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Abstract:

This paper considers acomparison of MINQUE with simple
estimator of 2 in the general Gauss-Markov model under the
special entropy loss function criterion where the design matrix X
need not to have full rank and the dispersion matrix V can be
singular A is considered . It is interesting  to show  that MINQUE is
superior to simple estimator OLSE

Introduction:

We consider the general Gauss-Markov model },,,{ 2XY

where ,)(,)( 2 VYDXYE   Eand D being expection and
dispersion operators, X and V are known matrices of order pn 
and nn respectively, both possibly deficient in rank.

Assume that the model is consistent,i.e. )( VXRY  , where R(A)
stands for the range(column space) of a matrix A and (AB)
denotes the partitioned matrix with A and B placed next to each
other.

Suppose we wish to estimate the unknown positive parameter 2
by using the competing estimators

    )1(1 MYMVMMYf 

and

  )2(1 MYYf 

Where f=rank(XV)-rank(X) is assumed to be positive and
 XXIM , A stands for the unique Moore-Penrose inverse of



a matrix A, and A denotes the transpose of A.

Formula (1) provides the MINQUE (Minimum Norm Quadrate
Unbiased Estimator) for 2 .

It can also be written as

    )3(,1 YMVMYf 

By using Theorem 3.4(a) in Rao (1974), the MINQUE can be
represented in further different forms.

An other estimator in  Formula (2) is  called "simple" estimator or
the ordinary least squares estimator, which is obtained simply by
replacing V by I in eq (3).

The object of the present note is to make comparison of these two
estimators , the criterion we used in this comparison is the risk of
the entropy loss function , in which entropy loss function defined by

)4(log)(),(
12122 ptrGGtrGL 




where G is a positive definite matrix.

Comparison of estimators:

The following lemmas are necessary for a proof of our main
theorem.

Lemma(1): Let V be nn nonnegative definite matrix with rank r
and 2 be   positive parmeters . Random matrix ),(~X 2VN  if
and only if AU X , where A is rn matrix with  rank r and

VAA  , ),0(~U 2
rIN 

Proof: Obviously, ),(~X 2VN  if and only if

),0(~,)( 2

1

VINMXY 


 , that means, V)N(0,~,...,, 21 iidYYY p , where

pYYY ,...,, 21 , are the column vectors of y, we know that for every
i=1,..,p, V)N(0,~iy if and only if ii AWY  , where A is rn matrix  with
rank r and VAA  , )IN(0,~ rW .



A proof of this proposition can be found in Rao (1973), P.521.

Let W=(W1,…,WP).Then I)N(0,~W Hence V)IN(0,~ Y if and only
if Y= AW, that implies V),(N~X 2 if and only if AU X where

),0(~ 22

1

rINWU 


 .The proof of lemma (1) is completed .

Lemma(2):let X be an pn  matrix and V nn nonnegative definite
matrix. Then )()()( XrankVXrankVMrank   where  XXIM .

A proof can be found in Wang and Chow (1994)

Lemma(3):
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Where U1,…,Uk are iid ~N(0, 2 )  and 0...1  k are the positive
eigenvalues of MV.

Proof: since MV=0, thus


2
m and


2

s can be written as

kMMVMMm /)(2  




kMs /2  


In view of lemma 1 and V)N(0,~ 2 , r= rank (v) we note that there
is an rn matrix A with rank r such that

,,),0(N~,A~ 2 VAAI 

Thus

fQm /1
2  



(7)

KQs /2
2  


(8)

Where



MAMAMAMAQ  )(1 , MAAQ 2

It is not difficult to verify that Q1Q2=Q2Q1, which implies (see for
example , Rao (1973),p.41) that there is an rn orthogonal matrix
T such that both TQT 1 and TQT 2 are diagonal. By using
lemma(2), it is can be shown that

rank(Q1)=rank(A/MA)= rank(A/M)=rank(VM)

= rank (V:X)-rank (X)=k
(9)

We note that Q1 is projection matrix, thus
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Where ),...,( 1 kk diag 

Denote

U=T/
(12)

Then

),0(N~ 2 IU 

(13)

Let  U/=(U1,…,Ur) .Then U1,…,Ur are iid ~N(0, 2 ).

Substitute (10),(12) in (8) yields (5)

Also substituting (11),(13) in (8) yields (6)

The proof of lemma 3 is completed

Theorem: under entropy loss function
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Where )( 2
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 are the risk of m


2 , s


2 respectively.

Proof:

From  eq(4) we have
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It follows from (6) that
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From (5) we have
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Now :

,log

),()(

11

22







































 

















p
k

VV

k

VV
trE

LER

k

i
iii

k

i
iii

ss





,log

),()(

11

22







































 

















p
k

VV

k

VV
trE

LER

k

i
ii

k

i
ii

mm 

Obviously,

.1...,)()( 1
22 


kms RR 

Let







































 



 p

k

VV

k

VV

trEL
i

k

i
iii

k

i
ii

k
11

1 log),...,(




Because ),...,( 1 kL  is a symmetric and convex function, ),...,( 1 kL 
has minimum value, and when   k...1 , ),...,( 1 kL  takes
minimum value.

Now , Let
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The proof  of theorem is completed.■
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