trying to solve a problem using modern cloud computing architectures, it may be difficult for researchers and developers 

to evaluate which DL algorithm would be the most beneficial. This is due to no predetermined mapping between the DL models and 

the technology currently available [144]. 

Privacy and security: The data employed by a DL system is its core component. Data must be transported securely from end devices to 

edges, and the system must fulfill security criteria such as confidentiality, authorization, and authentication. If any of these four crucial 

privacy and security components are lacking, the system's effectiveness and accuracy may be compromised. For instance, in a 

healthcare IoT DL system, modifying patient information might cause a life-risk situation. This vulnerability may present in many 

other applications [145]–[147]. 

Hyper-parameters setting: The hyper-parameter settings significantly impact the performance of DL architectures. The configuration 

of a significant number of hyper-parameters is necessary for DL. Convolution neural network, for instance, requires the setting of 

several hyper-parameters, including the number of convolutional layers, pooling size, kernel size, activation function type in each of 

the convolution layers, number of dense layers, number of kernels, number of neurons in each of the dense layer, the number of 

hidden units in each layer, weight regularisation, batch size, dropout, and learning rate. These hyper-parameters are not the only ones 

that can be set. Each hyper-parameter must be adjusted for the proposed system, which can take several hours or months in a large 

network [148].  

Energy consumption: Batteries are the typical source of electricity for edge devices. When employed and implemented in these 

devices, DL algorithms may increase the number of computing processes, increasing the amount of power consumed [149].  

Latency time: The time execution of the tasks depends on many factors in the end device-edge–cloud systems, such as task size, the 

device capabilities, network conditions, and application model complexity. The workload allocation of the tasks must tradeoff 

between these several metrics to increase the AI application accuracy, especially for critical time applications. 
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VIII. CONCLUSION 

 

This article presents the state-of-the-art research being conducted currently to integrate EC with AI, enabling the realization of 

intelligent edges and edge intelligence. In conclusion, as traditional non-AI approaches have limits in dealing with the complex and 

dynamic environment in EC, which is also regarded as a complex approach that results in computing intensity, AI could enhance and 

optimize the performance of EC. On the other hand, EC helps the actual implementation of AI by bringing a quicker response time 

and a more reliable network state. Accurate modeling of the EC process is challenging because of its complexity, dynamics, and large 

dimensions, even though research on integrating AI with EC has made significant progress. In order to develop effective strategies, it 

is crucial to create and implement model-free procedures. Also, How to make AI algorithms more efficient with limited compute and 

energy resources is the key to deploying AI to the edge of the network, which calls for further research and the development of 

lightweight AI models. The necessity for real-time processing of data generated by end devices unites several example application 

drivers, including natural language processing, computer vision, network operations, and AR and VR. Techniques were developed for 

using the distinct structure of DNN models and the geographic proximity of user requests in EC to speed up DL inference across the 

cloud, edge server, and end devices. The reviewed studies revealed that balancing latency, accuracy, and other performance metrics is 

crucial. However, many unresolved issues remain, including improving performance, privacy, benchmarking, and resource 

management. 
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