
115 
 

Received 18/February/2022; Accepted 26/April/2022 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 23, No. 1, March 2023             

DOI: https://doi.org/10.33103/uot.ijccce.23.1.10 

 

 Comparative Between Backstepping and Adaptive 

Backstepping Control for Controlling Prosthetic 

Knee 

Mayyasah Ali Salman1, Saleem Khalefa Kadhim2  

1, 2Control and System Engineer Department, University of Technology, Baghdad, Iraq 
1cse.19.18@grad.uotechnology.edu.iq, 2Saleem.K.Kadhim@uotechnology.edu.iq 

Abstract— The lower limb amputees are increasing day by day. This has led to an 

increase in research in the field of prosthetic knee. In this work, a prosthetic knee was 

designed and developed to assist human movements and more quality of life for millions 

of individuals who have lost lower limbs. The dynamic model and parameter 

identification of a two degree of freedom (2-DOF) joint prosthetic knee is derived 

according to the Lagrangian dynamic approach. The two controllers Backstepping and 

Adaptive Backstepping are adopted to control the system. Stability analysis and 

controller design dependent on Lyapunov theory are assessed to prove a tracking of a 

desired trajectory. From the results, found that the quantitative comparison between the 

two controllers, showed significant improvement in results in position tracking. To 

comparison between Backstepping control and Adaptive Backstepping control, at the 

control action consumptions. It was found that the position error of the prosthetic knee 

in Backstepping control is by 9% at link 1 (thigh) and 7.4% at link 2 (shank) compared 

with desired trajectory, while in Adaptive Backstepping control is by 1.16% at link 1 and 

1.65% at link 2  compared with desired trajectory. When comparing between 

Backstepping control and Adaptive Backstepping control, the improvement rate was 7.84 

at link 1  and 5.75 at link 2 , the proposed Adaptive Backstepping control, it may be 

concluded, is more robust against this perturbation and to deal with uncertainty. 

Therefore, the controller is built in a MATLAB environment, and its performance and 

robustness are assessed. 

Index Terms— Prosthetic knee, Backstepping control, Adaptive Backstepping control, Lyapunov 

theory. 

I. INTRODUCTION 

          Millions of people have had difficulty using their lower limbs in recent. As a result, some of them 

have lost their ability to work and are unable to participate in normal social activities [1]. Accidents, 

cancer, diabetes, vascular disease, congenital deformities, and paralysis are among reasons for 

amputation. Transtibial (below the knee), transfemoral (above the knee), and foot amputations, as well 

as hip and knee disarticulations, are all examples of amputation (amputation through the joint). 

Amputees can try to reclaim their normal walking gait by wearing prosthetic legs [2, 3]. The tools 

available to people who lost their lower limbs were walkers, wheelchairs, wooden braces, and crutches. 

Nowadays, advances in medical science and technology can be used to help people with amputations 

using motorized lower limbs [4]. There are many difficult problems such as system uncertainty, high 

nonlinearity, and external perturbations, which can occur during movement, problems with imbalance, 

falls and sudden bending of the knee while standing. Since there are many control strategies used to 

control the movement of prosthetic limbs, including Backstepping Control (BC) and Adaptive 

Backstepping Control (ABC). Many researchers have also proposed some ways for controlling 

prosthetic limbs.  
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 In 2008, Scandaroli et al. [5] presented a design a prosthetic limb above the knee. Proportional–Integral–

Derivative (PID) and model references Adaptive controllers are used in their models. They found that 

the results revealed difficulty in controlling such a nonlinear plant. 

Chen et al. in 2015 [6], used Backstepping Adaptive Robust Control (ARC) algorithm for 1-DOF knee 

joint exoskeleton. A Backstepping control method it is proposed to bypass the bandwidth restriction of 

the commonly utilized cascade control by using the entire dynamics. The coupling effect between 

different layers of dynamics can be used to achieve a larger bandwidth. The proposed ARC algorithm 

delivers guaranteed force tracking performance in both transient and steady-state conditions. They 

should note, that the suggested adaptive robust Backstepping force controller not only provides a high 

level of robustness in the face of model uncertainty, but also provides faster closed loop responses and 

lower contact forces. 

Mefoued et al. (2015) [7] a Second order Sliding Mode Control (SoSMC) was created to aid in the 

relocation of dependents. The wearer's desired movement was calculated in real time using the RBF 

neural network and electromyography data of the quadriceps muscle. This controller (SoSMC) was 

chosen because of its robustness in the face of parameter uncertainty, atypical dynamics, and external 

disturbances.  

Wen et al. in 2016, presented Adaptive Dynamic Programming (ADP) based controller performance 

testing that automatically configures prosthetic control parameters. The system was evaluated on a 

physically healthy person, walking with an electrical prosthesis on a treadmill. The goal was for the 

user to be able to approximate conventional knee kinematics using ADP to alter the Finite State 

Impedance Control (FSIC) resistance values. They tested the practicality of ADP for adaptive control 

of a powered prosthesis and discovered that in about 10 minutes, the prosthetic controller could be tuned 

to provide modular kinematics of the knee [8].  

In 2017, Yousefi et al. [9] developed a knee rehabilitation robot and control it. The system is controlled 

by two Sliding-Backstepping controllers in their models. The Sliding Backstepping controller is used 

to monitor the prescribed trajectory dictated by the expert physiotherapist, while the admittance control 

is used to create a delicate and smooth interface between the robot and the human leg in this hybrid 

control scheme. The results demonstrating the effectiveness of the proposed controller in terms of 

compensating for an involuntary leg movement and noise rejection. 

In 2018, Khamar et al. [10] presented a Backstepping Sliding Control (BSC) approach in combination 

with a nonlinear observer for designing a knee exoskeleton to support human movements in knee flexion 

and extension. Based on the Lyapunov theory, the asymptotic stability of the given controller and the 

convergence of the nonlinear turbulence observer were mathematically validated. The benefits of NDO-

based BSC were proven by simulation results. The durability and stability of the NDO-based SBC 

approach have been confirmed, improving tracking accuracy and reducing the time required to remove 

disturbance. 

Zhang et al. (2020) [11] introduced an Electro Hydraulic Actuator (EHA) system with a robust adaptive 

backstepping sliding mode control technique. An adaptive backstepping sliding mode control (BSMC) 

strategy is used to handle the nonlinearity problem of changes in the dynamic system.  The Lyapunov 

function verifies the stability of the control system. SMC and PID control schemes are also used in 

computer simulation to evaluate the performance and resilience of BSMC. When compared to PID and 

SMC, the simulation shows that this suggested control system has a high robust tracking. 

In the present work the Backstepping and Adaptive Backstepping control strategy for a mathematical 

model of a system of 2-DoF that includes the thigh-leg. The BC is based on a control strategy for a 
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 certain sort of nonlinear systems. Due to its ability to handle the nonlinearity and uncertainty with high 

efficiency. The Lyapunov theory combined with BC improves the closed-loop system's dynamic 

performance while also ensuring its stability.   

Backstepping and Adaptive Backstepping are a control strategy that can be applied to a certain type of 

nonlinear system. The Lyapunov theory in combination with the controllers ensures the closed-loop 

system's stability while also improving its dynamic performance.  [12, 13].  

The aim of this study is to know how to design Backstepping and Adaptive Backstepping control so 

that it can arrange and control the tracking of intended walking patterns while limiting the effects of 

unknown disturbances, non-linear uncertainties in the system, and ensuring the prosthetic knee's 

stability 

The Contribution for this research will be stated in this points: 

1. This research showed other possibilities of imbalance, falling, and sudden bending of the knee 

(due to uncertainty in the system and high non-linearity) which were not discovered by previous 

researchers. 

2. Design of Backstepping and Adaptive Backstepping controllers in order to stabilize the 

prosthesis knee, performed to analyze trajectory tracking and estimate the position and velocity 

states. 

II. DYNAMIC MODEL OF PROSTHETIC KNEE. 

Fig. (1a and 1b) shows the free body diagram of the prosthetic knee and the location of force effect on 

the prosthetic knee. The main objective is to derive the second order ordinary differential equations 

system. The motion of the prosthetic knee is controlled as a serial manipulator with rigid link, prosthetic 

knee can be modeled. In this case, it is easy to readily obtain the equations of motion. The method of 

Lagrangian can be used to obtain motion equation for a serial kinematic chain system [4]. 

 

 

 

FIG. 1. SCHEMATIC DIAGRAM AND FREE BODY DIAGRAM OF THE PROSTHETIC KNEE. 

Axes involving the displacement of a prosthetic knee about a fixed axis should be established in a 

cartesian coordinate system and specify the sign and direction of the x-axis and y-axis, as shown in   

Fig.  1b.   

𝑋1 = 𝑟1𝑠𝑖𝑛𝜃1 𝑌1 = 𝑟1𝑐𝑜𝑠𝜃1 𝑋2 =  𝐿1𝑠𝑖𝑛𝜃1 + 𝑟2𝑠𝑖𝑛𝜃2 𝑌2 = 𝐿1𝑐𝑜𝑠𝜃1 + 𝑟2𝑐𝑜𝑠𝜃2                               (1) 

(a) Schematic diagram to the artificial 

knee 

(b) Free body diagram to the artificial knee 
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 , where X1 and Y1 are the displacements for the x- and y-axes for joint1. In addition, X2 and Y2 are the 

displacements of the x-axis and y-axis for joint2. 

To derive the displacements in equation (1) with respect to time, the components of velocity are 

obtained as equations (2). 

𝑑

𝑑𝑡
𝑋1  =  𝑟1 𝜃̇1𝑐𝑜𝑠𝜃1  

𝑑

𝑑𝑡
𝑌1 =  −𝑟1 𝜃̇1𝑠𝑖𝑛𝜃1  

𝑑

𝑑𝑡
𝑋2  =  𝐿1 𝜃̇1𝑐𝑜𝑠𝜃1  +  𝑟2 𝜃̇2𝑐𝑜𝑠𝜃1    

𝑑

𝑑𝑡
𝑌2 =

 −𝐿1 𝜃̇1𝑠𝑖𝑛𝜃1  −  𝑟2 𝜃̇2𝑠𝑖𝑛𝜃2  }                                                                                                             (2) 

, where 𝑟1 and 𝑟2 are the distance between the center of mass of each link (thigh and shank), 𝐿1 is the 

length of link 1, 𝜃1 and 𝜃2  are the rotation angle of link 1 and  link 2, respectively. 

Langragian’s equation is used in this analysis to determine the equation of motion, the mathematical 

formula to Langragian’s equation can be written as follows [14]: 

𝐿 = 𝐾𝐸 − 𝑃𝐸                                                                              (3) 

𝐾𝐸 =  
1

2
 𝑚 𝑣2                                                                              (4) 

, where L is defined as the difference between the kinetic energy (KE) and potential energy (PE) of the 

mechanical system, 

The KE equation is the summation of kinetic energy for individual links, and can be expressed by the 

following formula: 

𝐾𝐸 =  
1

2
 𝑚1 (𝑋̇1

2 +𝑌̇1
2)+ 

1

2
 𝐼1𝜃̇1

2 + 
1

2
 𝑚2 (𝑋̇2

2 +𝑌̇2
2)+ 

1

2
 𝐼2𝜃̇2

2                                   (5) 

By substituting equation (2) into equation (5) to determine the total KE for two links 

𝐾𝐸 =
1

2
 𝑚1((𝑟1𝜃̇1cos𝜃1)²+ ( 𝑟1 𝜃̇1𝑠𝑖𝑛𝜃1)²)+ 

1

2
(

𝑚𝐿²

12
∗ 𝜃̇1

2) +
1

2
 𝑚2((𝐿1𝜃̇1cos𝜃1 + 𝑟2 

𝜃̇2cos𝜃2)²+ (𝐿1𝜃̇1sin𝜃1 + 𝑟2 𝜃̇2sin𝜃2)²)+ 
1

2
(

𝑚𝐿²

12
∗ 𝜃̇2

2)                                                     (6) 

In addition,  𝑃𝐸 is the potential energy of system can be written as: 

𝑃𝐸 = 𝑚𝑔ℎ                                                                           (7) 

𝑃𝐸 = 𝑚1 𝑦1 g + 𝑚2 𝑦2 g                                                                  (8) 

𝑃𝐸 = 𝑚1𝑟1𝑔 cos𝜃1 + 𝑚1 𝑔 (𝐿1cos𝜃1 + 𝑟2cos𝜃2)                                                 (9) 

Substitute equation (6) and equation (9) into equation (3), to get the following equation:                                               

𝐿 =
1

2
 𝑚1𝑟1

2 𝜃̇1
2 +

1

2
𝐼1𝜃̇1

2 +
1

2
𝑚2(𝐿1

2𝜃̇1
2 + 𝑟2

2𝜃̇2
2 + 2𝐿1𝑟2𝜃̇1𝜃̇2 𝑐𝑜𝑠 𝑐𝑜𝑠 (  𝜃1 − 𝜃1)) +

1

2
 𝐼2𝜃̇2

2 −

𝑚1𝑟1𝑔 cos𝜃1 − 𝑚1 𝑔𝐿1cos𝜃1 +  𝑚1 𝑔 𝑟2cos𝜃2)                                                                        (10)                                                                           

The equations of motion for the manipulator are derived using the Lagrangian in equation (3) as the 

following: 

𝜏𝑇𝑜𝑡𝑎𝑙 = 
𝑑

𝑑𝑡
(

𝜕 𝐿

𝜕𝜃̇
)-

𝜕𝐿

𝜕𝜃
                                                                       (11) 

, where 𝜏  is torque acting on the system to each joint. The hip 𝜏1 and knee 𝜏2  torque expressions can 

be written as: 
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 𝜏1 =   (𝐼1 + 𝑚1𝑟1
2 + 𝑚2𝐿1

2 − 𝑚2𝐿1𝑟2 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 − 𝜃2)  ) 𝜃1̈ + ( 𝑚2𝑟2
2 +𝐼2 + 𝑚2𝐿1𝑟2  𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 −

𝜃2)  )𝜃̈2 − ( 𝑚2𝐿1𝑟2 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 − 𝜃2)   )𝜃̇1
2 + (𝑚2𝐿1𝑟2  𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 − 𝜃2) ) 𝜃̇2

2  − 𝑚1𝑔 𝑟1

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  − 𝑚2𝑔 𝐿1 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1  −𝑚2𝑔 𝑟2 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2                                                                       (12) 

𝜏2 = ((𝑚2𝑟2
2 +𝐼2)𝜃̈2 + 𝑚2𝐿1𝑟2𝜃1̈ 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝜃1 − 𝜃2)   − 𝑚2𝐿1𝑟2𝜃̇1

2 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝜃1 − 𝜃2)    − 𝑚2𝑔 𝑟2

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2  −  𝐿1  𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃1𝐹1 −  𝐿2  𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃2𝐹2                                                                            (13) 

Assuming that there is no friction force, the dynamics model of the system can be expressed as general 

form below is [15]. 

M(𝜃) 𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) =  𝜏                                                          (14) 

, where (𝜃) is an angular position vector, which is expected to be usable by measurement. 

M(𝜃) represents the inertia matrix of the links, while 𝜏 is the control torque, 𝐶(𝜃, 𝜃̇)𝜃̇ represents the 

vector of the Coriolis and centripetal torques, and 𝐺(𝜃)  represents gravitational torque. 

Equation (14) shows the nonlinear dynamics of the prosthetic knee system. The following can be 

represented using a state variable in the state equation: 

𝑥1 = 𝜃1 , 𝑥2 = 𝜃̇1  𝑥3 = 𝜃2  , 𝑥4 = 𝜃̇2 𝑥̇1 = 𝜃̇1 , 𝑥̇2 = 𝜃̈1 , 𝑥̇3 = 𝜃̇2 , 𝑥̇4 = 𝜃̈2 }                                  (15) 

, where, [𝜃1, 𝜃2 ] is angular position of upper and lower link. [𝜃̇1, 𝜃̇2] which represent angular velocity 

of upper and lower link respectively [16]. 

 

Equation (15) can be substituted into Equation (14), which is a nonlinear dynamics equation, so 

Equation (14) can be written as: 

𝑥̇1 = 𝑥2                                                                                        (16) 

𝑥̇2 =
1

𝑀11
 [𝜏1 −  𝑀12 𝑥̇4 −  𝐶1 𝑥2 −  𝐺1 ]                                                                (17) 

𝑥̇3 = 𝑥4                                                                                         (18) 

𝑥̇4 =
1

𝑀22
 [𝜏2 −  𝑀21 𝑥̇2 − 𝐶2 𝑥4 − 𝐺2 ]                                                               (19) 

Fig. 2 shows the MATLAB/SIMULINK of the prosthetic knee model.  To simulate the prosthetic knee 

model representation by using Equations (16, 17, 18, and 19). Table I exhibits the model of prosthetic 

knee parameters values that utilized in the simulation.  

TABLE I. PHYSICAL PARAMETERS VALUES OF THE PROSTHETIC KNEE [17] 

Prosthetic knee parameters Parameter value 

m1 5.28 kg 

m2 2.23 kg 

I1 0.033 kg. m2 

I2 0.033 kg. m2 

L1 0.302 m 

L2 0.332 m 
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r1 0.236 m 

r2 0.189 m 

g 9.81 m/s2 

 

 

FIG. 2. OPEN LOOP PROSTHESIS KNEE SYSTEM REPRESENTED BY MATLAB SIMULINK. 

Fig. 3 represents the results of the open loop trajectory and the speed with which the prosthesis 

moves within the initial conditions (𝜃 = 10° ) [18]. The main problem is the instability and 

controllability of the movement of the prosthesis resulting from the lack of control over the location 

and speed which will certainly lead to undesirable movement of the limb which in turn must be 

controlled. Clearly from Fig. 3, the open loop system is instable. Consequently, the Backstepping 

controller is utilized to stabilized the prosthetic knee and make its states reach the asymptotically stable 

region with maximal angle. 

 

FIG. 3. OPEN LOOP RESPONSE OF PROSTHESIS KNEE, (A, AND B) REPRESENTS POSITION OF LINK 1AND 2, IN ADDITION TO (C, AND D) 

IS THE VELOCITY OF LINK 1 AND LINK 2. 
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 III. BACKSTEPPING CONTROLLER (BC) DESIGN 

The backstepping approach provides a systematic method for designing a control structure to monitor 

a reference signal. Suggested BC to control the lower prosthesis as the dynamic model is based on this 

approach [19]. The controller is introduced which ensures convergent stability in tracking the desired 

position and speed trajectories. The control laws are derived from Lyapunov theory-based stability 

assessments of the Backstepping controller to control the prosthesis knee [20, 21]. 

 In order to create the BC algorithm for a prosthetic knee system, follow the procedures listed [22] 

Steps 1: Suppose that the error 𝑒1, represents the actual stat 𝑥1 and intended trajectory 𝑥𝑑1 described 

by the 

𝑒1 = 𝑥1 − 𝑥𝑑1                                                                          (20) 

The time derivative of the error in equation (20), the tracking velocity, can be written as follows: 

𝑒̇1 = 𝑥̇1 − 𝑥̇𝑑1                                                                          (21) 

Defining the first virtual control 𝛼1 = 𝑥2  and sub in equation (21) to get 

𝑒̇1 = 𝛼1 − 𝑥̇𝑑1                                                                          (22) 

The positive Lyapunov function: 

𝑉1 =
1

2
𝑒2

1                                                                               (23) 

The Lyapunov functions derivative during time is called   

𝑉̇1 = 𝑒1𝑒̇1                                                                                (24) 

As follows: by substituting equation (22) into equation (24) to gate a new derivative of the Lyapunov 

function, which can be written as follows:  

𝑉̇1 = 𝑒1(𝛼1 − 𝑥̇𝑑1)                                                                          (25) 

A virtual control is created ( 𝛼1 = −𝑐1𝑒1 + 𝑥̇𝑑1) , and sub it into equation (25) then: 

𝑉̇1 = −𝑐1𝑒2
1                                                                               (26) 

This means that  𝑉̇1 < 0 

Let the error 𝑒2, between actual state 𝑥2 and the first virtual control 𝛼1 described by 

𝑒2 = 𝑥2 − 𝛼1                                                                                (27) 

Taking the time derivative of equation (27) and using equation (17) to get: 

𝑒̇2 =  
1

𝑀11
 [𝜏1 −  𝑀12 𝑥̇4 −  𝐶1 𝑥2 −  𝐺1 ] + 𝛼1                                                     (28) 

The second Lyapunov function is 𝑉2 =
1

2
𝑒2

1 +
1

2
𝑒2

2 

Using the time derivative of Lyapunov function and the presumption that ( 𝛼1 = −𝑐1𝑒1 + 𝑥̇𝑑1) to get 

𝑉̇2 = −𝑐1𝑒2
1 + 𝑒2(𝑒1 + (

1

𝑀11
 [𝜏1 − 𝑀12 𝑥̇4 −  𝐶1 𝑥2 −  𝐺1 ]) +  𝑐1𝑒̇1 − 𝑥̈𝑑1)                           (29) 
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 Choosing the first control law 

𝜏1 = 𝑀11[−𝑒1 − 𝑐1𝑒̇1 − 𝑐2𝑒2 + 𝑥̈𝑑1] + 𝑀12 𝑥̇4 + 𝐶1 𝑥2 + 𝐺1                                (30) 

The derivative of Lyapunov function leads to: 

𝑉̇2 = −𝑐1𝑒2
1−𝑐2𝑒2

2                                                                  (31) 

, where 𝑐1 and 𝑐2 are a positive constants to be determined using Bat algorithm, and 𝑉̇2 < 0 are negative 

definite 

Step 2: Let 𝑒3, represent the actual state 𝑥3 of the desired trajectory 𝑥𝑑3 as defined by: 

𝑒3 = 𝑥3 − 𝑥𝑑3                                                                         (32) 

The time derivative of equation (32), and in addition to assigning the second virtual control (𝑥̇3 =

 𝑥4) in order to get the error of the tracking velocity, it is written as follows: 

𝑒̇3 = 𝛼2 − 𝑥̇𝑑3                                                                         (33) 

By using third Lyapunov function 

𝑉3 = 𝑉2 +
1

2
𝑒3

2                                                                          (34) 

Since the time derivative of 𝑉3 is given by 

𝑉̇3 = 𝑉̇2 + 𝑒3𝑒̇3                                                                          (35) 

Using equation (33) and equation (35) to get  

𝑉̇3 = −𝑐1𝑒2
1−𝑐2𝑒2

2 + 𝑒3(𝛼2 − 𝑥̇𝑑3)                                                          (36) 

By substitution, the virtual control (𝛼2 = −𝑐3𝑒3 + 𝑥̇𝑑3) in to 𝑉̇3 to equation becomes: 

𝑉̇3 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3
                                                                 (37) 

Step 3: Consider the error 𝑒4 as a representation of 𝑥4 and the second virtual control 𝛼2 as: 

𝑒4 = 𝑥4 − 𝛼2                                                                             (38) 

The time derivative of the error 𝑒4, and Sub 𝑥̇4 from equation (19) to get  

𝑒̇4 =  
1

𝑀22
 [𝜏2 −  𝑀21 𝑥̇2 − 𝐶2 𝑥4 − 𝐺2 ] −  𝛼2                                               (39) 

Using fourth Lyapunov function 

𝑉4 = 𝑉3 +
1

2
𝑒4

2                                                                           (40) 

Taking the time derivative of Lyapunov function, and compensation equation (37) and (39)  

𝑉̇4 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3

+ 𝑒4(𝑒3 + [
1

𝑀22
 [𝜏2 −  𝑀21 𝑥̇2 − 𝐶2 𝑥4 − 𝐺2 ]𝑐3𝑒̇3 − 𝑥̈𝑑3 )          (41) 

Choosing the second control law  

𝜏2 = 𝑀22[−𝑒3 − 𝑐3𝑒̇3 − 𝑐4𝑒4 + 𝑥̈𝑑3] + 𝑀21 𝑥̇2 +  𝐶2 𝑥4 +  𝐺2                             (42) 

The derivative of Lyapunov function leads to 
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 𝑉̇4 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3

−𝑐4𝑒2
4                                                   (43) 

As a result, the selection of control law 𝜏2 assures that 𝑉̇4 to be negative definite, ensuring the whole 

system's asymptotic stability characteristics. Fig. 4 shows a schematic design of BC for lower limb 

prosthesis. 

 

FIG. 4. BACKSTEPPING CONTROL FOR A PROSTHETIC KNEE. 

IV. ADAPTIVE BACKSTEPPING CONTROLLER (ABC) DESIGN 

Adaptive control is a good way to deal with uncertainty. Adaptive control based on backstepping 

technology is a nonlinear recursive design methodology for tracking that is based on the systematic 

building of Lyapunov functions, and it gives you the option of dealing with unknown parameters and 

nonlinear effects [23, 24]. 

ABC was design in this part to stabilize position and angular position of prosthetic knee, and estimates 

the disturbance. An adaptive controller is designed by combining a parameter estimator, which provides 

estimates of unknown parameters, with a control law. Which is able to ensure the boundedness of the 

closed-loop states and asymptotic tracking [25, 26]. 

In order to create the ABC algorithm for a prosthetic knee system, follow the procedures listed  

Steps 1: 

 𝑒1 is selected as the trajectory tracking error, which  represents the actual state 𝑥1 and intended 

trajectory 𝑥𝑑1 defined as 

𝑒1 = 𝑥1 − 𝑥𝑑1                                                                          (44) 

Derivation of the error in equation (44) with respect to time, the tracking velocity, can be written as 

follows: 

𝑒̇1 = 𝑥̇1 − 𝑥̇𝑑1                                                                           (45) 

𝑒̇1 = 𝑥2 − 𝑥̇𝑑1                                                                          (46) 

Defining the virtual controller variable for the first error subsystem 𝛼1 = 𝑥2  and sub in equation (46) 

to get 
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 𝑒̇1 = 𝛼1 − 𝑥̇𝑑1                                                                          (47)    

The positive Lyapunov function: 

𝑉1 =
1

2
𝑒2

1                                                                                (48)                                                                                                                               

The Lyapunov functions derivative during time is called   

𝑉̇1 = 𝑒1𝑒̇1                                                                                (49)                                                                                                                                     

By substituting equation (47) into equation (49) to gate a new derivative of the Lyapunov function, 

which can be written as follows:  

𝑉̇1 = 𝑒1(𝛼1 − 𝑥̇𝑑1)                                                                         (50)                                                                                                                       

A virtual control is created  

 𝛼1 = −𝑐1𝑒1 + 𝑥̇𝑑1                                                                        (51) 

Sub the virtual control into equation (50) then: 

𝑉̇1 = −𝑐1𝑒2
1                                                                            (52) 

Tacking the time derivative of virtual control in equation (51)                                                                                                                       

 𝛼1̇ = −𝑐1𝑒̇1 + 𝑥̈𝑑1                                                                        (53) 

Sub Equation (46) into Equation  

 𝛼1̇ = −𝑐1𝑥2 + 𝑐1𝑥̇𝑑1 + 𝑥̈𝑑1                                                                (54) 

Selected 𝑒2 as the trajectory tracking error, between the actual state 𝑥2 and the virtual controller variable 

for the first error subsystem 𝛼1 defined as 

𝑒2 = 𝑥2 − 𝛼1                                                                          (55)                                                                                                                                

The following equation can be found using the equation 

𝑥2 = 𝑒2 + 𝛼1                                                                          (56)                                                                                                                                

Taking the time derivative of equation (55) 

𝑒2̇ = 𝑥2̇ − 𝛼1̇                                                                          (57)                                                                                                                               

Sub the Equation and from Equation of system 

 𝑒̇2 =  
1

𝑀11
 [𝜏1 −  𝑀12 𝑥̇4 − 𝐶1 𝑥2 − 𝐺1 − 𝐹1] + 𝑐1𝑥2 − 𝑐1𝑥̇𝑑1 − 𝑥̈𝑑1                         (58)                                        

The second Lyapunov function is 

 𝑉2 =
1

2
𝑒2

1 +
1

2
𝑒2

2 +  
1

2
 𝛾1

−1 𝐹 ̃1²                                                        (59) 

, where the 𝐹 ̃1 represents the estimation error disturbance  

𝐹 ̃1 =  𝐹1 −  𝐹̂1                                                                       (60) 

𝐹1 is supposed to be unknown external disturbance and 𝐹̂1 the estimation of disturbance 𝐹1 denoted. 
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 Tacking the time derivative of estimation error disturbance  

𝐹 ̃1
̇ =  − 𝐹̂1

̇                                                                           (61) 

Taking the derivation of equation (𝑉2) with respect of time 

𝑉̇2 = 𝑒1𝑒̇1 −  𝑒2𝑒̇2 +  𝛾1
−1 𝐹 ̃1 𝐹 ̃1

̇                                                         (62) 

𝑉̇2 =  −𝑐1𝑒2
1 +  𝑒2 (𝑒1 +

1

𝑀11
[𝜏1 −  𝑀12 𝑥̇4 − 𝐶1 𝑥2 − 𝐺1 − 𝐹1] + 𝑐1𝑥2 − 𝑐1𝑥̇𝑑1 − 𝑥̈𝑑1) −

 𝛾1
−1 𝐹 ̃1 𝐹 ̃1

̇                                                                                                                                          (63) 

Choosing the first control law 

𝜏1 =  𝑀11 [ −𝑒1 − 𝑐1𝑥2 + 𝑐1𝑥̇𝑑1 + 𝑥̈𝑑1 − 𝑐2𝑒2 ] + 𝑀12 𝑥̇4 +  𝐶1 𝑥2 +  𝐺1 + 𝐹1̂                       (64) 

From Equation (60), and sub Equation (64) into (63), can beget:  

𝑉̇2 = −𝑐1𝑒2
1−𝑐2𝑒2

2+𝐹 ̃1  (𝑒2 −  𝛾1
−1𝐹̂1

̇ )                                                   (65) 

Choosing the first update adaptive control law provided by for Equation (65) 

𝐹̂1
̇ =  𝛾1𝑒2                                                                         (66) 

Using the first update adaptive law into Equation (63) gives 

𝑉̇2 = −𝑐1𝑒2
1−𝑐2𝑒2

2                                                               (67) 

Step 2: 

𝑒3 is selected as the trajectory tracking error, which  represents the actual state 𝑥3 and intended 

trajectory 𝑥𝑑3 defined as 

𝑒3 = 𝑥3 − 𝑥𝑑3                                                                   (68)                                                                                                                            

Time derivative of equation (68) 

𝑒̇3 = 𝑥̇3 − 𝑥̇𝑑3                                                                   (69) 

Replace (𝑥̇3 =  𝑥4)from Equation of model (18) 

𝑒̇3 = 𝑥4 − 𝑥̇𝑑3                                                                    (70) 

, and in addition to assigning the virtual controller variable for the second error subsystem ( 𝑥4 =  𝛼2) in 

order to get the error of the tracking velocity, it is written as follows: 

𝑒̇3 = 𝛼2 − 𝑥̇𝑑3                                                                   (71)                                                                                                                          

By using third Lyapunov function 

𝑉3 = 𝑉2 +
1

2
𝑒3

2                                                                  (72)                                                                                                                             

Since the time derivative of 𝑉3 is given by 

𝑉̇3 = 𝑉̇2 + 𝑒3𝑒̇3                                                                        (73)                                                                                                                          

Using equation (67) and equation (71) to get  
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 𝑉̇3 = −𝑐1𝑒2
1−𝑐2𝑒2

2 + 𝑒3(𝛼2 − 𝑥̇𝑑3)                                                  (74)                                                                                

Let's selected the second virtual control. 

𝛼2 = −𝑐3𝑒3 + 𝑥̇𝑑3                                                                        (75) 

By substitution, the equation (75) in  𝑉̇3 to equation becomes: 

𝑉̇3 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3
                                                                 (76)                                                                                                    

The time derivative of second virtual control 

𝛼2̇ = −𝑐3𝑒3̇ +  𝑥̈𝑑3                                                                       (77) 

Sub Equation (70) into Equation  

𝛼2̇ = −𝑐3𝑥4 + 𝑐3𝑥̇𝑑3 + 𝑥̈𝑑3                                                              (78) 

Step3:  

Selected 𝑒4 as the trajectory tracking error, between the actual state 𝑥4 and the virtual controller variable 

for the second error subsystem 𝛼2 defined as 

𝑒4 = 𝑥4 − 𝛼2                                                                          (79)                                                                                                                               

The following equation can be found using the equation 

𝑥4 = 𝑒4 + 𝛼2                                                                          (80)                                                                                                                             

Taking the time derivative of equation (79) 

𝑒4̇ = 𝑥4̇ − 𝛼2̇                                                                          (81)                                                                                                                            

Sub the Equation and from Equation of system 

 𝑒̇4 =  
1

𝑀22
 [𝜏2 −  𝑀21 𝑥̇2 −  𝐶2 𝑥4 −  𝐺2 − 𝐹2] + 𝑐3𝑥4 − 𝑐3𝑥̇𝑑3 − 𝑥̈𝑑3                          (82)              

The second Lyapunov function is 

 𝑉4 = 𝑉2 +
1

2
𝑒2

3 +
1

2
𝑒2

4 +  
1

2
 𝛾2

−1 𝐹 ̃2²                                                     (83) 

, where the 𝐹 ̃2 represents the estimation error disturbance  

𝐹 ̃2 =  𝐹2 −  𝐹̂2                                                                       (84) 

𝐹2 is supposed to be unknown external disturbance and 𝐹̂2 the estimation of disturbance 𝐹1 denoted. 

The derivative of estimation error disturbance  

𝐹 ̃2
̇ =  − 𝐹̂2

̇                                                                             (85) 

Taking the time derivative of equation (𝑉2) 

𝑉̇4 = 𝑉̇2 + 𝑒3𝑒̇3 + 𝑒4𝑒̇4 +  𝛾2
−1 𝐹 ̃2 𝐹 ̃2

̇                                                    (86) 

𝑉̇2 =  −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3

+  𝑒4 (𝑒3 +
1

𝑀22
[𝜏2 − 𝑀21 𝑥̇2 −  𝐶2 𝑥4 −  𝐺2 − 𝐹2] + 𝑐3𝑥4 − 𝑐3𝑥̇𝑑3 −

𝑥̈𝑑3 ) −  𝛾2
−1 𝐹 ̃2 𝐹 ̃2

̇                                                                                                         (87) 
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 Choosing the second control law 

𝜏2 =  𝑀22 [ −𝑒3 − 𝑐3𝑥4 + 𝑐3𝑥̇𝑑3 + 𝑥̈𝑑3 − 𝑐4𝑒4 ] + 𝑀21 𝑥̇2 + 𝐶2 𝑥4 + 𝐺2 + 𝐹2̂             (88) 

From Equation (84), and sub Equation (88) into (87) we will get:  

𝑉̇4 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3

−𝑐4𝑒2
4+𝐹 ̃2  (𝑒4 −  𝛾2

−1𝐹̂2
̇ )                                  (89) 

Choosing the second update adaptive control law provided by for Equation (89) 

𝐹̂2
̇ =  𝛾2𝑒4                                                                       (90) 

Using the second update adaptive law into Equation (87) gives 

𝑉̇4 = −𝑐1𝑒2
1−𝑐2𝑒2

2−𝑐3𝑒2
3

−𝑐4𝑒2
4                                                         (91) 

Using the control laws stated in Equations (64) and (88), utilizing the most updated adaptive control 

rules, which are used to estimate the applied disturbances, given by Equation (66), and (90) could 

guarantee the asymptotic stability of adaptive backstepping controlled prosthetic knee. Fig. 5 shows the 

schematic diagram of ABC for prosthetic knee. 

 

FIG. 5. ADAPTIVE BACKSTEPPING CONTROL FOR A PROSTHETIC KNEE. 

V. SIMULATION RESULTS 

MATLAB/SIMULINK simulation is used to evaluate the controller and analyze the performance of the 

Backstepping and Adaptive Backstepping controlled system. As shown in Table I. the values of the 

system parameters for a prosthetic knee with a 2-DOF joint are provided. The Trial-and-Error values of 

the controllers design parameters are listed in Table II. 
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TABLE II. TRIAL-AND-ERROR VALUES OF THE CONTROLLER BS AND ABS DESIGN PARAMETERS 

Design parameters BS  ABS  

𝑐1 9 11 

𝑐2 9 12 

𝑐3 9 15 

𝑐4 9 20 

 

Fig. 6 and 7 show the drive torque of each joint. Controlling torques 𝜏1 and 𝜏2  are restricted within the 

range [100, -100] N.m. The results show that with the Backstepping and Adaptive Backstepping control 

the system can tracks the desired trajectory when there are disturbances in the system. RMS error value 

in Adaptive Backstepping control is 1.403× 10-4 for link1 and 5.072× 10-5 for link2 is reasonably small 

to the extent to verify a good convergence. This proves that ABS controller is much better for enhances 

the tracking performance and could guarantee the asymptotic stability. 

  

(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 6. CONTROL SIGNAL APPLIED TO THE FIRST LINK.  

  

(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 7. CONTROL SIGNAL APPLIED TO THE SECOND LINK.  

Fig. 8 and 9 depict the actual the actual position converges to the desired trajectory. The comparison 

was made between the two controllers Backstepping and Adaptive Backstepping. The proposed ABC 

greatly improves the position tracking compared to the BC where the tracking position error has been 

greatly reduced. To comparison between BC and ABC, at the control action consumptions. It was found 

that the position error of the prosthetic knee in Adaptive Backstepping control is by 1.16% at link 1 and 

1.65% at link 2 to compression with BC at peak, respectively.  
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(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 8. POSITION TRAJECTORY FOR LINK 1. 

  

(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 9. POSITION TRAJECTORY FOR LINK 2. 

Fig. 10 and 11 represent velocity tracking for the both joints with the controllers. This proves that 

Adaptive Backstepping controller is much better for enhances the tracking performance and could 

guarantee the asymptotic stability.  
 

 
 

(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 10. VELOCITY TRAJECTORY FOR LINK 1.  
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(a) Backstepping control (b) Adaptive Backstepping control 

FIG. 11. VELOCITY TRAJECTORY FOR LINK 2.  

Table III show the value of Root Mean Square (RMS) error and Enhancement rate of position for BSC 

and ABSC. 

TABLE III. VALUE OF RMS AND ENHANCEMENT RATE FOR BSC AND ABSC IN POSITION 

RMS 
Trial-and-Error 

BSC 

Trial-and-Error 

ABSC 
Enhancement rate 

Link 1 0.02744 1.403×10-4  94.887% 

Link 2 0.06229 5.072 ×10-5 99.1857% 

Both links 0.08974 1.911×10-4  99.7871% 

 

VI. CONCLUSIONS  

In this paper presented to design and developed for a 2-DOF prosthetic knee using the Backstepping 

and Adaptive Backstepping control approach. According to the Lagrangian dynamic principle, the 

dynamic model of the prosthesis knee was derived. Backstepping and Adaptive Backstepping control 

scheme was proposed for the prosthetic knee to solve its nonlinearity, uncertainty and external 

disturbance problems. The stability of the control scheme is proved by Lyapunov stability theorem. The 

simulation found that the quantitative comparison between the two controllers, showed significant 

improvement in results in position tracking. The comparison between Backstepping control and 

Adaptive Backstepping control, at the control action consumptions. It was found that the position error 

of the prosthetic knee in Backstepping control is by 9% at link 1 and 7.4% at link 2 compared with 

desired trajectory, while in Adaptive Backstepping control is by 1.16% at link 1 and 1.65% at link 2 

compared with desired trajectory. When comparing between Backstepping control and Adaptive 

Backstepping control, the improvement rate was 7.84 at link 1 and 5.75 at link 2, the proposed Adaptive 

Backstepping control, it may be concluded, is more robust against this perturbation and to deal with 

uncertainty. In future work using optimization algorithms to tune the controller parameters such as BAT 

Algorithms, Gray Wolf optimization techniques, and implementing the developed controllers on the 

real system hardware to obtain accurate results and good performance. 
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