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Abstract

This paper has proved the existence of solutions that solve the
Nonlinear Partial differential equation. A study of dynamical systems
has developed on the exterior of the ball centered at the origin in RV with
radius R > 0, with Dirichlet boundary conditions « = 0 on the boundary,
and u(x) approaches 0 as |x| approaches infinity, where f(u) is local
Lipschitzian singular at zero, and grows superlinearly as u approaches
infinity. by introducing Various scalings to elucidate the singular behavior
near the center and at infinity. Also, N > 2, f(u) ~ Mz%lu for small u
with 0 < g < 1, and f(u) ~ |u|’~'u for large |u| with p > 1. In addition,
K(x) ~ |x|7% with 2 < oc < 2(N —1) for large |x|. The fixed point method
and other techniques have been used to prove the existence.
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1. Introduction:

Certainly, exploring solutions to partial differential equa-
tions is crucial in various scientific disciplines, especially in
physical mathematics[1, 2]. The existence and uniqueness
of solutions, particularly in second-order PDEs with speci-
fied initial conditions, form a fundamental aspect of this field
[3, 4, 5]. The existence of a positive solution of (1) on R¥with
K(r) = 1 has been studied extensively [6, 7, 8,9, 10, 11].

Recently the exterior domain RV \Bg(0) has been studied
in[12, 13, 14, 15, 16, 17]. Since we are interested in the topic,
it comes from the recent papers [16, 18, 11] that have been
studied to find the solutions to differential equation problems
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on exterior domains.

In [19], was studied (1)—(3) with K(r) r—%, where f is
singular at 0 and grows sublinearly at infinity, with different
values of ¢. Also, in [20], the singular semilinear problem
has infinitely many solutions on exterior domain. This article
has proved the existence of solutions when f is singular at 0
and grows superlinearly at infinity.

This paper deals with the problem:
Au+K(|x))f(u) =0, xcRV\Bg (1)

u=0ond (R"\Bg) 2

u—0 as|x| — oo 3)
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2 Existence Solutions for a Singular Nonlinear Problem ...

where A is the Laplacian operator, u : RY — R, with
N > 2, Bp is the ball of radius R > 0 centered at the origin in
RN and K (x) > 0.
In addition, we suppose:

f is an odd function, increasing on (0, o),
f is locally Lipschitz,38 > 0 such that f < 0 on (0, ),
f>00n(B,e).

(HI)
We assume:
f) = e i)
u
Jufo=Tu "1 (H2)
where 0 < g < 1 for small u and g;(0) =0
and:
F(u) = JulP u+go(u)
(H3)
where p > 1for large u and hm g|2(114)) =
u
f(u)
u
0 B Y

Also, we assume F(u) = [y f(s)ds. We know that f is
odd it implies that F' is even and from (H2) it follows that f is
integrable near u = 0. Thus F is continuous and F(0) = 0. It
also follows that F' is bounded below and from (H1), 3 y with
0 < B < 7y such that:

F <0on (0,7),F >0on (7,

o), and F > Fy on R. (H4)

F(u)

_FO

We also suppose K and K’ are continuous function on

[R, o) with:
!/

K
1)) such that lim = _ —a,
r—e K

K(r)>0, Jae(2,2(N—

/

K
andso2(N—1)+r? > 0.
(H5)

In addition, we assume 3 K| > 0, K; > 0 such that:

(H6)

2. Preliminaries:

We are interested to study existence solutions of (1)—(3),
we rewrite the equation with r = |x|, u(r) = u(|x|) where u

satisfies:
W)+ L () KO fW() =0 on (Res), (&)
u(R)=0, u'(R)=a>0. 5

To emphasize the dependence on the initial parameter a,
we denote the solution by u,(r) . Since f(u) is not continuous
at u = 0, here we can not apply the usual existence-uniqueness
theorem for ordinary differential equations and so we have
to prove the existence of a solution of equations (4)—(5) on
[R,R + ¢€) for some € > 0 by using a different method.

First rewrite equation (4) as

(Nl (r) + N TR () f(ua(r)) =0,

then integrate over [R, r) and use u),(R) = a.

This gives:
PN 0) R [{ 5K () () dr =0
Multiply above by r~ V=1 integrate again over [R,r] and
use u(R) = 0 gives:
Vol 2 N RZ N N1
wlr) =k | S| = [ [ Ko
dsdt forre (R,OO).
(6)
Now let w(r) = ~ (R> 50 ua(r) = (r—R)w(r) and
w(R) = rl_l)t]gl "r“(R) =u,(R)=a.

Rewriting (6) we get:

W(r)_ aRNfl 2 N R2 N N 1K
T 2-N r—R r—RJr tN 1

F((s—=R)w(s)) ds dt.
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Existence Solutions for a Singular Nonlinear Problem ... 3

(7

We use the fixed point method to solve (7). Let define:
A= {w € C[R,R + €] with w(R) = a > 0 and
w(r) —a| < g on [R,R+e]}

where C[R,R + €] is continuous functions on [R,R + €]

with € > 0.

Let:

[w[l="sup [w(x)].
XE[R,R+¢]

Therefore (A,|].]|) is a Banach space.

Now we define a map T on A by Tw(R) = a and:

:aRNfl 2 N R2 —N / / N IK
2—-N r—R r—RJg N1

f((s—R)w(s)) ds dt for r > R.

Tw(r)

We will prove that T is a principle contraction mapping

with T'(w) € A for each w € A if € > 0 is sufficiently small.

By using L’Hopital’s rule it follows that

aRV-1 [ 2-N_p2-N
2N R =a

lim
r—R*

In addition, by (H2), by L’Hopital’s rule and 0 < g < 1
we have:

- f}stw%uf;esN_IK(s)f((s_R)W(S)) ds dt _
r—R

li

r—Rt

Therefore lim Tw(r) = a, and it follows that:
r—R*

|Tw(r) —al < S on [R,R+¢€)if € >0 is sufficiently small.

Thus We next show that T is a contraction from A into
itself for sufficiently small €.

For any w,w, € A. we have:

N—1
r—R/R - 1/ K(s —R)

wi(s)) —f((s—R)wz(s))] ds d.

Twi(r) —Twy(r

(®)
For u > 0 and by (H2) we know that f(u) = —u~9+ g1 (1)
s0 f((s =R)w(s)) = —(s—R)~ 1w~ (s) + g1 ((s = R)w(s))
where 0 < g < 1.
Then we first estimate:

[f((s=R)wi(s)) —
R)wi(s))

+g1((s— —gi((s—

<1
~ (s—R)4

1 1

where L is the Lipschitz constant for g; near u = 0.

Applying the mean value theorem to the right-hand side of

(9) we get: ﬁ %|w1 wz|] +L|s— R||w; — wa| where

ws € (wy,wp). Slnce wy is in A and |w) —a| < § then § <
wy < 3“ . Similarly w; is between 4 5 <w2 < 3a and since ws
is between wi and wy then we have 2 5 <ws < . Thus it

follows that w391 > (5) . Thus for s € [R,R+ 8] we have:

(5= Rpwi(5)) = (s = Rwa(s))] < hwy w2 l(—qR)

2 q+1
<> +Le|. (10)
a
Using (10) in (8) and assuming r € [R,R+ €) gives:
1 1 " N_1 q
|TW1*TW2|§ﬁ/R l‘Ni*l/RS K(S)|W1*W2‘ (S—R)q
2 q+1
() +Le| ds dt
a
K(R) ropt q 2\ 4t!
< a _ — Le| dsdt
< —xlm WzH/R/R GoR) <a) + s

2\g+1 - 2
< K(R)|wi —wa| [(qz(_)q)(f_@ff

Since:
g e e
im - —~*———+—=0
-0 (2—¢q)(1—gq) 2
2 g+l 1
and ¢ = K(R) [m + 8; ] we can choose small

enough € > 0 satisfies that 0 < ¢ < I such that 7 is a contrac-
tion on C[R,R + €.

So there exists a unique solution w € A with Tw = w on
[R,R + €] for some € > 0.

Thus u,(r) = (r— R)w(r) is a solution of (4)—(5) on
[R,R+ €] for some € > 0.
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4 Existence Solutions for a Singular Nonlinear Problem ...

Now let:
1u?(r)
E =2 F . 11
a(r) ) K(r) + (ua) (11)
Using (4) and (H5) we get:
2 !
) ug (r) rK
=— — —1]<o.
E) =~y 2V =1+ ) <0 (12
It follows that E is non-increasing so:
1u?(r) 1 &
E =2 F < = =E,(R f > R.
o) =3 %(n TFa) = 3 gy = EalR) forrz
(13)

Since F is bounded from below by (H4), so from (13) it
implies that &/, and u, are uniformly bounded on [R, ) and
so existence follows wherever they are defined. We know that
f(u) is undefined at u = 0, so the solution of (4)—(5) exists as
long as u,(r) > 0. In addition, if u,(ro) = 0 but u),(rp) #0
we can use the same argument as on the previous page to
establish existence of a solution of (4)—(5) in a neighborhood
of ro. If there is an ry such that u,(rg) = 0 and u,(r) = O then
we show in the appendix that we can extend this solution to a
neighborhood of ry. Continuing this process we can find the
existence of a solution of (4)—(5) on [R, o).

Lemma 2.1: Let u,(r) solves (4)—(5) and assume that
2 < a <2(N—1). If a sufficiently small, then
ua(r) >0Vr e (R,),

Proof: From (5) we have u,(R) =0 and u/,(R) =a > 0.
If u,(r) >0 Vr € (R,) then u,(r) >0 Vr € (R,).
So we are done in this case.

If u,(r) is not always greater than zero on (R, o), then
ug has a zero at z,, and u,(r) > 0 on (R,z,). In addition, 3
M, such that R < M, < z,, where M, is a local maximum
of u, with u,(M,) > 0 and u, > 0 on (R,M,). From (4)
we then have u/,(M,) =0, u//(M,) <0 so f(u,(M,) >0 so
ua(My) > >0.

We now show lim+ M, = +oo. Assume by the way of con-
a—0

tradiction lim+ M, # +co. Then 3 M* > 0 and a subsequence
a—0
(still labeled M,,) such that 1im+ M, =M*.

a—0

Since R <M, <z, then 0 < E,(z,) < E;(M,) < E4(R).
1 2
Thus 0 < F(uy(M,)) < 5 K‘ER)
0. Since we know from earlier u,(M,) > 8 > 0 it follows then
that:

and so lim F (u,(M,)) =
a—0t

lim u,(M,) = 7.

a—0t

(14)

On the interval [R, z,] it follows from (13) that:

u?(r
0 Eufe) < Ealr) = 3 1?<(r))

+F(ua(r)) <

asa— 0" on [R,z,],
15)

and as we saw earlier u,,u,, are uniformly bounded on
[R,M* +1]. Thus there exists a subsequence still labeled
u, such that u, is uniformly convergent on [R,M* + 1] with
lim u,(r) =u*(r) on [R,M*+ 1] and lim u,(M,) = u*(M")
a—0+ a—0t

on [R,M* + 1]. Then from (14) we get u*(M*) = y. Also since
u, is increasing on [R, M,] it follows that u* is increasing on
[R,M*] and:

0<u" <yon[R,M"]. (16)

Now consider the following identity which follows directly

from (4):

<r2<N'> [;u’f(mmrmua)

Integrating on [R,r) gives:

PO | SB0) + K ()| = RV S [ (00
2 2 JR

K(t))/F(ua) dr.
(18)

Since @ — 0 and u, — u* uniformly on [R,M* + 1]
then taking the limit in (18) gives:

Dividing by 2N -VDK(r) gives:

Ik (tz(N‘l)K(t)>/F(u*) di

1 u?(r)
lim ~ 2 4 p () = 1
a0t 2 K(r) (w) r2N-DK(r) (19)
Thus lim /% exists and since u/, > 0 on [R,M,] then
a—0
lim «/, exists and so lim u), = u*'.
a—0 a—0+

«12
Combining this with (15) it follows that £ “ K(r()r L F(ur(r) =

!
0.on [R, M*] and then by (17) and (H5), (z2<N*1)K(r)) F(u) =
0. Thus F (u*) = 0. Therefore u* = constant but since u*(M*) =
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Existence Solutions for a Singular Nonlinear Problem ... 5

v and u*(R) = 0 < ¥, we get a contradiction. Thus M, cannot
be bounded and therefore:

lim M, = oo.

a—0t

(20)

Next for M, < r < z, we have 0 < E,(z,) < E,(r) <

E,(M,) = F(u,(M,)) thus u,(M,) > v and so:
u?(r
3+ Flulr) < (M) = Flu(M0) > M. @D

Rewriting and integrating (21) from M, to z,, and chang-
ing variable gives:

Y dt tta(Ma) dt
/0 V2/F(us(M,)) — F (1) S/o V2/F(u,(M,)) — F (1)
(r) “ %
/a \[\/F ua a (ua(r)) = /M" K(r) &

(22)

Now using (H5)-(H6) and that ¢ > 2 gives:

Z\ﬁ 1-¢
T o 2
(23)
Thus combining (22) and (23) we obtain:
I8 “ < DBy 24)
0 V2y/F(ua(Ma)) —F(t) a2

Now taking the limit as @ — 0 in inequality (24) using
(14), (20), and o > 2 gives:

Z\ﬁ

=0.
a%O+ o — 2

/\fﬁ

This is a contradiction. Thus u,(r) > 0 on [R,) ifa >0
is sufficiently small. This completes the proof of Lemma 2.1.

Next we show that u,(r) has many zeros on (R, ) as
a— oo,

Lemma 2.2: Let u,(r) be the solution of (4)—(5) and suppose
(H1)—(H6). Then u,(r) has a local maximum M, if a is suf-
ficiently large, u,(M,) —> o0 as a —> oo, and M, —> R™ as
a—> oo,

Proof: First, suppose M, is a positive local maximum. Then

u,(M,) =0, u!/(M,) <0 and from equation (4),

we see f(uqg(M,)) > 0 (since K(M,) > 0) so u,(M,) > B.
Thus u, cannot have a local maximum before u, reaches f3.

Next, suppose by the way of contradiction that 0 < u, <
B for sufficiently large a and all r € [R,). Then we see
f(ua) <0 and so u + *Lu/, > 0. Hence (¥¥~'u})’ > 0 on
[R, r]. Integrating on [R, r] glves

AN () > RN (R) = aRY T > 0 (25)

Hence u, is increasing on [R, r]. Rewriting (25) and inte-
grating gives:

2N _p2-N 4R R\N-2
> RV r _ - (=2
ta(r) 2 a [ 2-N } N—2 (r)

on [R,r].

(26)

Then from (26) we see u,(2R) >

|:1 — 21\;72:| and
lim A;’Rz [1 — le—fz] = oo which contradicts the assumption

a—roo

that 0 < U, < B. Thus if a is sufficiently large then u,(r) gets
larger than 3.

Next we show max uy(r) —> o0 as a —» oo. Suppose by
way of contradicti£n71 tLat gg}){(} uq(r) < B where B does not
depend on a for a large.

Since 2N VK (r)F (u,) and (rz(N*UK(r)) /F(ua) are con-
tinuous on [R,2R] then [N VK (r)F(uy)| < Ay with A; >0
and ‘f,g (PY V() ()
(18) we obtain:

< Aj with Ay > 0 so rewriting

R2N=1) ;2

1
(N nt n >
u; (r)> 5

>l —[A1+Ay]. (27

Since the right-hand side of (27) goes to oo as a — oo then
we see there is a C; with C; > 0 such that lim C, = o and:
a—roo
, 2C,

(28)

[R,2KR]

thus «, > 0 for a sufficiently large [R,2R] and integrating (28)
over (R,2R) we get:

1—227N
B> u,(2R) > +/2C, {

R>7N,
N-2 }

but hrn V2C, [ —2 N] R*N = oo which is a contradic-
tion to the fact that u, was bounded by B on [R,2R]. Thus

max u, — o0 as @ —» oo. (29)

[R,2R]
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6 Existence Solutions for a Singular Nonlinear Problem ...

Now let us show that u,(r) has a local maximum M, if a
is sufficiently large. Suppose by the way of contradiction that
u, is increasing for all r > R. Since it follows from (13) that
i, is bounded then we see rh_}nclo uq(r) =L, with L, > 0. Also

2
3Gy TF (ua(r)
exists. Since F(u,) — F(L,) as r — oo it then follows that

since E, is non-increasing it follows that lim
r—roo

11m n 5 K( 7 exists. Dividing (18) by rPN=DK(r) we have:

1 2 RN-D2  Jr (rzw*l)l((r))/F(ua)
2+ F(uy(r)) = — + — .
2 K(r) 2r2N-DK (1) r2N-DEK(r)
(30)
- 1
By (H5)-(H6) it follows that 2K —>0asr — oo,

Then taking limits as  goes to infinity and using L’Hopital’s
rule in (30) we get:

(€19

—+F(Ly) =0+ F(Ly).

/2

And so lim 1 2

Jim > %ty = O-

Next by assumption u,(r) is increasing and s0 L,, > [max] uy(r).
R2R

It follows then from (29) that

lim L, = oo. (32)

a—yoe

Since E,, is non increasing and 3 ”E‘) — 0 as r —> oo then
we see:
1 ulZ
2K K(r )+F(”a( r)) > F(ua(La)) r > R. (33)

Rewriting and integrating (33) over [R, o) we get:

/“’fﬁ /NL%>
| VEG) ar

(34)

From right-hand side of (34) since o > 2 and using (H6) we
get:

/,/ /KI%ZLRF% (35)
-2
Thus we get:
La o
0 V2VF(L)—F(r) ~ @2

a __dt :
Finally let us show that Jgrolo fo AT 0 which

contradicts and thus our assumption that u, is increasing is
false and therefore u, must has a local maximum.

/af,/ / V2/F( F(t) a7
e

From (32) we know L, — o0 as a — oo and and so it

follows from (H3) that lg‘n A <LL @) — o thus for a large 3 La g
a—yo0 a

large then F (1) < F(%“) also F(L,) fF(T) < F(Ly)—F(z)

/fﬁ/Ofo(;)_

Ly
2

VA JF(L) —F(k)

(38)

By the mean value theorem there is d; > O such that % <
dy <Ly then F(L,) = F (%) = f(dh) [La— ] = f(d) [5]
since f is increasing for a large then f (%‘1) < f(d1) so

L /L
2

V2\/F(L) - F (%) \f\/T >
taking limit as a goes to infinity and by (H3) and (35)
lim L % =0. (40)
== V2 1)
Thus by (38), (39), and (40) then:

Lo
algrolo /0 7 \/Ih =0. 41

Second, we estimate ¢ € [%,La] we have F is continuous
and f is increasing so by the mean value theorem there is a

dr > 0with &% < dy < L, 50 F(Ly) — F(t) = f(do)[La — 1] >
f (%) [L,— t] rewrite the second part of (37) we get:
A V2VE / %)(La 1)
(42)
Ly
V2, —2—
£0%)
taking limit as a goes to infinity and by (H3) and (42)
L
lim v/2 =0. (43)
Y\ Fiap
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Existence Solutions for a Singular Nonlinear Problem ... 7

Thus (42) and (43) gives:

Ly

/< e it @

Combining (41) and (44) with (37) we have:

/ B dt —0. (45)
0 V2y/F(L,)—F(t)

a

_j < 0 which is
false. Thus u, must have a first local maximum M, if a is
sufficiently large.

Now taking limits in (36) we get: K| Rgl
2

Next we show that u,(M,) > [max] u,. Since u, has a first
R2R

local maximum M,. Case 1: if M, > 2R. Since u, is increas-
ing on [R,M,] then u,(M,) > u,(2R) = [max] u, so we done
R2R

)

this case. case 2: if R < M, < 2R. Suppose by way of con-
tradiction there is fp with M, < tp < 2R such that u,(t) >
us(M,) then there is a smallest so with so > M, such that
uy(s0) = ug(M,) then for M, < r < so we have F(u,(M,)) =
E(s0) < E(r) < E(M,) = F(ug(M,)) since 2% = 0 and
F(ua(My)) =F (ug(s0)) therefore E(r) is a constant on [M,, so]
thus £'(r) = 0 then u),(r) = 0 on [M,, so]. By the uniqueness
of the solution of the initial value problem we have u,(r) =0
on [R, o) but we know u’(R) = a > 0 which is a Contradiction.

$0 no #y exists. Thus u,(M,) > max u, and max u, —> o as
[R2R] [R2R)

a — oo, Thus lim u,(M,) = eo.
a—»oo

Now let us show lim M, = R. Since E,(r) is non-increasing
a—soo
it follows that if R < r < M/, then:

Rewriting, integrating over (R,M,) and changing vari-
ables we get:

dt

/ h V2 /F (g (M) —F(t)
/ a V2/F(uaM (a)dr Flua(r) Z/R VKG) dr

From the right-hand side of (46) using (H6) we get:

(46)

2

[ e [ W—r(fl)
47)

since ¢ > 2. It follows from (45) that the left-hand side of
(46) goes to 0 as a — oo therefore it follows from (47) that
M, — Rasa — oo.

This completes the proof of lemma.

Lemma 2.3: Suppose (4)—(5) and N > 2. Let u,(r) be the
solution of (4)—(5) and suppose 2 < & < 2(N —1). Then u,(r)
has at least n zeroes on (0, ) if a sufficiently large.

Proof: Let V(r) = u,(r+M,), then V(0) = u,(M,), V'(r) =
ul (r+M,) and V' (r) = u(r + M,). Substituting in equation
(4) we get:

-+ Ma) S M)+ K -4 M) (M) =0
(43)
soV”(r)+ rliM] V/(r)+K(r+M,)f(V(r)) =0withV(0) =

u(M,) and V'(0) = 0. Now if we replace r with 7 where 2 >0

then we get:

V() () K (em) s (v (7)) =0
(49)

Now let

Wy (r) = 27TV (%) — AP, (% +Ma) (50)

Wi(r) = Ar TV () = A7 (£ M)

W;/L/(r) :A’P’—}lfzv// (%) lffz //()L +M)

and substituting above in (49) we get:

i 7

+g2(W;ﬂLﬁ)} —0.

W)+ Ma) | WalP~ WuAr
(5D

simplifying (51) we get:
Wy (7) + W () + Kbig( +-M0)[|Wa P ()W ()
AT AM, 1Bl TV (Ml ity
+lf%1g2(lﬁwl(r)>} = 0.

We choose A so that AP%Zluu(Ma) = 1. Then we have
) 2 .
W, (0) =APTu(M,)=1. So uys(M,)AP-T and since u,(M,;) —
0o as ¢ — oo then A — o0 as g — co. Now let:

1 wp W, P G,
EA(V):* ﬂ, | l‘ ( o 1/1("))7 (52)
2K(5+M,) P+1 e
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8 Existence Solutions for a Singular Nonlinear Problem ...

where G(u) =

E)(r) =
1) =57 (£ + M) K (5 +M,)
(5 +M,) K (5 +M,)
K (§+M,)

(53)

where the bracketed term is greater than or equal to 0 by
(HS). It follows from (53) that £, is non-increasing and so:

2
py ! WP |WX|P+1+G<AP—1W;L(r))
MUK (M) P 2N
2
1 G(APT)
— 2 —E;(0).
P41 AD A(0)
(54)
Using (H3):
2
G(ATT)
%l_l;n PE: P+1) =0 (55)
so for A sufficiently large we get:
1 WP Wy lPH GAPTW 1 1
LW Ll G 2(0) n
2K(5+M,)  P+1 e P+1 P+1
2
- P+1
(56)
SO:
1 wp wylPtt 2 GATTTW
1 Wil < G (1)) 57)
2K(f+M,) P+1 P+1 2 2

Using (H3) it follows that lim 1S/ = 0.
U—roo "4‘

G(u)
WP

So

< if |u| > Co.

(ﬂ+1

Also since G(u) is continuous when |u| < Cp then there is
D so that |G(u)| < D when |u| < Cp and so

|Gu)| <D+ 2(pl+1)|u|1°+‘ Vu € R. (58)
Thus:
2 ) P+1
‘G(lﬁWx(r))‘ §D+m‘xﬁm(r =D+
A T W ()]

z(p+1)

(59)
Substituting (59) into (57) gives:
1 w2 |W,1|P“< 2 N D N 1
2K(5+M,) P+1 P+1 5 AP 2(P+1)
Wy (r)["*!
o)
LW +‘W’1|P+1< 2 D2
2K(3+M,) 2(P+1) = P+1 Azfgl')_P—i—l

for A sufficiently large. Thus W, and W, are uniformly
bounded on compact sets. So by Arzela-Ascoli, there is a
subsequence still labeled wj such that W) — W* uniformly
on compact sets and so W* is continuous. It can be shown in
a similar argument as (59) that:

lim K (% +Ma) AP g, (A%Wx(r)) —0

( )

since £ —>0asu—>o0s0 & ()<81fu>Lthen

22 (u) < €|u|” if u> L thus g (u) < Dy + €|u|”
S0
K (7 +m) 27 e (A7rw) | <K (7

:K(%JFMQ) DIAPT ek (%+Ma>

- M) AT
[D] + SQL% |VV;L |P}
Wy |”

is also uniformly bounded. Then it follows from (51) that
W) is also uniformly bounded. Thus W; — W* uniformly
on compact sets. Then taking limits in (51) we get:

W' +KR) W " w* =0 (60)
with W*(0) = 1, W* (0) = 0. Thus:
L2 W™ K(R)
~(W*)2+K(R = 61
y W) KR T = 1)

It follows from (61) that |[W*| < 1. We now show W* has
an infinite number of zeros on [0,). Suppose (W*)' < 0 for
all » > R. Then W* is bounded and decreasing so:

lim W*(r) = L. (62)
r—yoo

Taking limits in (61) gives:

N L™ K(R)

lim —W K(R = 63
Nim W)+ KR T = oy ©3)
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Existence Solutions for a Singular Nonlinear Problem ... 9

so:
2K (R

lim W (r) = # [1 — |L\P+1} Thus |L] < 1. (64)
F—>o0
Now suppose |L| < 1

. iy P
s 000 = [ ©)
Thus for large r and ry

r !/ r / 1 r
[ —weyar= [ | o] ar=

) ) (66)

\/Z;ZRI) [1 —|L\P“] dr

we get:

W) W (1) > ;\/zfﬁ) (112 = ro) — oo

asr —» o
(67)

on the left-hand side of (67) is bounded which contra-
dicts that W* is bounded. Thus |L| = 1 and since W*(0) =1
and since W*” < 0 then W* is decreasing near r = 0 also
W*"(0) = —K(R) < 0 so W* is not constant so L # 1 and
thus W*' < 0 then L = —1.

Loey2 KB pin _ K(R)
= w* 68
2(W) +P—&-l| | - P+1 (68)
(W*)' _ \/2K® [1- (W*)P-H] (69)
P+1
/ —W*'(r / AW (r) ar / [2K(R
/ |W* P+1 \ /17W*P+1 P—‘rl
2K(R) )
P+l
(70)
if we make change of variabler = W*(r) and dt = W*(r) dr
we get:
1 dt 2K(R)
= F—>oc0asr—»o0 71
/ww) V1—tP+l P+1 7y

if W*(r) > 0and (W*)'(r) < 0 since |W*(r)| bounded by
1,soW*(r) — —l as r — oo.

L dr

=tk o

but left-hand side is finite. This is a contradiction. Thus
W* must have a first local minimum m*. Let r = m* in (65) so
[W*|P+1 (m*) = 1 so W*(m*) = +1 but since W*(0) = 1 and
W* is initially decreasing then it follows that W*(m*) = —1
so W* has a first zero Z; and we can show W(m* +r) =
W (m* —t) therefore W is periodic with period 2m* so W has
infinite many zeros. This completes the proof.

In this paper, we prove the following:

Theorem 1: Assuming (H1)-(H6) then there exists a solu-
tions of (1)-(3).

3. The Main Results:

Let So = {a > O|u,(r) > 0Vr>R}. By Lemma 2.1 we
know that if @ > 0 and a is sufficiently small then u, > 0
for all » > R. Thus Sy is nonempty. By Lemma 2.3 we see
that if a sufficiently large then u, has a zero. Hence S is
bounded from above. So the supremum of Sy exists and let
ap=sup So>0.

Lemma 3.1: u,,(r) > 0 for r > R and lim u,(r) = 0.
r—yo0
Proof: Suppose first by the way of contradiction that u,, (r)

is not positive for r > R. So there exists Zy > R such that
Uay(Zo) = 0 and ug,(r) > 0 on (R, Z).

Assume uy, (Zp) < 0 So there is r1 > Zg such that ug, (r1) <

0. We also know that u/,(r) varies continuously with a. Thus

on any compact set Ko , lim u,(r) = ug, () uniformly on Kj.
a—aoq

So if a is close enough to ag then u,(r;) < 0.

In particular if 0 < a < ag then u,(r;) < 0, but this con-
tradicts that then u,(r) > 0 for » > R and 0 < a < ay.

Therefore ug, (r) does not have a zero. So u,(r) > 0 for
r>R.

For a > a then u,(r) has a zero z,. We now show lim Z,(r) =

a—ap™
oo, because otherwise if there is a B > 0 such that z, < B for
all a close to ag then there is a subsequence still labeled a
such that Z, — Z*.

Also since E,(r) < %K“&) <3 (al(;-(&-l)) for all > R then u,

and u/, are uniformly bounded on [R,ag + 1] and so for further
subsequence still labeled u, we have u, — u,, uniformly on

compact sets s0 0 = lim u, (Za) = uqy(Z7).
a—apt
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10 Existence Solutions for a Singular Nonlinear Problem ...

S0 uqy(Z*) = 0 but we showed earlier ug, (r) > 0 for r > R.
This is a contradiction. Thus lim Z, (r) = oo

a*nl()

In addition, we now show E,,(r) > 0 for all > R. Let us
integrate the identity over (rg,r) we get:

fol(e e

K(r)) Fluay ()

)+ KOG 1)] ) = (20

we rewriting

=p2N=1) [;ufo (r) + K(r)F (uq, (r))} / = (VZ(N_I)K(;"))
F(ua(r))

Suppose by the way of contradiction suppose there is
r1 > R such that E, (r) < 0. Again by continuous depen-
dence of the u,(r) and ul,(r) on the parameter a we get
E,(r1) < 0 if a is close enough to ap. On the other hand,
if a > ag then u, has a first zero z, and U, > 0forR < r < z,
and since E,,(r1) < 0 and E,, is non-increasing then z, < r,
thus 0 < E,(z,) < E,(r1) < 0 where z, < rj. But z, —> o0 as
a — ag therefore E, (r) > 0Vr > R.

Lemma 3.2: u,,(r) has a local maximum M,, > R.

A

Proof: Suppose not. Then u’ao(r) >0Vr>R. Also 1 2R T

It follows from this
=L>0.

F(uay(r)) = Eay(r) < Eqy(R) = 2K( )
that u, is bounded and since u;,, > 0 then lim ug, (r)
F—yoo

Since E,, is non-increasing then for all » > R then from
(H4) it follows that F'(u,,) is bounded from below and since

2 2
3 Ml"(‘)((;) > 0 then 1 O(x) + F (uq,) is bounded from below and
thus
1u?(r
rlgg 3 I?)((r)) + F (uq,y(r)) exists.

Also since ug, — L it follows that lim F (us, (r)) = F (L)
r—yo0

72 r
and so it follows that 11m é I”g)(()) exists. Now let us show
2
lim 4% — 0. Consider the following identity which fol-

lows from (4) and integrating over (r,rg) we get:

/r< 2(N-1) {1
o 2

K(r))l (Ugy) dr

(1) +K(r >F<uao})’dr: [ (e

SO
1Uza(r) G

I (PR F)

K(r)r2(V=1)

for some constant Cy. Taking the limit as r goes to infinity

and using (H6) then 11m N )C(N 77 = 0 so using L'Hopital
rule

e h (PNVK()) F ()
r1—I>l;lo 2 K() * (uao( )) _rl—I>£lo (r)rZ(N*I)

—F(L)

/2
SO 11m n 5 I‘;((;) = 0. Also from lemma 3.1, E,, > 0 and since

OSE — F(L) it follows L > .

Next we return to (4)—(rN‘1u; (r )) =LK () £ (ug, (7))

since L > v and f(u4,) > 0. Since u,, is increasing and

Uqy(r) — L >y as r —» oo then for large uq, (r) > HB > B
then there exists C; > 0 such that f(us,) > C; >0 for r suf-

!/
ficiently large we get:— (r(N*I)Ut’ZO(r)> > rV-DK(r). In-

tegrating on (rg,r) where rg, r are sufficiently large then we
get:

/rr [( N1y (r )) + N DK (r )] <0

0
SO
<0if2<

PN _ N

N—-o

PN (1) = i (o) + O

< N then r(Nfl)u’ao(r) <™ Dy g, (10) +Ci
—)—OO

Since ) ! Uy, (ro) = constant and lim, ;. rN=% = too then
lim, oo PN~ 1ud), (r) = —o0 s0 1], must get negative. Thus uy,
has a local max M,,.

Now we show that u, (r) <0 for r > M,,. If not then
there is r; > M, such that u;O (r1) > 050 ug, has a local min
May > My, such that u), (mg,)) = 0 and wug (my,)) >0

50 f(Uay(mgy)) <0, but 0 < ug,(mg,) < B. From lemma
3.1 we have 0 < Eqo(mq,) = F (uqy(may,))

Uay (May) > 7, but this is a contradiction. Since 0 < ug, (114,) <
B <. Thus u,, < 0 for all r > M,,. Since ug, > 0 then
lim u,,(r) = A with A > 0 for r > R.
r—yeo
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Existence Solutions for a Singular Nonlinear Problem ... 11

We will show that A = 0. We know E, () is non-increasing

and bounded below so: lim an( r) exists, and 11m u’z( ) =

i "0()+F(uao( )). Taking limit of

0 exists 0 < Eq(r) = I4G)

Eq,(r) as r goes to inﬁmty.

lim E,,(r) =

r—yoo

F(A)

s0 0 < F(A) so since A > 0 then either A=0or A > 7.
Let us assume A > y by above we get: 0 < lim E,(r) =
r—o0

lim 12'20()+F(A)
A2 KO)

So A =0 and thus lim u,,(r) = 0 so ug, is solution of
F—yoo

H—5).

4. Conclusions:

Through this work, We have been able to prove the exis-
tence of a solution to the singular superlinear Dirichlet prob-
lem (1) on the exterior domain in RY. When f is singular
at zero and f grows superlinear at infinity, the proof we pre-
sented here seems to have some techniques for localized solu-
tions. Also, we show that the energy is strictly decreasing.

A. Appendix

Lemma 1: Let z > 0. There is a solution U, of equation (4) if
uy(z) = u,(z) =0on (z,z+€) for some € > 0.

Proof: Suppose first that u, is a positive solution to (4)
on (R,z) with u,(z) = 0 and u/,(z) = 0 with u, € C*(R,z —
€)NCP[R,z—€). Let us determine the behavior of u,(r) on
(z—¢&,2).

Using the fact that f(u,) = W\;i}lu + g1(ug) where 0 <

g<1,g1(0) =0and g is continuous at u, = 0 then multiply-
ing (4) by |us|?'u, we obtain:

N—

\ua|q_1uaug(r)+ |”a|q lua l( )+ K(r) (—1+g1(ua) |

ug? 'u, = 0.

(73)
Since g is continuous at #, = 0 with 0 < g < 1 then
lim K(r)g1 (ug) ua|?" uy = 0.
farend
Also since u, is continuous with u,(z) =0and 0 < g < 1

then lim } \ua|’r1 uqu,, = 0 therefore from (73) this implies
r—z

lim \ua|‘r1 uqit(r) = K(z). In addition, since lim {u? =0

r—z-

and lim — |ua|1 9 = 0 then by L’Hopital’s rule we have:
r—z"

K(z) = lim [ug]? " ugud (r)
r—z-

= lim (% 212)/
— [t

l 2
= lim — 2%
r—z" 1—| |

/

. U

Thus lim |‘1’|,q =
T fug| 2

(z—€,z) (for some perhaps small €) and since u, > 0 on (

€,z) it follows that u/, < 0 on (z—¢€,z). Thus lim =
=77y, z

I—EqK (z) > 0. Therefore u), # 0 on

1Tqu((z), and so on the interval (z — €,z) with € > 0 suffi-

ciently small then there is § > 0 so that: ﬁK (z)—6<

2
Ug .
close to z gives:

2 2 2—ul ds
/( K@ 5>ds</ru]7q

—ul,
1—¢
2

(z) + 8. Integrating on (r,z) for r sufficiently

2 2
</r ( l_qK()+5> ds

SO
RIS P Ty (Y HE TR I
—¢ Tgtl(z—r) ¢ s

Thus

g+l

. Ug T qg+1 2

lim K(z).

r—z- (Z*r) 2 17q (Z)

Let
W(r)= ua(r)z where r # z
(z—r)aHt
el
1/ 2 "
so lim W(r) = a+l —K(2) so we define
r—z- 2 l—q
2
q
W(z) = lim W(r) = lim ua(r)z _|ax! 2 K(2)
r—z- r—z (Z_r)ﬁ 2 1—q
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12 Existence Solutions for a Singular Nonlinear Problem ...

This tells us how u, behaves on (z — €,7) so we expect U
to behave similarly on (z,z+ €) so we will try now to prove
the existence of a solution on (z,z+ €) so that:

#
Uy g+1 [ 2 !

RIS (74)

lim 3
r—zt (z—r)aiT

Now assuming such a solution exists, Rewriting (4), integrat-
ing over (z,r), and using u,(z) = 0 we get:

PN == [ [

Multiplying (75) by VN%], integrating over (z,7) and using
(H1) gives:

) ds dt (75)

ua(r)zf/ s l/sN 'K (s)

‘ s +g1(ua)} dsdt. (76)

|uq 1y ()

Making the change of variables of (76):

2
T

—(r—z)

Then (76) becomes :

us(r) = W(r).

ooty [ oo

)Pl
2
—hg’l(—(s—z)qu (s))dsdt
So:

-1 ] _ —1

W(r)= / N,l/SN 1K(s) %
(r—z)ait/z t z (S—Z)‘ITI|W|’171W

p

7)1 W) ds dt.

1 (—(s- )

Assuming W (r) is continuous at z then taking limits in
(77) and using L’ Hopital’s rule we get:

e [ K ()

(s—z)TFT|Wla— 1w

————+a < (sz)iwﬂ ds
W(z) = lim .

r—zt

1-¢q

2 =
ﬁ(s—z)‘f !

Using L’Hopital’s rule again we get:

PR |t (rzww)]
1 . —) T \Wle-w
W(2) = o lim e S
‘ Fgrt =27

simplifying above we get:

(g+1)*K(z)
2(1-q)|W(2)|1~'W(z)

and thus:

W(z) =

(g+1)°K(z)] 7
'W(Z)':[ 2 —g) ] |

1

Let W(r) = CY(r) where C = — (M) ot

2(1-q)
Then Y (z) =1
50
-1 A —1
Y(r) - — [ [ K|
C(r—z)at/z ! ¢ (s—z)arrCaye

+e1 ((s—z)q%C ) |dsar (78)

Now we attempt to can solve (78) by using the contraction
mapping principle theorem. We define the set:

B={Y €Clz,z+¢€]|Y(z)=1and ||Y(r)—1]| < 8}
where 9 is sufficiently small.
Let:

[[Y][ = sup

X€[z,z+€]

¥ ()l

Now define T : B— Clz,z+ €] by:

_l r 1 tN—l
TY (r) = i/ Nil/s K(s)
C(r—z)at 7’z ! z

-1
2

(s—z)TTCayd

+g1 ((s—z)‘%1 )1dsdt

Let us suppose Y1,Y, € B then:

N—1
K(s
q+l/ZtN 1/

{Yi qu} +31 ((s—z)ilCh) —g <(S_Z)‘2H

)

divided the integration in two parts:

-1

Z)flTrqlC‘I

TY\(r)—TY2(r)

ds dt. (79)
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Existence Solutions for a Singular Nonlinear Problem ... 13

For the first part of the integral since Y1,Y, € B..

Then by the mean value theorem there is Y3 between
Yi,Y2alsosince 0 <Y, <Y3 <Y <d+1where |[Y;— 1| <8

forlfl23then175<Y3<1+5thenwaﬁ]
—Y2‘§ —Yz‘.

W\Yl W\YL

Then the first part of the integral becomes:

-1

-1 1 1
c(r- )qi1~/~ ST [( Fo Wi @

s—z)1Ce

<4 MEbél / /t K)o,
(1+6)1+q Cq+l r_ q+l q+]

q Y1 — Y / /
2q
q+1

T (14+8) cari ()T

ds dt

ds dt.

< — I max K(r) 1| / / dsdt.
(1+8) " katel Catl(r—z 11+1 q+1
2
Carrying out the integration and recalling catl = %f;)@
we obtain:
q Y1 —Ya| (g+1)?
<1
< oy K {aipx 2(1=)
2(1—q)
[max]K(r)
q 2,2+€
= Y| —Y,|.
(1+6)+  K(z) Y1 =1
fnax K(r)
Since K(z) # 0 and K is continuous then ‘;{S(] — — 1

as € —> 0. Also since § > 0 and ¢ < 1 we see that for € > 0

max K(r)
[z.2+€]

sufficiently small then Wq)lw

For the second part of the integral since g is locally Lips-
chitz at W near 0 then:

2 2 2
‘gl ( s—z)*lcyl) & ( (s—z)TCYz)’ <Lls—z71C

1 —af|

so substituting into the second part of (78) gives:

q+1/[N I/SN 'K(s) gl (S—z)%CY)

)TICY: )}dsdt

/ / |s—z\q+1dsdt

— 81 ((

Y, —»|CL
|1 2| xKr

o C(F—Z q+| [zz+£

Y1 —-1|L 2
< M -nlL max K(r)(r—z)@1
(r—z)@t [z,z+¢€]

(r—2z)? = |¥; — Y»|L max

[z.z+€]

1—-d
K()(r—2? < — -1l

since lganax K(r—z)? =0 we can choose € small enough

so that Lmax K (r —z)% < % sod+54 =144 < 1 andso

combining these two part we get

1+d
|TY)(r) —TY:|(r) < T'Yl - Y]
Thus T is a contraction mapping if 0 < 1+d < 1 is suffi-

ciently small, so there is a unique solution Y € B to7T(Y)=Y

on [z,z+€]. Then u,(r) = —(r —z)4*TW(r) is a solution of
(4)—(5)on [z— &,z + €] for some € > 0.

Lemma 2: The energy equation E(r) is strictly decreasing.

Proof: From (12) we know that E'(r) < 0 so E(r) is non-
increasing. Suppose by way of contradiction that E is not
strictly decreasing then there are ry,r, with r; < ry such that
E(r1) = E(r;) so E(r) is constant on [ry,r;] so E'(r) =0
on [ry,r2] so U,(r) =0 on [r,r;] then by the uniqueness of
solution of initial value problem u, = 0 on [R, o] but u,(R) =
a > 0 contradiction so E must be strictly decreasing. this
proofs lemma 2.
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