
Kirkuk Journal of Science Vol. 19, Iss. 1, p. 1-15, 2024 doi:10.32894/kujss.2024.144848.1122

Existence Solutions for a Singular Nonlinear Problem with Dirichlet
Boundary Conditions on Exterior Domains

Mageed Ali 1*, Joseph Iaia 2

1* Department of Mathematics, College of Science, University of Kirkuk, Kirkuk, Iraq.
2 Department of Mathematics, University of North Texas, Denton, Texas, USA.
*Corresponding author : # mageedali@uokirkuk.edu.iq

Article Information

Article Type:
Research Article

Keywords:
exterior domains, singular, Nonlin-
ear, existence

History:
Received: 23 November 2023
Reviced: 26 January 2024
Accepted: 28 January 2024
Published Online: 20 February 2024
Published: 30 March 2024

Citation: Mageed Ali and Joseph
Iaia, Existence Solutions for a
Singular Nonlinear Problem with
Dirichlet Boundary Conditions on
Exterior Domains., Kirkuk Journal
of Science, 19(1), p.1-15, 2024,
https://doi.org/10.32894/kujss.2024.
144848.1122

Abstract

This paper has proved the existence of solutions that solve the
Nonlinear Partial differential equation. A study of dynamical systems
has developed on the exterior of the ball centered at the origin in RN with
radius R > 0, with Dirichlet boundary conditions u = 0 on the boundary,
and u(x) approaches 0 as |x| approaches infinity, where f (u) is local
Lipschitzian singular at zero, and grows superlinearly as u approaches
infinity. by introducing Various scalings to elucidate the singular behavior
near the center and at infinity. Also, N > 2, f (u) ∼ −1

(|u|q−1u for small u

with 0 < q < 1, and f (u) ∼ |u|p−1u for large |u| with p > 1. In addition,
K(x)∼ |x|−α with 2 < α < 2(N −1) for large |x|. The fixed point method
and other techniques have been used to prove the existence.

1. Introduction:
Certainly, exploring solutions to partial differential equa-

tions is crucial in various scientific disciplines, especially in
physical mathematics[1, 2]. The existence and uniqueness
of solutions, particularly in second-order PDEs with speci-
fied initial conditions, form a fundamental aspect of this field
[3, 4, 5]. The existence of a positive solution of (1) on RNwith
K(r)≡ 1 has been studied extensively [6, 7, 8, 9, 10, 11].

Recently the exterior domain RN\BR(0) has been studied
in [12, 13, 14, 15, 16, 17]. Since we are interested in the topic,
it comes from the recent papers [16, 18, 11] that have been
studied to find the solutions to differential equation problems
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on exterior domains.
In [19], was studied (1)–(3) with K(r) r−α , where f is

singular at 0 and grows sublinearly at infinity, with different
values of α . Also, in [20], the singular semilinear problem
has infinitely many solutions on exterior domain. This article
has proved the existence of solutions when f is singular at 0
and grows superlinearly at infinity.

This paper deals with the problem:

∆u+K(|x|) f (u) = 0, x ∈ RN\BR (1)

u = 0 on ∂
(
RN\BR

)
(2)

u −→ 0 as |x| −→ ∞ (3)
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where ∆ is the Laplacian operator, u : RN −→ R, with
N > 2, BR is the ball of radius R > 0 centered at the origin in
RN and K(x)> 0.
In addition, we suppose:

f is an odd function, increasing on (0,∞),

f is locally Lipschitz,∃β > 0 such that f < 0 on (0,β ),
f > 0 on (β ,∞).

(H1)

We assume:

f (u) =
−1

|u|q−1u
+g1(u)

where 0 < q < 1 for small u and g1(0) = 0
(H2)

and:

f (u) = |u|p−1u+g2(u)

where p > 1for large u and lim
u→+∞

g2(u)
|u|p

= 0.
(H3)

u
0 β γ

f (u)

Also, we assume F(u) =
∫ u

0 f (s)ds. We know that f is
odd it implies that F is even and from (H2) it follows that f is
integrable near u = 0. Thus F is continuous and F(0) = 0. It
also follows that F is bounded below and from (H1), ∃ γ with
0 < β < γ such that:

F < 0 on (0,γ),F > 0 on (γ,∞), and F > F0 on R. (H4)

u
0 β

−F0

γ

F(u)

We also suppose K and K′ are continuous function on

[R,∞) with:

K(r)> 0, ∃α ∈ (2,2(N −1)) such that lim
r→∞

rK′

K
=−α,

and so 2(N −1)+
rK′

K
> 0.

(H5)

In addition, we assume ∃ K1 > 0, K2 > 0 such that:

K1

rα
≤ K(r)≤ K2

rα
on [R,∞). (H6)

2. Preliminaries:
We are interested to study existence solutions of (1)–(3),

we rewrite the equation with r = |x|, u(r) = u(|x|) where u
satisfies:

u′′(r)+
N −1

r
u′(r)+K(r) f (u(r)) = 0 on (R,∞), (4)

u(R) = 0, u′(R) = a > 0. (5)

To emphasize the dependence on the initial parameter a,
we denote the solution by ua(r) . Since f (u) is not continuous
at u = 0, here we can not apply the usual existence-uniqueness
theorem for ordinary differential equations and so we have
to prove the existence of a solution of equations (4)–(5) on
[R,R+ ε) for some ε > 0 by using a different method.

First rewrite equation (4) as(
rN−1u′a(r)

)′
+ rN−1K(r) f (ua(r)) = 0,

then integrate over [R,r) and use u′a(R) = a.
This gives:

rN−1u′a(r)−aRN−1 +
∫ r

R tN−1K(r) f (ua(r) dr = 0.

Multiply above by r−(N−1), integrate again over [R,r] and
use u(R) = 0 gives:

ua(r) = aRN−1
[

r2−N −R2−N

2−N

]
−
∫ r

R

1
tN−1

∫ t

R
sN−1K(s) f (ua(s))

ds dt for r ∈ (R,∞).

(6)

Now let w(r) = ua(r)
r−R so ua(r) = (r−R)w(r) and

w(R) = lim
r→R+

ua(r)
r−R = u′a(R) = a.

Rewriting (6) we get:

w(r) =
aRN−1

2−N

[
r2−N −R2−N

r−R

]
− 1

r−R

∫ r

R

1
tN−1

∫ t

R
sN−1K(s)

f ((s−R)w(s)) ds dt.
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(7)

We use the fixed point method to solve (7). Let define:

A =
{

w ∈C[R,R+ ε] with w(R) = a > 0 and

|w(r)−a| ≤ a
2

on [R,R+ ε]
}

where C[R,R+ ε] is continuous functions on [R,R+ ε]
with ε > 0.
Let:

||w||= sup
x∈[R,R+ε]

|w(x)|.

Therefore (A, ||.||) is a Banach space.

Now we define a map T on A by Tw(R) = a and:

Tw(r) =
aRN−1

2−N

[
r2−N −R2−N

r−R

]
− 1

r−R

∫ r

R

1
tN−1

∫ t

R
sN−1K(s)

f ((s−R)w(s)) ds dt for r > R.

We will prove that T is a principle contraction mapping
with T (w) ∈ A for each w ∈ A if ε > 0 is sufficiently small.
By using L’Hôpital’s rule it follows that
lim

r→R+

aRN−1

2−N

[
r2−N−R2−N

r−R

]
= a.

In addition, by (H2), by L’Hôpital’s rule and 0 < q < 1
we have:

lim
r→R+

∫ r
R

1
tN−1

∫ t
RsN−1K(s) f ((s−R)w(s)) ds dt

r−R
= 0.

Therefore lim
r→R+

Tw(r) = a, and it follows that:

|Tw(r)−a| ≤ a
2 on [R,R+ ε) if ε > 0 is sufficiently small.

Thus We next show that T is a contraction from A into
itself for sufficiently small ε .

For any w1,w2 ∈ A. we have:

Tw1(r)−Tw2(r) =− 1
r−R

∫ r

R

1
tN−1

∫ t

R
sN−1K(s)

[
f ((s−R)

w1(s))− f ((s−R)w2(s))
]

ds dt.

(8)

For u ≥ 0 and by (H2) we know that f (u) =−u−q+g1(u)
so f ((s−R)w(s)) =−(s−R)−qw−q(s)+g1((s−R)w(s))
where 0 < q < 1.

Then we first estimate:

| f ((s−R)w1(s))− f ((s−R)w2(s))|=
∣∣∣∣ −1
(s−R)q

[
1

wq
1
− 1

wq
2

]
+g1((s−R)w1(s))−g1((s−R)w2(s))

≤ 1
(s−R)q

∣∣∣∣ 1
w1q − 1

w2q

∣∣∣∣+L|s−R||w1 −w2| (9)

where L is the Lipschitz constant for g1 near u = 0.

Applying the mean value theorem to the right-hand side of

(9) we get: 1
(s−R)q

[
q

wq+1
3

|w1 −w2|
]
+L|s−R||w1−w2| where

w3 ∈ (w1,w2). Since w1 is in A and |w1 − a| < a
2 then a

2 <

w1 <
3a
2 . Similarly w2 is between a

2 < w2 <
3a
2 and since w3

is between w1 and w2 then we have a
2 < w3 < 3a

2 . Thus it
follows that w3

q+1 ≥
( a

2

)q+1. Thus for s ∈ [R,R+ε] we have:

| f ((s−R)w1(s))− f ((s−R)w2(s))| ≤ |w1 −w2|

[
q

(s−R)q

(
2
a

)q+1

+Lε

]
. (10)

Using (10) in (8) and assuming r ∈ [R,R+ ε) gives:

|Tw1 −Tw2| ≤
1

r−R

∫ r

R

1
tN−1

∫ t

R
sN−1K(s)|w1 −w2|

[
q

(s−R)q(
2
a

)q+1

+Lε

]
ds dt

≤ K(R)
r−R

||w1 −w2||
∫ r

R

∫ t

R

[
q

(s−R)q

(
2
a

)q+1

+Lε

]
ds dt

≤ K(R)||w1 −w2||

[
q
( 2

a

)q+1
ε1−q

(2−q)(1−q)
+

ε2L
2

]
.

Since:

lim
ε→0

q
( 2

a

)q+1
ε1−q

(2−q)(1−q)
+

ε2L
2

= 0

and c = K(R)
[

q( 2
a )

q+1
ε1−q

(2−q)(1−q) + ε2L
2

]
, we can choose small

enough ε > 0 satisfies that 0 < c < 1 such that T is a contrac-
tion on C[R,R+ ε].

So there exists a unique solution w ∈ A with Tw = w on
[R,R+ ε] for some ε > 0.

Thus ua(r) = (r−R)w(r) is a solution of (4)–(5) on
[R,R+ ε] for some ε > 0.
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Now let:

Ea(r) =
1
2

u′2a (r)
K(r)

+F(ua). (11)

Using (4) and (H5) we get:

E ′
a(r) =− u′2a (r)

2K(r)
[2(N −1)+

rK′

K
]≤ 0. (12)

It follows that E is non-increasing so:

Ea(r) =
1
2

u′2a (r)
K(r)

+F(ua)≤
1
2

a2

K(R)
= Ea(R) for r ≥ R.

(13)

Since F is bounded from below by (H4), so from (13) it
implies that u′a and ua are uniformly bounded on [R,∞) and
so existence follows wherever they are defined. We know that
f (u) is undefined at u = 0, so the solution of (4)–(5) exists as
long as ua(r) > 0. In addition, if ua(r0) = 0 but u′a(r0) ̸= 0
we can use the same argument as on the previous page to
establish existence of a solution of (4)–(5) in a neighborhood
of r0. If there is an r0 such that ua(r0) = 0 and u′a(r) = 0 then
we show in the appendix that we can extend this solution to a
neighborhood of r0. Continuing this process we can find the
existence of a solution of (4)–(5) on [R,∞).

Lemma 2.1: Let ua(r) solves (4)–(5) and assume that
2 < α < 2(N −1). If a sufficiently small, then
ua(r)> 0 ∀r ∈ (R,∞),

Proof: From (5) we have ua(R) = 0 and u′a(R) = a > 0.
If u′a(r)> 0 ∀r ∈ (R,∞) then ua(r)> 0 ∀r ∈ (R,∞).
So we are done in this case.

If ua(r) is not always greater than zero on (R,∞), then
ua has a zero at za, and ua(r) > 0 on (R,za). In addition, ∃
Ma such that R < Ma < za, where Ma is a local maximum
of ua with ua(Ma) > 0 and u′a > 0 on (R,Ma). From (4)
we then have u′a(Ma) = 0, u′′a(Ma) ≤ 0 so f (ua(Ma) ≥ 0 so
ua(Ma)≥ β > 0.

We now show lim
a→0+

Ma =+∞. Assume by the way of con-

tradiction lim
a→0+

Ma ̸=+∞. Then ∃ M∗ > 0 and a subsequence

(still labeled Ma) such that lim
a→0+

Ma = M∗.

Since R ≤ Ma ≤ za then 0 ≤ Ea(za)≤ Ea(Ma)≤ Ea(R).

Thus 0 ≤ F(ua(Ma))≤ 1
2

a2

K(R) and so lim
a→0+

F (ua(Ma)) =

0. Since we know from earlier ua(Ma)≥ β > 0 it follows then
that:

lim
a→0+

ua(Ma) = γ. (14)

On the interval [R,za] it follows from (13) that:

0 ≤ Ea(za)≤ Ea(r) =
1
2

u′2a (r)
K(r)

+F(ua(r))≤
1
2

a2

K(R)
−→ 0

as a −→ 0+ on [R,za],

(15)

and as we saw earlier ua,u′a are uniformly bounded on
[R,M∗ + 1]. Thus there exists a subsequence still labeled
ua such that ua is uniformly convergent on [R,M∗+1] with
lim

a→0+
ua(r) = u∗(r) on [R,M∗+1] and lim

a→0+
ua(Ma) = u∗(M∗)

on [R,M∗+1]. Then from (14) we get u∗(M∗) = γ . Also since
ua is increasing on [R,Ma] it follows that u∗ is increasing on
[R,M∗] and:

0 ≤ u∗ ≤ γ on [R,M∗]. (16)

Now consider the following identity which follows directly
from (4):(

r2(N−1)

[
1
2

u′2a (r)+K(r)F(ua)

])′

=
(

r2(N−1)K(r)
)′

F(ua).

(17)

Integrating on [R,r) gives:

r2(N−1)
[

1
2

u′2a (r)+K(r)F(ua)

]
= R2(N−1) 1

2
a2 +

∫ r

R

(
t2(N−1)

K(t)
)′

F(ua) dt.

(18)

Since a −→ 0 and ua −→ u∗ uniformly on [R,M∗+ 1]
then taking the limit in (18) gives:

lim
a→0+

r2(N−1)
[

1
2

u′2a (r)+K(r)F(u∗)
]
=
∫ r

R

(
t2(N−1)K(t)

)′
F(u∗) dt.

Dividing by r2(N−1)K(r) gives:

lim
a→0+

1
2

u′2a (r)
K(r)

+F(u∗) =

∫ r
R

(
t2(N−1)K(t)

)′
F(u∗) dt

r2(N−1)K(r)
. (19)

Thus lim
a→0+

u′2a exists and since u′a ≥ 0 on [R,Ma] then

lim
a→0

u′a exists and so lim
a→0+

u′a = u∗′.

Combining this with (15) it follows that 1
2

u∗′2(r)
K(r) +F(u∗(r))≡

0 on [R,M∗] and then by (17) and (H5),
(

t2(N−1)K(r)
)′

F(u∗)≡
0. Thus F(u∗)≡ 0. Therefore u∗= constant but since u∗(M∗)=
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γ and u∗(R) = 0 < γ , we get a contradiction. Thus Ma cannot
be bounded and therefore:

lim
a→0+

Ma = ∞. (20)

Next for Ma < r < za we have 0 ≤ Ea(za) ≤ Ea(r) ≤
Ea(Ma) = F(ua(Ma)) thus ua(Ma)≥ γ and so:

1
2

u′2a (r)
K(r)

+F(ua(r))≤ E(Ma) = F(ua(Ma)) r ≥ Ma. (21)

Rewriting and integrating (21) from Ma to za, and chang-
ing variable gives:

∫
γ

0

dt√
2
√

F(ua(Ma))−F(t)
≤
∫ ua(Ma)

0

dt√
2
√

F(ua(Ma))−F(t)

≤
∫ za

Ma

u′a(r)dr√
2
√

F(ua(Ma))−F(ua(r))
≤
∫ za

Ma

√
K(r) dr.

(22)

Now using (H5)–(H6) and that α > 2 gives:

∫ za

Ma

√
K(r) dr ≤

∫ za

Ma

√
K2r

−α
2 dr =

√
K2

(
z

1− α
2

a −M
1− α

2
a

1− α

2

)

≤ 2
√

K2

α −2
M

1− α
2

a .

(23)

Thus combining (22) and (23) we obtain:∫
γ

0

dt√
2
√

F(ua(Ma))−F(t)
≤ 2

√
K2

α −2
M

1− α
2

a . (24)

Now taking the limit as a −→ 0+ in inequality (24) using
(14), (20), and α > 2 gives:

0 <
∫

γ

0

dt√
2
√
−F(t)

≤ lim
a→0+

2
√

K2

α −2
M

1− α
2

a = 0.

This is a contradiction. Thus ua(r)> 0 on [R,∞) if a > 0
is sufficiently small. This completes the proof of Lemma 2.1.

Next we show that ua(r) has many zeros on (R,∞) as
a −→ ∞.

Lemma 2.2: Let ua(r) be the solution of (4)–(5) and suppose
(H1)–(H6). Then ua(r) has a local maximum Ma if a is suf-
ficiently large, ua(Ma)−→ ∞ as a −→ ∞, and Ma −→ R+ as
a −→ ∞.

Proof: First, suppose Ma is a positive local maximum. Then
u′a(Ma) = 0, u′′a(Ma)≤ 0 and from equation (4),

we see f (ua(Ma)) ≥ 0 (since K(Ma) > 0) so ua(Ma) ≥ β .
Thus ua cannot have a local maximum before ua reaches β .

Next, suppose by the way of contradiction that 0 ≤ ua ≤
β for sufficiently large a and all r ∈ [R,∞). Then we see
f (ua) ≤ 0 and so u′′a +

N−1
r u′a ≥ 0. Hence (rN−1u′a)

′ ≥ 0 on
[R,r]. Integrating on [R,r] gives:

rN−1u′a(r)≥ RN−1u′a(R) = aRN−1 > 0 (25)

Hence ua is increasing on [R,r]. Rewriting (25) and inte-
grating gives:

ua(r)≥ aRN−1
[

r2−N −R2−N

2−N

]
=

aR
N −2

[
1−
(

R
r

)N−2
]

on [R,r].
(26)

Then from (26) we see ua(2R) ≥ aR
N−2

[
1− 1

2N−2

]
and

lim
a→∞

aR
N−2

[
1− 1

2N−2

]
= ∞ which contradicts the assumption

that 0 ≤Ua ≤ β . Thus if a is sufficiently large then ua(r) gets
larger than β .

Next we show max
[R,2R]

ua(r)−→ ∞ as a −→ ∞. Suppose by

way of contradiction that max
[R,2R]

ua(r) ≤ B where B does not

depend on a for a large.

Since r2(N−1)K(r)F(ua) and
(

r2(N−1)K(r)
)′

F(ua) are con-

tinuous on [R,2R] then |r2(N−1)K(r)F(ua)| ≤ A1 with A1 > 0

and
∣∣∣∣∫ r

R

(
r2(N−1)K(r)

)′
F(Ua)

∣∣∣∣≤ A2 with A2 > 0 so rewriting

(18) we obtain:

r2(N−1) 1
2

u′2a (r)≥
R2(N−1)a2

2
− [A1 +A2]. (27)

Since the right-hand side of (27) goes to ∞ as a −→ ∞ then
we see there is a Ca with Ca > 0 such that lim

a→∞
Ca = ∞ and:

∣∣u′a∣∣≥ √
2Ca

rN−1 > 0 on [R,2R] (28)

thus u′a > 0 for a sufficiently large [R,2R] and integrating (28)
over (R,2R) we get:

B ≥ ua(2R)≥
√

2Ca

[
1−22−N

N −2

]
R2−N .

but lim
a→∞

√
2Ca

[
1−22−N

N−2

]
R2−N = ∞ which is a contradic-

tion to the fact that ua was bounded by B on [R,2R]. Thus

max
[R,2R]

ua −→ ∞ as a −→ ∞. (29)
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Now let us show that ua(r) has a local maximum Ma if a
is sufficiently large. Suppose by the way of contradiction that
ua is increasing for all r > R. Since it follows from (13) that
ua is bounded then we see lim

r→∞
ua(r) = La with La > 0. Also

since Ea is non-increasing it follows that lim
r→∞

1
2

u′2a
K(r)+F(ua(r))

exists. Since F(ua)−→ F(La) as r −→ ∞ it then follows that

lim
r→∞

1
2

u′2a
K(r) exists. Dividing (18) by r2(N−1)K(r) we have:

1
2

u′2a
K(r)

+F(ua(r)) =
R2(N−1)a2

2r2(N−1)K(r)
+

∫ r
R

(
r2(N−1)K(r)

)′
F(ua)

r2(N−1)K(r)
.

(30)

By (H5)–(H6) it follows that 1
r2(N−1)K(r)

−→ 0 as r −→ ∞.

Then taking limits as r goes to infinity and using L’Hopital’s
rule in (30) we get:

lim
r→∞

1
2

u′2a
K(r)

+F(La) = 0+F(La). (31)

And so lim
r→∞

1
2

u′2a
K(r) = 0.

Next by assumption ua(r) is increasing and s0 La ≥ max
[R,2R]

ua(r).

It follows then from (29) that

lim
a→∞

La = ∞. (32)

Since Ea is non increasing and 1
2

u′2a
K(r) −→ 0 as r −→ ∞ then

we see:

1
2

u′2a
K(r)

+F(ua(r))≥ F(ua(La)) r ≥ R. (33)

Rewriting and integrating (33) over [R,∞) we get:

∫ La

0

dt√
2
√

F(La)−F(t)
=
∫

∞

R

|u′a(r)|dr√
2
√

F(La)−F(ua(r))
≥∫

∞

R

√
K(r) dr

(34)

From right-hand side of (34) since α > 2 and using (H6) we
get:∫

∞

R

√
K(r)≥

∫
∞

R
K1r

α
2 =

2K1

α −2
R1− α

2 . (35)

Thus we get:∫ La

0

dt√
2
√

F(La)−F(t)
≥ 2K1

α −2
R1− α

2 . (36)

Finally let us show that lim
a→∞

∫ La
0

dt√
2
√

F(La)−F(t)
= 0 which

contradicts and thus our assumption that ua is increasing is
false and therefore ua must has a local maximum.∫ La

0

dt√
2
√

F(La)−F(t)
=
∫ La

2

0

dt√
2
√

F(La)−F(t)
+

∫ La

La
2

dt√
2
√

F(La)−F(t)
.

(37)

From (32) we know La −→ ∞ as a −→ ∞ and and so it
follows from (H3) that lim

a→∞

f (La)
La

= ∞ thus for a large La
2 is

large then F(t)< F(La
2 ) also F(La)−F(La

2 )< F(La)−F(t)
so∫ La

2

0

dt√
2
√

F(La)−F(t)
≤
∫ La

2

0

dt
√

2
√

F(La)−F(La
2 )

=

La
2

√
2
√

F(La)−F(La
2 )

.

(38)

By the mean value theorem there is d1 > 0 such that La
2 <

d1 < La then F(La)−F(La
2 ) = f (d1)

[
La − La

2

]
= f (d1)

[La
2

]
since f is increasing for a large then f (La

2 )≤ f (d1) so

La
2

√
2
√

F(La)−F(La
2 )

≤

√
La
2

√
2
√

f (La
2 )

(39)

taking limit as a goes to infinity and by (H3) and (35)

lim
a→∞

1√
2

√
La
2

f (La
2 )

= 0. (40)

Thus by (38), (39), and (40) then:

lim
a→∞

∫ La
2

0

dt√
2
√

F(La)−F(t)
= 0. (41)

Second, we estimate t ∈ [La
2 ,La] we have F is continuous

and f is increasing so by the mean value theorem there is a
d2 > 0 with La

2 < d2 < La so F(La)−F(t) = f (d2)[La − t]≥
f (La

2 )[La − t] rewrite the second part of (37) we get:∫ La

La
2

dt√
2
√

F(La)−F(t)
≤
∫ La

La
2

dt
√

2
√

f (La
2 )(La − t)

=

√
2

√
La
2

f (La
2 )

(42)

taking limit as a goes to infinity and by (H3) and (42)

lim
a→∞

√
2

√
La
2

f (La
2 )

= 0. (43)
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Thus (42) and (43) gives:

lim
a→∞

∫ La

La
2

dt√
2
√

F(La)−F(t)
= 0. (44)

Combining (41) and (44) with (37) we have:∫ La

0

dt√
2
√

F(La)−F(t)
= 0. (45)

Now taking limits in (36) we get: K1
R1− α

2
α
2 −1 ≤ 0 which is

false. Thus ua must have a first local maximum Ma if a is
sufficiently large.

Next we show that ua(Ma)≥ max
[R,2R]

ua. Since ua has a first

local maximum Ma. Case 1: if Ma > 2R. Since ua is increas-
ing on [R,Ma] then ua(Ma) ≥ ua(2R) = max

[R,2R]
ua so we done

this case. case 2: if R < Ma < 2R. Suppose by way of con-
tradiction there is t0 with Ma < t0 < 2R such that ua(t0) >
ua(Ma) then there is a smallest s0 with s0 > Ma such that
ua(s0) = ua(Ma) then for Ma < r < s0 we have F(ua(Ma)) =

E(s0)≤ E(r)≤ E(Ma) = F(ua(Ma)) since 1
2

u′2a(s0)
K(s0)

= 0 and
F(ua(Ma))=F(ua(s0)) therefore E(r) is a constant on [Ma,s0]
thus E ′(r) = 0 then u′a(r)≡ 0 on [Ma,s0]. By the uniqueness
of the solution of the initial value problem we have ua(r)≡ 0
on [R,∞) but we know u′(R) = a > 0 which is a Contradiction.
so no t0 exists. Thus ua(Ma)≥ max

[R,2R]
ua and max

[R,2R]
ua −→ ∞ as

a −→ ∞. Thus lim
a→∞

ua(Ma) = ∞.

Now let us show lim
a→∞

Ma =R. Since Ea(r) is non-increasing
it follows that if R ≤ r ≤ Ma then:

1
2

U ′2
a

K(r)
+F(ua(r))≥ F(ua(Ma)) on [R,Ma].

Rewriting, integrating over (R,Ma) and changing vari-
ables we get:∫ ua(Ma)

0

dt√
2
√

F(ua(Ma))−F(t)
=

∫ Ma

R

u′a(r)dr√
2
√

F(ua(Ma))−F(ua(r))
≥
∫ Ma

R

√
K(r) dr.

(46)

From the right-hand side of (46) using (H6) we get:

∫ Ma

R

√
K(r)≥

∫ Ma

R

√
K1r−α =

√
K1

(
M

1− α
2

a −R1− α
2

1− α

2

)
(47)

since α > 2. It follows from (45) that the left-hand side of
(46) goes to 0 as a −→ ∞ therefore it follows from (47) that
Ma −→ R as a −→ ∞.

This completes the proof of lemma.

Lemma 2.3: Suppose (4)–(5) and N ≥ 2. Let ua(r) be the
solution of (4)–(5) and suppose 2 <α < 2(N−1). Then ua(r)
has at least n zeroes on (0,∞) if a sufficiently large.

Proof: Let V (r) = ua(r+Ma), then V (0) = ua(Ma), V ′(r) =
u′a(r+Ma) and V ′′(r) = u′′a(r+Ma). Substituting in equation
(4) we get:

u′′a(r+Ma)+
N −1
r+Ma

u′a(r+Ma)+K(r+Ma) f (ua(r+Ma))= 0

(48)

so V ′′(r)+ N−1
r+Ma

V ′(r)+K(r+Ma) f (V (r))= 0 with V (0)=
u(Ma) and V ′(0)= 0. Now if we replace r with r

λ
where λ > 0

then we get:

V ′′
( r

λ

)
+

N −1
r
λ
+Ma

V ′
( r

λ

)
+K

( r
λ
+Ma

)
f
(

V
( r

λ

))
= 0.

(49)

Now let:

Wλ (r) = λ
−2

P−1 V
( r

λ

)
= λ

−2
P−1 ua

( r
λ
+Ma

)
. (50)

Then:

W ′
λ
(r) = λ

−2
P−1−1V ′

( r
λ

)
= λ

−2
P−1−1u′a

( r
λ
+Ma

)
W ′′

λ
(r) = λ

−2
P−1−2V ′′

( r
λ

)
= λ

−2
P−1−2u′′a

( r
λ
+Ma

)
and substituting above in (49) we get:

W
′′
λ
(r)+

N −1
r+λMa

W ′
λ
(r)+λ

−2P
P−1 K

( r
λ
+Ma

)[
|Wλ |P−1Wλ λ

2P
P−1

+g2

(
Wλ λ

2
P−1

)]
= 0.

(51)

simplifying (51) we get:

W
′′
λ
(r)+

N −1
r+λMa

W ′
λ
(r)+Kbig(

r
λ
+Ma)

[
|Wλ |P−1(r)Wλ (r)

+λ
−2P
P−1 g2

(
λ

2
P−1 Wλ (r)

)]
= 0.

We choose λ so that λ
−2

P−1 ua(Ma) = 1. Then we have
Wλ (0)= λ

−2
P−1 u(Ma)= 1. So ua(Ma)λ

−2
P−1 and since ua(Ma)−→

∞ as a −→ ∞ then λ −→ ∞ as a −→ ∞. Now let:

Eλ (r) =
1
2

W ′2
λ

K
( r

λ
+Ma

) + |Wλ |P+1

P+1
+

G(λ
2

P−1 Wλ (r))

λ
2(P+1)

P−1

, (52)
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where G(u) =
∫ u

0 g2(t) dt. Then:

E ′
λ
(r) =

−W ′2
λ

2λ
( r

λ
+Ma

)
K
( r

λ
+Ma

) [2(N −1)+( r
λ
+Ma

)
K′ ( r

λ
+Ma

)
K
( r

λ
+Ma

) ≤ 0.

(53)

where the bracketed term is greater than or equal to 0 by
(H5). It follows from (53) that Eλ is non-increasing and so:

Eλ (r) =
1
2

W ′2
λ

K
( r

λ
+Ma

) + |Wλ |P+1

P+1
+

G
(

λ
2

P−1 Wλ (r)
)

λ
2(P+1)

P−1

≤

1
P+1

+
G(λ

2
P−1 )

λ
2(P+1)

P−1

= Eλ (0).

(54)

Using (H3):

lim
λ→∞

G(λ
2

P−1 )

λ
2(P+1)

P−1

= 0 (55)

so for λ sufficiently large we get:

1
2

W ′2
λ

K( r
λ
+Ma)

+
|Wλ |P+1

P+1
+

G(λ
2

P−1 Wλ (r))

λ
2(P+1)

P−1

≤ 1
P+1

+
1

P+1

=
2

P+1
(56)

so:

1
2

W ′2
λ

K( r
λ
+Ma)

+
|Wλ |P+1

P+1
≤ 2

P+1
− G(λ

2
P−1 Wλ (r))

λ
2(P+1)

P−1

. (57)

Using (H3) it follows that lim
u→∞

|G(u)|
|u|P+1 = 0.

So
∣∣∣G(u)

uP+1

∣∣∣< 1
2(p+1) if |u| ≥C0.

Also since G(u) is continuous when |u| ≤C0 then there is
D so that |G(u)| ≤ D when |u| ≤C0 and so

|G(u)| ≤ D+
1

2(p+1)
|u|P+1 ∀u ∈ R. (58)

Thus:∣∣∣G(λ
2

P−1 Wλ (r)
)∣∣∣≤ D+

1
2(P+1)

∣∣∣λ 2
P−1 Wλ (r)

∣∣∣P+1
= D+

1
2(P+1)

λ
2(P+1)

P−1 |Wλ (r)|P+1

(59)

Substituting (59) into (57) gives:

1
2

W ′2
λ

K( r
λ
+Ma)

+
|Wλ |P+1

P+1
≤ 2

P+1
+

D

λ
2(P+1)

P−1

+
1

2(P+1)

|Wλ (r)|P+1

so

1
2

W ′2
λ

K( r
λ
+Ma)

+
|Wλ |P+1

2(P+1)
≤ 2

P+1
+

D

λ
2(P−1)

P+1

≤ 2
P+1

+1

for λ sufficiently large. Thus Wλ and W ′
λ

are uniformly
bounded on compact sets. So by Arzela-Ascoli, there is a
subsequence still labeled wλ such that Wλ −→W ∗ uniformly
on compact sets and so W ∗ is continuous. It can be shown in
a similar argument as (59) that:

lim
a→∞

K
( r

λ
+Ma

)
λ

−2P
P−1 g2

(
λ

2
P−1 Wλ (r)

)
= 0

since g2(u)
uP −→ 0 as u −→ ∞ so g2(u)

uP < ε if u ≥ L then

g2(u)< ε|u|P if u ≥ L thus g2(u)≤ D1 + ε|u|P

so∣∣∣K( r
λ
+Ma

)
λ

−2P
P−1 g2

(
λ

2
P−1 Wλ (r)

)∣∣∣≤ K
( r

λ
+Ma

)
λ

−2P
P−1[

D1 + ελ
2P

P−1 |Wλ |P
]
= K

( r
λ
+Ma

)
D1λ

−2P
P−1 + εK

( r
λ
+Ma

)
|Wλ |P

is also uniformly bounded. Then it follows from (51) that
W ′′

λ
is also uniformly bounded. Thus W ′

λ
−→W ∗′ uniformly

on compact sets. Then taking limits in (51) we get:

(W ∗)′′+K(R) |W ∗|P−1 W ∗ = 0 (60)

with W ∗(0) = 1, W ∗′(0) = 0. Thus:

1
2
(W ∗)

′2 +K(R)
|W ∗|P+1

P+1
=

K(R)
P+1

. (61)

It follows from (61) that |W ∗| ≤ 1. We now show W ∗ has
an infinite number of zeros on [0,∞). Suppose (W ∗)′ ≤ 0 for
all r ≥ R. Then W ∗ is bounded and decreasing so:

lim
r→∞

W ∗(r) = L. (62)

Taking limits in (61) gives:

lim
r→∞

1
2

W ∗′2(r)+K(R)
|L|P+1

P+1
=

K(R)
P+1

(63)
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so:

lim
r→∞

W ∗′2(r) =
2K(R)
P+1

[
1−|L|P+1

]
Thus |L| ≤ 1. (64)

Now suppose |L|< 1

lim
r→∞

∣∣∣(W ∗)
′
(r)
∣∣∣=√2K(R)

P+1

[
1−|L|P+1

]
. (65)

Thus for large r and r0∫ r

r0

−(W ∗)
′
(r) dr =

∫ r

r0

∣∣∣(W ∗)
′
(r)
∣∣∣ dr ≥ 1

2

∫ r

r0√
2K(R)
P+1

[
1−|L|P+1

]
dr

(66)

we get:

−W ∗(r)+W ∗(r0)≥
1
2

√
2K(R)
P+1

[
1−|L|P+1

]
(r− r0)−→ ∞

as r −→ ∞

(67)

on the left-hand side of (67) is bounded which contra-
dicts that W ∗ is bounded. Thus |L|= 1 and since W ∗(0) = 1
and since W ∗′′ < 0 then W ∗ is decreasing near r = 0 also
W ∗′′(0) = −K(R) < 0 so W ∗ is not constant so L ̸= 1 and
thus W ∗′ ≤ 0 then L =−1.

1
2
(W ∗)

′2 +
K(R)
P+1

|W ∗|P+1 =
K(R)
P+1

(68)

(W ∗)
′
=

√
2K(R)
P+1

[1− (W ∗)P+1] (69)

∫ r

0

−W ∗′(r) dr√
1−|W ∗(r)|P+1

=
∫ r

0

∣∣W ∗′∣∣(r) dr√
1−W ∗P+1

=
∫ r

0

√
2K(R)
P+1

=

√
2K(R)
P+1

r

(70)

if we make change of variable t =W ∗(r) and dt =W ∗(r) dr
we get:

∫ 1

W ∗(r)

dt√
1− tP+1

=

√
2K(R)
P+1

r −→ ∞ as r −→ ∞ (71)

if W ∗(r)≥ 0 and (W ∗)′(r)≤ 0 since |W ∗(r)| bounded by
1, so W ∗(r)−→−1 as r −→ ∞.

∫ 1

−1

dt√
1− tP+1

= ∞ (72)

but left-hand side is finite. This is a contradiction. Thus
W ∗ must have a first local minimum m∗. Let r = m∗ in (65) so
|W ∗|p+1(m∗) = 1 so W ∗(m∗) =±1 but since W ∗(0) = 1 and
W ∗ is initially decreasing then it follows that W ∗(m∗) =−1
so W ∗ has a first zero Z1 and we can show W (m∗ + t) =
W (m∗− t) therefore W is periodic with period 2m∗ so W has
infinite many zeros. This completes the proof.

In this paper, we prove the following:

Theorem 1: Assuming (H1)–(H6) then there exists a solu-
tions of (1)–(3).

3. The Main Results:
Let S0 = {a > 0|ua(r)> 0 ∀r > R} . By Lemma 2.1 we

know that if a > 0 and a is sufficiently small then ua > 0
for all r > R. Thus S0 is nonempty. By Lemma 2.3 we see
that if a sufficiently large then ua has a zero. Hence S0 is
bounded from above. So the supremum of S0 exists and let
a0 = sup S0 > 0 .

Lemma 3.1: ua0(r)> 0 for r > R and lim
r→∞

ua0(r) = 0.

Proof: Suppose first by the way of contradiction that ua0(r)
is not positive for r > R. So there exists Z0 > R such that
ua0(Z0) = 0 and ua0(r)> 0 on (R,Z0).

Assume u′a0
(Z0)< 0 So there is r1 >Z0 such that ua0(r1)<

0. We also know that u′a(r) varies continuously with a. Thus
on any compact set K0 , lim

a→a0
ua(r) = ua0(r) uniformly on K0.

So if a is close enough to a0 then ua(r1)< 0.

In particular if 0 < a < a0 then ua(r1) < 0, but this con-
tradicts that then ua(r)> 0 for r > R and 0 < a < a0.

Therefore ua0(r) does not have a zero. So ua0(r)> 0 for
r > R.

For a> a0 then ua(r) has a zero za. We now show lim
a→a0+

Za(r)=

∞, because otherwise if there is a B > 0 such that za ≤ B for
all a close to a0 then there is a subsequence still labeled a
such that Za −→ Z∗.

Also since Ea(r)≤ 1
2

a2

K(R) ≤
1
2
(a0+1)2

K(R) for all r ≥ R then ua

and u′a are uniformly bounded on [R,a0 +1] and so for further
subsequence still labeled ua we have ua −→ ua0 uniformly on
compact sets so 0 = lim

a→a0+
ua(Za) = ua0(Z

∗).
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So ua0(Z
∗) = 0 but we showed earlier ua0(r)> 0 for r >R.

This is a contradiction. Thus lim
a→a0+

Za(r) = +∞.

In addition, we now show Ea0(r)≥ 0 for all r > R. Let us
integrate the identity over (r0,r) we get:

∫ r

r0

[(
(r2(N−1)

[
1
2

u′2a0
(r)+K(r)F(ua0(r))

])′
=
(

r2(N−1)

K(r)
)′

F(ua0(r))

we rewriting

=r2(N−1)
[

1
2

u′2a0
(r)+K(r)F(ua0(r))

]′
=
(

r2(N−1)K(r)
)′

F(ua0(r))

Suppose by the way of contradiction suppose there is
r1 > R such that Ea0(r1) < 0. Again by continuous depen-
dence of the ua(r) and u′a(r) on the parameter a we get
Ea(r1) < 0 if a is close enough to a0. On the other hand,
if a > a0 then ua has a first zero za and Ua > 0 for R < r < za
and since Ea0(r1)< 0 and Ea0 is non-increasing then za ≤ r,
thus 0 ≤ Ea(za)≤ Ea(r1)< 0 where za < r1. But za −→ ∞ as
a −→ a0 therefore Ea0(r)≥ 0 ∀r ≥ R.

Lemma 3.2: ua0(r) has a local maximum Ma0 > R.

Proof: Suppose not. Then u′a0
(r)≥ 0 ∀r > R. Also 1

2
u′2a0

(r)
K(r) +

F(ua0(r)) = Ea0(r) ≤ Ea0(R) =
a2

0
2K(R) . It follows from this

that ua0 is bounded and since u′a0
≥ 0 then lim

r→∞
ua0(r) = L > 0.

Since Ea0 is non-increasing then for all r > R then from
(H4) it follows that F(ua0) is bounded from below and since
1
2

u′2a0
(r)

K(r) ≥ 0 then 1
2

u′2a0
(r)

K(r) +F(ua0) is bounded from below and
thus

lim
r→∞

1
2

u′2a0
(r)

K(r)
+F(ua0(r)) exists.

Also since ua0 −→ L it follows that lim
r→∞

F(ua0(r)) = F(L)

and so it follows that lim
r→∞

1
2

u′2a0
(r)

K(r) exists. Now let us show

lim
r→∞

1
2

u′2a0
(r)

K(r) = 0. Consider the following identity which fol-

lows from (4) and integrating over (r,r0) we get:

∫ r

r0

(
r2(N−1)

[
1
2

u′2a0
(r)+K(r)F(ua0

])′
dr =

∫ r

r0

(
r2(N−1)

K(r)
)′

F(ua0) dr

so

1
2

U ′2
a0
(r)

K(r)
+F(ua0(r)) =

C0

K(r)r2(N−1)

+

∫ r
r0

(
r2(N−1)K(r)

)′
F(ua0)

K(r)r2(N−1)

for some constant C0. Taking the limit as r goes to infinity
and using (H6) then lim

r→∞

C0
K(r)r2(N−1) = 0 so using L’Hopital

rule

lim
r→∞

[
1
2

u′2a0
(r)

K(r)
+F(ua0(r))

]
= lim

r→∞

∫ r
r0

(
r2(N−1)K(r)

)′
F(ua0)

K(r)r2(N−1)

= F(L)

so lim
r→∞

1
2

u′2a0
(r)

K(r) = 0. Also from lemma 3.1, Ea0 ≥ 0 and since

0 ≤ Ea0 −→ F(L) it follows L ≥ γ .

Next we return to (4) −
(
rN−1u′a0

(r)
)′
= rN−1K(r) f (ua0(r))

since L ≥ γ and f (ua0) ≥ 0. Since ua0 is increasing and
ua0(r)−→ L ≥ γ as r −→ ∞ then for large ua0(r)≥

γ+β

2 > β

then there exists C1 > 0 such that f (ua0)≥C1 > 0 for r suf-

ficiently large we get:−
(

r(N−1)U ′
a0
(r)
)′

≥C1r(N−1)K(r). In-
tegrating on (r0,r) where r0,r are sufficiently large then we
get:∫ r

r0

[(
r(N−1)u′a0

(r)
)′
+C1r(N−1)K(r)

]
≤ 0

so

r(N−1)u′a0
(r)− r(N−1)

0 u′a0
(r0)+C1

rN−α − r0
N−α

N −α
≤ 0 if 2 < α

< N then r(N−1)u′a0
(r)≤ r0

(N−1)u′a0
(r0)+C1

rN−α − r0
N−α

N −α

−→−∞

Since rN−1
0 u′a0

(r0)= constant and limr→∞ rN−α =+∞,then
limr→∞ rN−1u′a0

(r) =−∞ so u′a0
must get negative. Thus ua0

has a local max Ma0 .

Now we show that u′a0
(r) ≤ 0 for r > Ma0 . If not then

there is r1 > Ma0 such that u′a0
(r1)> 0 so ua0 has a local min

ma0 > Ma0 such that u′a0
(ma0)) = 0 and u′′a0

(ma0))≥ 0

so f (ua0(ma0))≤ 0, but 0 < ua0(ma0)≤ β . From lemma
3.1 we have 0 ≤ Ea0(ma0) = F(ua0(ma0))

ua0(ma0)≥ γ , but this is a contradiction. Since 0< ua0(ma0)≤
β < γ. Thus u′a0

< 0 for all r > Ma0 . Since ua0 > 0 then
lim
r→∞

ua0(r) = A with A ≥ 0 for r > R.
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We will show that A= 0. We know Ea0(r) is non-increasing
and bounded below so: lim

r→∞
Ea0(r) exists, and lim

r→∞
u′2a0

(r) =

0 exists 0 ≤ Ea0(r) =
1
2

u′2a0
(r)

K(r) +F(ua0(r)). Taking limit of
Ea0(r) as r goes to infinity.

lim
r→∞

Ea0(r) = F(A)

so 0 ≤ F(A) so since A ≥ 0 then either A = 0 or A ≥ γ .
Let us assume A ≥ γ by above we get: 0 ≤ lim

r→∞
Ea0(r) =

lim
r→∞

1
2

u′2a0
(r)

K(r) +F(A).

So A = 0 and thus lim
r→∞

ua0(r) = 0 so ua0 is solution of
(4)–(5).

4. Conclusions:
Through this work, We have been able to prove the exis-

tence of a solution to the singular superlinear Dirichlet prob-
lem (1) on the exterior domain in RN . When f is singular
at zero and f grows superlinear at infinity, the proof we pre-
sented here seems to have some techniques for localized solu-
tions. Also, we show that the energy is strictly decreasing.

A. Appendix

Lemma 1: Let z > 0. There is a solution Ua of equation (4) if
ua(z) = u′a(z) = 0 on (z,z+ ε) for some ε > 0.

Proof: Suppose first that ua is a positive solution to (4)
on (R,z) with ua(z) = 0 and u′a(z) = 0 with ua ∈ C2(R,z−
ε)
⋂

C0[R,z− ε). Let us determine the behavior of ua(r) on
(z− ε,z).

Using the fact that f (ua) =
−1

|ua|q−1ua
+g1(ua) where 0 <

q < 1, g1(0) = 0 and g1 is continuous at ua = 0 then multiply-
ing (4) by |ua|q−1ua we obtain:

|ua|q−1 uau′′a(r)+
N −1

r
|ua|q−1 uau′a(r)+K(r)(−1+g1(ua) |

ua
q−1ua = 0.

(73)

Since g1 is continuous at ua = 0 with 0 < q < 1 then

lim
r→z−

K(r)g1(ua) |ua|q−1 ua = 0.

Also since u′a is continuous with u′a(z) = 0 and 0 < q < 1
then lim

r→z−
1
r |ua|q−1 uau′a = 0 therefore from (73) this implies

lim
r→z−

|ua|q−1 uau′′a(r) = K(z). In addition, since lim
r→z−

1
2 u′2a = 0

and lim
r→z−

1
1−q |ua|1−q = 0 then by L’Hopital’s rule we have:

K(z) = lim
r→z−

|ua|q−1 uau′′a(r)

= lim
r→z−

( 1
2 u′2a

)′(
1

1−q |ua|1−q
)′

= lim
r→z−

1
2 u′2a

1
1−q |ua|1−q .

Thus lim
r→z−

|u′a|
|ua|

1−q
2

=
√

2
1−q K(z) > 0. Therefore u′a ̸= 0 on

(z− ε,z) (for some perhaps small ε) and since ua > 0 on (z−
ε,z) it follows that u′a < 0 on (z− ε,z). Thus lim

r→z−
−u′a

ua
1−q

2
=√

2
1−q K(z), and so on the interval (z− ε,z) with ε > 0 suffi-

ciently small then there is δ > 0 so that:
√

2
1−q K(z)− δ <

−u′a

ua
1−q

2
<
√

2
1−q K(z)+δ . Integrating on (r,z) for r sufficiently

close to z gives:

∫ z

r

(√
2

1−q
K(z)−δ

)
ds <

∫ z

r

−u′a ds

ua
1−q

2

<
∫ z

r

(√
2

1−q
K(z)+δ

)
ds

(√
2

1−q
K(z)−δ

)
(z− r)<

2
q+1

ua
q+1

2 <

(√
2

1−q
K(z)+δ

)
(z− r)

so(√
2

1−q
K(z)−δ

)
≤ 2

q+1
ua

q+1
2

(z− r)
≤

(√
2

1−q
K(z)+δ

)
on (z− ε,z)

Thus:

lim
r→z−

ua
q+1

2

(z− r)
=

q+1
2

√
2

1−q
K(z).

Let

W (r) =
ua(r)

(z− r)
2

q+1
where r ̸= z

so lim
r→z−

W (r) =

[
q+1

2

√
2

1−q
K(z)

] 2
q+1

so we define

W (z) = lim
r→z−

W (r) = lim
r→z−

ua(r)

(z− r)
2

q+1
=

[
q+1

2

√
2

1−q
K(z)

] 2
q+1

.
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This tells us how ua behaves on (z− ε,z) so we expect U
to behave similarly on (z,z+ ε) so we will try now to prove
the existence of a solution on (z,z+ ε) so that:

lim
r→z+

ua

(z− r)
2

q+1
=−

[
q+1

2

√
2

1−q
K(z)

] 2
q+1

. (74)

Now assuming such a solution exists, Rewriting (4), integrat-
ing over (z,r), and using u′a(z) = 0 we get:

rN−1u′a(r) =−
∫ r

z

1
tN−1

∫ t

z
sN−1K(s) f (ua) ds dt (75)

Multiplying (75) by 1
rN−1 , integrating over (z,r) and using

(H1) gives:

ua(r) =−
∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

|ua|q−1 ua(s)
+g1(ua)

]
ds dt. (76)

Making the change of variables of (76):

ua(r) =−(r− z)
2

q+1 W (r).

Then (76) becomes :

(r− z)
2

q+1 W (r) =−
∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 |W |q−1W

+g1

(
−(s− z)

2
q+1 W (s)

)
ds dt

So:

W (r)=
−1

(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 |W |q−1W

+g1

(
−(s− z)

p
q+1 W

)
ds dt. (77)

Assuming W (r) is continuous at z then taking limits in
(77) and using L’Hopital’s rule we get:

W (z) = lim
r→z+

1
tN−1

∫ t
z sN−1K(s)

[
−1

(s−z)
2q

q+1 |W |q−1W
+g1

(
−(s− z)

2
q+1 W

)]
ds

2
q+1 (s− z)

1−q
q+1

.

Using L’Hopital’s rule again we get:

W (z) =
1

zN−1 lim
r→z+

rN−1K(r)

[
−1

(r−z)
2q

q+1 |W |q−1W
+g1

(
−(r− z)

2
q+1 W

)]
2

q+1
1−q
q+1 (r− z)

−2q
q+1

.

simplifying above we get:

W (z) =
(q+1)2K(z)

2(1−q)|W (z)|q−1W (z)

and thus:

|W (z)|=
[
(q+1)2K(z)

2(1−q)

] 1
q+1

.

Let W (r) =CY (r) where C =−
(
(q+1)2K(z)

2(1−q)

) 1
q+1

.
Then Y (z) = 1
so

Y (r) =
−1

C(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 CqY q

+g1

(
(s− z)

2
q+1 CY

)]
ds dt. (78)

Now we attempt to can solve (78) by using the contraction
mapping principle theorem. We define the set:

B = {Y ∈C[z,z+ ε] | Y (z) = 1 and ||Y (r)−1||< δ}

where δ is sufficiently small.

Let:

||Y ||= sup
x∈[z,z+ε]

|Y (x)|

Now define T : B −→C[z,z+ ε] by:

TY (r) =
−1

C(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 CqY q

+g1

(
(s− z)

2
q+1 CY

)]
ds dt.

Let us suppose Y1,Y2 ∈ B then:

TY1(r)−TY2(r) =
−1

C(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 Cq

[
1

Y1
q − 1

Y2
q

]
+g1

(
(s− z)

2
q+1 CY1

)
−g1

(
(s− z)

2
q+1

CY2

)]
ds dt. (79)

divided the integration in two parts:
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For the first part of the integral since Y1,Y2 ∈ B .

Then by the mean value theorem there is Y3 between
Y1,Y2 also since 0 < Y2 < Y3 < Y1 < δ +1 where |Yi −1|< δ

for i = 1,2,3 then 1− δ < Y3 < 1+ δ then
∣∣∣[ 1

Y q
1
− 1

Y q
2

]∣∣∣ =
q

Y3
q+1 |Y1 −Y2| ≤ q

(1−δ )q+1 |Y1 −Y2|.

Then the first part of the integral becomes:∣∣∣∣∣ −1

C(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
−1

(s− z)
2q

q+1 Cq
[

1
Y1

q − 1
Y2

q ]

]∣∣∣∣∣ds dt

≤ q

(1+δ )1+q
|Y1 −Y2|

Cq+1(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z

sN−1K(s)

(s− z)
2q

q+1

ds dt.

≤ q

(1+δ )1+q
|Y1 −Y2|

Cq+1(r− z)
2

q+1

∫ r

z

∫ t

z

K(s)

(s− z)
2q

q+1

ds dt.

≤ q

(1+δ )1+q max
[z,z+ε]

K(r)
|Y1 −Y2|

Cq+1(r− z)
2

q+1

∫ r

z

∫ t

z

1

(s− z)
2q

q+1

ds dt.

Carrying out the integration and recalling Cq+1 = (q+1)2K(z)
2(1−q)

we obtain:

≤ q
(1+δ )1+q max

[z,z+ε]
K(r)

|Y1 −Y2|
(q+1)2K(z)

2(1−q)

(q+1)2

2(1−q)

=
q

(1+δ )1+q

max
[z,z+ε]

K(r)

K(z)
|Y1 −Y2|.

Since K(z) ̸= 0 and K is continuous then
max
[z,z+ε]

K(r)

K(z) −→ 1
as ε −→ 0. Also since δ > 0 and q < 1 we see that for ε > 0

sufficiently small then q
(1+δ )1+q

max
[z,z+ε]

K(r)

K(z) ≤ d ≤ 1.

For the second part of the integral since g1 is locally Lips-
chitz at W near 0 then:∣∣∣g1

(
−(s− z)

2
q+1 CY1

)
−g1

(
−(s− z)

2
q+1 CY2

)∣∣∣≤ L|s− z|
2

q+1 C

||Y1 −Y2||

so substituting into the second part of (78) gives:

−1

C(r− z)
2

q+1

∫ r

z

1
tN−1

∫ t

z
sN−1K(s)

[
g1

(
(s− z)

2
q+1 CY1

)
−g1

(
(s− z)

2
q+1 CY2

)]
ds dt.

≤ |Y1 −Y2|CL

C(r− z)
2

q+1
max
[z,z+ε]

K(r)
∫ r

z

∫ t

z
|s− z|

2
q+1 ds dt.

≤ |Y1 −Y2|L

(r− z)
2

q+1
max
[z,z+ε]

K(r)(r− z)
2

q+1 (r− z)2 = |Y1 −Y2|L max
[z,z+ε]

K(r)(r− z)2 ≤ 1−d
2

|Y1 −Y2|.

since lim
r→z

LmaxK(r−z)2 = 0 we can choose ε small enough

so that LmaxK(r− z)2 < (1−d)
2 so d+ 1−d

2 = 1+d
2 < 1 and so

combining these two part we get

|TY1(r)−TY2|(r)≤
1+d

2
|Y1 −Y2|

Thus T is a contraction mapping if 0 < 1+d
2 < 1 is suffi-

ciently small, so there is a unique solution Y ∈ B to T (Y ) =Y

on [z,z+ ε]. Then ua(r) = −(r− z)
2

q+1 W (r) is a solution of
(4)–(5)on [z− ε,z+ ε] for some ε > 0.

Lemma 2: The energy equation E(r) is strictly decreasing.

Proof: From (12) we know that E ′(r) ≤ 0 so E(r) is non-
increasing. Suppose by way of contradiction that E is not
strictly decreasing then there are r1,r2 with r1 < r2 such that
E(r1) = E(r2) so E(r) is constant on [r1,r2] so E ′(r) ≡ 0
on [r1,r2] so U ′

a(r) ≡ 0 on [r1,r2] then by the uniqueness of
solution of initial value problem ua ≡ 0 on [R,∞] but u′a(R) =
a > 0 contradiction so E must be strictly decreasing. this
proofs lemma 2.
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