Data Dependence of Modified S **– Iteration for Asymptotically Quasi pseudocontractive operator**

البيانات المعتمدة لتكرار للتطبيق الشبه الكاذب المحاذي

Shahla Abd AL-Azeaz Khadum

Directorate – General of Education Baghdad's Karkh Third/Ministry of Education. E-mail: ouss-kadd @ yahoo.com

Abstract

In this paper, we prove a convergence result and a data dependence result of modified S -Iteration for uniformly L -lipschitzion and Quasi asymptotically pseudocontractive mapping in Banach space .

Keywords : modified S – Iteration, uniformly L – lipschitzian, Asymptotically Quasi pseudocontractive operator, Data dependence.

المستخلص : في هرا البحث نبسهن نتيجت التقازب ونتيجت البياناث المعتمدة للتكساز من نمط للتطبيق لبشيز المنتظم والتطبيق شبه الكاذب المحاذي في فضاء بناخ

Introduction

Chang $[1]$ introduced one step iterative sequence (Mann iteration) of self mapping in uniformly smooth Banach space E as follows, for any $x_1 \in E$

$$
x_{n+1} = (1 - \overline{\omega}_n)x_n + H^n x_n \quad \forall \ n \ge 1 \tag{i}
$$

Where $\{\overline{\omega}_n\}$ is a sequence in [0,1] and then , he established the convergence result of modified iteration (i) for asymptotically pseudocontractive self mapping . Zhiqun and Guiwen $[2]$ introduced two step iterative sequences (Ishikawa iteration) with error of self mapping in Banach space E as follows, for any $x_1 \in E$

$$
x_{n+1} = (1 - \overline{\omega}_n - \overline{b}_n) x_n + \overline{\omega}_n H^n y_n + \overline{b}_n \vartheta_n
$$

\n
$$
y_n = (1 - \xi_n - \varepsilon_n) x_n + \xi_n H^n x_n + \varepsilon_n \sigma_n, \forall n \ge 1
$$
 (ii)

Where $\{\varpi_n\}$, $\{\xi_n\}$, $\{\mathfrak{b}_n\}$, $\{\varepsilon_n\}$, $\{\vartheta_n\}$ and $\{\sigma_n\}$ under some conditions and then they proved the convergence result of modified iteration (ii) for asymptotically pseudocontractive self mapping.

On the other hand, some authors had studied data dependence for several iterative sequences and diffrent mappings. In [3] Solutz established the data dependence result of Ishikawa method for contraction mappings. In[4] Soltuz and Grosan proved data dependence result for the same iteration when dealing with contractive like operators.

Preliminaries

Definition $(2, 1)$: [5]

Let G is a nonempty subset of Banach space E. A mapping $H: G \rightarrow G$ is said to be (*i*)Uniformly L – Lipschitzian if $\exists L > 0$ such that $||H^n x - H^n y|| \le L ||x - y||$ (1) $\forall x, y \in G$ and $\forall n \in N$.

$Definition(2.2): [2]$

Let E is a real Banach space with the dula space E^* and the mapping $J: E \to 2^{E^*}$ is defined by

 $J(x) = \{ f \in E : \langle x, f \rangle = ||f|| ||x||, ||f|| = ||x|| \}$, $\forall x \in G$ is said to be normalized duality mapping.

$Definition (2.3): [1]$

Let G is a nonempty subset of Banach space E. A mapping $H: G \rightarrow G$ is said to be (*i*) Asymptotically pseudocontractive if \exists a sequence $\{\hbar_n\} \subset [1, \infty[$ and Such that

$$
\langle H^n x - H^n y, j(x - y) \rangle \le \hbar_n \|x - y\|^2 \tag{2}
$$

 $\forall x, y \in G$ and $\forall n \in N$.

(*ii*) Asymptotically quasi pseudocontractive if $F(H) = \{x : x \in G : Hx = x\} \neq \emptyset$ and sequence $\{\hbar_n\}$ \subset $[1, \infty)$ with $\hbar_n \rightarrow 1$ as $n \rightarrow \infty$ such that

 $\langle H^n x - \rho, j(x - \rho) \rangle \leq \hbar_n ||x - \rho||^2$ (3) $\forall x \in G$, $\rho \in F$ and $\forall n \in N$.

Definition (2.4) : [6]

Let G is a nonempty and convex subset of Banach space E and $H: G \rightarrow G$ is a mapping for any $x_1 \in E$, the sequence $\{x_n\}$ define by

 $x_{n+1} = (1 - \overline{\omega}_n) H^n x_n + \overline{\omega}_n H^n$

 $y_n = (1 - \xi_n) x_n + \xi_n H^n x_n, \forall n \ge 1$ (4) Is said to be S -iteration sequence ,where $\{\varpi_n\}$, $\{\xi_n\}$ are sequences in [0,1].

Definition (2.5) : [7]

Let G is a nonempty subset of Banach space E and H, \tilde{H} : $G \rightarrow G$ are two mappings. A mapping \widetilde{H} is an approximate mapping of E, if $\forall x \in G$ and for $\Upsilon > 0$, then $\|Hx - \tilde{H}x\| \leq Y$ (5)

Lemma $(2.6) : [8]$

Let E is a real Banach space and $J: E \to 2^{E^*}$ is the normalized duality mapping, then $\langle x, j(y) \rangle \le ||x|| ||y|| \quad \forall x, y \in G$ and $\forall j(x) \in J(x)$.

Lemma $(2.7): [9]$

Let $\{\tau_n\}$ is a bounded sequence in $[0, \infty)$, $\mu : [0, \infty) \to [0, \infty)$ continuous strictly increasing map with φ (0) = 0 and $\exists n_0 \in N$ such that

 $\tau_{n+1} \leq (1 - \omega) \tau_n + \omega \tau_{n+1} - \omega \frac{\gamma(\tau_{n+1})}{\tau_n}$ $rac{(t_{n+1})}{\tau_{n+1}} +$

Where $\omega \in (0,1)$, $\beta_n \ge 0$, for all $n \in N$ and $\lim_{n \to \infty} \beta_n = 0$. Then $\lim_{n \to \infty} \tau_n = 0$.

 $Lemma (2.8) : [4]$

Let $\{\eta_n\}$ is a bounded sequence in $[0, \infty)$ $\exists n_0 \in N$, for all $n \geq n_0$, we have $\eta_{n+1} \leq (1 - d_n) \eta_n +$ Where $d_n \in (0,1)$, $\forall n \in N$, $\sum_{n=0}^{\infty} d_n = \infty$ and $e_n \ge 0$. Then

Main Theorem

Theorem $(3, 1)$:

Let G is a nonempty convex and bounded subset of Banach space E and $H: G \rightarrow G$ is uniformly L-lipschitzian with $L \ge 1$ and asymptotically quasi pseudocontractive mapping with a sequence $\hbar_n \subset [1, \infty[$ and $\hbar_n \to 1$ as $n \to \infty$. Let $\{x_n\}$ is a sequence in (4) satisfying (i) $\overline{\omega}_n \to 0$ as $n \to \infty$ and $\xi_n \to 0$ as $n \to \infty$ (ii) $\overline{\omega}_n + \xi_n = 1$, $\forall n \in N$. (*iii*) $\sum_{n=1}^{\infty} \overline{\omega}_n = \infty$ and for a fixed $\omega \in (0,1)$ such that $(1 - \overline{\omega}_n) < \omega$, $\forall n \in \mathbb{N}$.

If $F(H) \neq \emptyset$, \exists continuous strictly increasing map $\mu : [0, \infty) \to [0, \infty)$ with $\mu(0) = 0$ such that

$$
\langle H^n x - \rho, j(x - \rho) \rangle \leq \hbar_n \|x - y\|^2 - \mu \|x - \rho\|
$$

$$
\forall j(x - \rho) \in J(x - \rho), \rho \in F. \text{ Then } \|x_n - \rho\| = 0
$$

Proof:

Let $\rho \in F(H)$, from condition (4) and condition (1), we get $\|H^n y_n - \rho\| \leq L \|y_n - \rho\|$ $= L \{ (1 - \xi_n) ||x_n - \rho|| + \xi_n ||(H^n x_n - \rho)|| \}$ $= L \{ (1 - \xi_n) + \xi_n L \} ||(x_n - \rho)||$ $\leq \{ (1 - \xi_n) L + \xi_n L^2 \} ||(x_n - \rho)||$ (6) By using condition (4) , Lemma (2.6) , Lemma (2.7) condition (3) and condition (1) , we obtain

$$
||x_{n+1} - \rho||^2 = \langle x_{n+1} - \rho, j(x_{n+1} - \rho) \rangle
$$

\n
$$
= \langle (1 - \varpi_n) (H^n x_n - p) + \varpi_n H^n y_n - \rho, j(x_{n+1} - \rho) \rangle
$$

\n
$$
= (1 - \varpi_n) \langle H^n x_n - H^n x_{n+1} + H^n x_{n+1} - \rho, j(x_{n+1} - \rho) \rangle
$$

\n
$$
+ \varpi_n \langle H^n y_n - \rho, j(x - \rho) \rangle
$$

\n
$$
\leq (1 - \varpi_n) \langle H^n x_n - H^n x_{n+1}, j(x_{n+1} - \rho) \rangle
$$

\n
$$
+ (1 - \varpi_n) \langle H^n x_{n+1} - \rho, j(x_{n+1} - \rho) \rangle
$$

\n
$$
+ \varpi_n \langle H^n y_n - \rho, j(x_{n+1} - \rho) \rangle
$$

\n
$$
\leq (1 - \varpi_n) ||H^n x_n - H^n x_{n+1}|| ||x_{n+1} - \rho||
$$

\n
$$
+ (1 - \varpi_n) \{h_n ||x_{n+1} - \rho|| - \mu ||x_{n+1} - \rho||
$$

\n
$$
+ \varpi_n L ||y_n - \rho || ||x_{n+1} - \rho||
$$

\nPutting (6) into (7), imply that
\n
$$
||x_{n+1} - \rho||^2 \leq (1 - \varpi_n) ||H^n x_n - H^n x_{n+1}|| ||x_{n+1} - \rho||
$$
\n(7)

$$
||x_{n+1} - \rho||^2 \le (1 - \omega_n) ||H''x_n - H''x_{n+1}|| ||x_{n+1} - \rho||
$$

+ $(1 - \omega_n)h_n ||x_{n+1} - \rho||^2 - (1 - \omega_n) \mu ||x_{n+1} - \rho||$
+ $\omega_n \{ (1 - \xi_n) L + b_n L^2 \} ||x_n - p|| ||x_{n+1} - \rho||$
 $||x_{n+1} - \rho||^2 \le ||x_{n+1} - \rho|| \{ (1 - \omega_n) ||H''x_n - H''x_{n+1}||$

$$
+(1 - \varpi_n) \hbar_n \|x_{n+1} - p\| - (1 - \varpi_n) \frac{\mu \|x_{n+1} - p\|}{\|x_{n+1} - p\|} + \varpi_n \left\{ (1 - \xi_n) L + \xi_n L^2 / \|x_n - p\| \right\}
$$

Since $\overline{\omega}_n \to 0$ as $n \to \infty$ and $\xi_n \to 0$ as $n \to \infty$, then $\overline{\omega}_n \{ (1 - b_n)L + b_n L^2 \} = \overline{\omega}_n L - \overline{\omega}_n \xi_n L + \overline{\omega}_n \xi_n L^2 < (1 - \omega)$, $\omega \in (0, 1)$ and $(1 - \overline{\omega}_n)$ *we get*

$$
||x_{n+1} - \rho|| \le (1 - \omega) \qquad ||x_n - \rho|| \qquad + \qquad \omega \qquad \qquad \hbar_n ||x_{n+1} - \rho|| - \omega \frac{\mu ||x_{n+1} - \rho||}{||x_{n+1} - \rho||}
$$

 $+ \omega \| H^n x_n - H^n x_{n+1} \|$

Since G is bounded set in E and $||H^nx_n||$, $||H^ny_n||$ and $||x_n||$ in G , then $||H^nx_n||$, $||H^ny_n||$ and $||x_n||$ are bounded sequences.

From condition (4), $(\overline{\omega}_n + \xi_n) = 1$, $\overline{\omega}_n \to 0$ as $n \to \infty$ and $\xi_n \to 0$ as $n \to \infty$, then $||x_{n+1} - x_n|| = (1 - \overline{\omega}_n) ||H^n x_n|| + \overline{\omega}_n ||H^n y_n|| + (1 - \overline{\omega}_n) ||x_n|| + \overline{\omega}_n ||x_n||$ $= \xi_n \|H^n x_n\| + \varpi_n \|H^n y_n\| + \xi_n \|x_n\| + \varpi_n \|x_n\| \to 0 \text{ as } n \to \infty$ (8)

Since H is uniformly L -lipschitzian ,then it is uniformly equi-continuous [10] and condition (8) lead to

$$
\lim_{n \to \infty} ||H^n x_n - H^n x_{n+1}|| = 0
$$

We set $\tau_n = ||x_n - \rho||$ (9)

 $B_n = ||H^n x_n - H^n x_{n+1}||$

Since $\omega \in (0,1)$ and $\hbar_n \to 1$ as $n \to \infty$, then $\exists n_0 \in N$ such that $\omega \hbar_n \in (0,1)$ and use lemma (2.7) we obtain $\lim_{n\to\infty} \tau_n = 0$

By using theorem (1) , we establish the data dependence theorem.

Theorem (3.2):

Let E, G and H as in the theorem (1) and \tilde{H} is an approximate operator of H satisfying $||Hx - \tilde{H}x|| \leq Y$, for all $x \in G$ and for $Y > 0$. Let $\{x_n\}$ is a sequence in (4) and define an iteration sequence { \tilde{x}_n } as follows, for any $\tilde{x}_1 \in E$

$$
\tilde{x}_{n+1} = (1 - \varpi_n)\tilde{x}_n + \varpi_n \tilde{H}^n \tilde{y}_n \n\tilde{y}_n = (1 - \xi_n)\tilde{x}_n + \xi_n \tilde{H}^n \tilde{x}_n
$$
\n(10)

where $\{\overline{\omega}_n\}$, $\{\xi_n\}$ be sequences in (0,1) satisfying: (i) $\overline{\omega}$ $(ii) \ \overline{\omega}_n \to 0 \ \text{as} \ \ n \to \infty \ \text{and} \ \xi_n \to 0 \ \text{as} \ \ n \to \infty.$ (iii) $\sum_{n=1}^{\infty} \overline{\omega}_n$ If $H\rho = \rho$ and $\widetilde{H} \widetilde{\rho} = \widetilde{\rho}$ such that $\widetilde{\chi}_n \to \widetilde{\rho}$ as $n \to \infty$. Then $\|\rho - \widetilde{\rho}\| \leq \frac{L}{\epsilon}$ $\frac{1 + 2i}{1 - k}$. where $Y > 0$ is a fixed number and $\kappa \in (0,1)$. **Proof:** From condition (10) lemma (26) and condition (3) we get

From condition (10), lemma(2.6) and condition (3), we get
\n
$$
||x_{n+1} - \tilde{x}_{n+1}||^2 = \langle x_{n+1} - \tilde{x}_{n+1}, j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
= \langle (1 - \varpi_n)(H^n x_n - \tilde{H}^n \tilde{x}_n) + \varpi_n (H^n y_n - \tilde{H}^n \tilde{y}_n), j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
= (1 - \varpi_n) \langle (H^n x_{n+1} - H^n \tilde{x}_{n+1}), j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
+ (1 - \varpi_n) \langle (H^n x_n - H^n x_{n+1}), j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
+ (1 - \varpi_n) \langle H^n \tilde{x}_{n+1} - \tilde{H}^n \tilde{x}_n), j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
+ (1 - \varpi_n) \langle H^n y_n - \tilde{H}^n \tilde{y}_n, j(x_{n+1} - \tilde{x}_{n+1}) \rangle
$$
\n
$$
\leq (1 - \varpi_n) \{ h_n ||x_{n+1} - \tilde{x}_{n+1}||^2 - \mu ||x_{n+1} - \tilde{x}_{n+1}|| \}
$$
\n
$$
+ (1 - \varpi_n) ||H^n x_n - H^n x_{n+1}|| ||x_{n+1} - \tilde{x}_{n+1}||
$$
\n
$$
+ (1 - \varpi_n) ||H^n \tilde{x}_{n+1} - \tilde{H}^n \tilde{x}_n || ||x_{n+1} - \tilde{x}_{n+1}||
$$
\n
$$
+ \varpi_n ||H^n y_n - \tilde{H}^n \tilde{y}_n || ||x_{n+1} - \tilde{x}_{n+1}||
$$

Hence

$$
||x_{n+1} - \tilde{x}_{n+1}|| \le (1 - \varpi_n) \hbar_n ||x_{n+1} - \tilde{x}_{n+1}|| - (1 - \varpi_n) \frac{\mu ||x_{n+1} - \tilde{x}_{n+1}||}{||x_{n+1} - \tilde{x}_{n+1}||} + (1 - \varpi_n) ||H^n x_n - H^n x_{n+1}|| + (1 - \varpi_n) ||H^n \tilde{x}_{n+1} - \tilde{H}^n \tilde{x}_n|| + \varpi_n ||H^n y_n - \tilde{H}^n \tilde{y}_n||
$$
\n
$$
||\tilde{x}_n|| \le (1 - \varpi_n) ||H^n y_n - \tilde{H}^n \tilde{y}_n|| \tag{11}
$$

From conditions (1) and (5), we get
\n
$$
||H^n y_n - \widetilde{H}^n \widetilde{y}_n|| = ||H^n y_n - H^n \widetilde{y}_n|| + ||H^n \widetilde{y}_n - \widetilde{H}^n \widetilde{y}_n||
$$
\n
$$
\leq L ||y_n - \widetilde{y}_n|| + Y
$$
\nFrom conditions (4) (10) and (1) then

$$
||y_n - \tilde{y}_n|| \le ||(1 - \varpi_n)(x_n - \tilde{x}_n) + \varpi_n(H^n x_n - \tilde{H}^n \tilde{x}_n)||
$$

\n
$$
\le (1 - \varpi_n) ||x_n - \tilde{x}_n|| + \varpi_n ||H^n x_n - \tilde{H}^n \tilde{x}_n||
$$

\n
$$
\le (1 - \varpi_n) ||x_n - \tilde{x}_n|| + \varpi_n ||H^n x_n - H^n \tilde{x}_n||
$$

\n
$$
+ \varpi_n ||H^n \tilde{x}_n - \tilde{H}^n \tilde{x}_n||
$$

\n
$$
\le (1 - \varpi_n) ||x_n - \tilde{x}_n|| + \varpi_n L ||x_n - \tilde{x}_n|| + \varpi_n Y
$$

\nPutting (13) into (12), then
\n
$$
||H^n y_n - \tilde{H}^n \tilde{y}_n|| \le (1 - \varpi_n) L ||x_n - \tilde{x}_n|| + \varpi_n L^2 ||x_n - x_n||
$$
\n(13)

Hence

$$
\varpi_n \|H^n y_n - \widetilde{H}^n \widetilde{y}_n\| \le (1 - \varpi_n) L \|x_n - x_n\| + \varpi_n^2 L^2 \|x_n - \widetilde{x}_n\|
$$

+L $\varpi_n^2 Y + \varpi_n Y$

$$
\le {\varpi_n (1 - \varpi_n) L + \varpi_n^2 L^2} \|x_n - \widetilde{x}_n\| + L \varpi_n^2 Y + \varpi_n Y
$$
 (14)
By using conditions (1) and (5) we get

$$
||H^n \tilde{x}_{n+1} - \tilde{H}^n \tilde{x}_n|| = ||H^n \tilde{x}_{n+1} - H^n \tilde{x}_n + H^n \tilde{x}_n - \tilde{H}^n \tilde{x}_n||
$$

\n
$$
\leq ||H^n \tilde{x}_{n+1} - H^n \tilde{x}_n|| + ||H^n \tilde{x}_n - \tilde{H}^n \tilde{x}_n||
$$

\n
$$
\leq L ||\tilde{x}_{n+1} - \tilde{x}_n|| + Y
$$
\n(15)

‖ ̃ ̃ ‖ = ‖ ̃ ‖ ‖ ̃ ‖ + ‖ ̃ ‖ () Putting () into () then ()‖ ̃ ̃ ̃ ‖ () ‖ ̃ ‖ () ‖ ̃ ‖ () () Putting conditions () and () in condition () we get ‖ ̃ ‖ *() +() + ‖ ̃ ‖ * () + } ‖ ̃ ‖ () ‖ ̃ ‖ ‖ ̃ ‖ + () ‖ ‖ () ‖ ̃ ‖ Using the same of the proof in conditions () and () in the theorem () then ‖ ̃ ‖ and ‖ ‖ ‖ ̃ ‖ *() +() + ‖ ̃ ‖ * ()L + L ²} ‖ ̃ ‖ * + ‖ ̃ ‖ * () }‖ ̃ ‖ ‖ ̃ ‖ () ‖ ̃ ‖ () ‖ ̃ ‖ Since then such that (L L – L) () (0,1) ‖ ̃ ‖ () ‖ ̃ ‖ ()‖ ̃ ‖ 2 () ‖ ̃ ‖ () () () Denote that =‖ ̃ ‖ , = () (0,1) () ()

It follows from lemma (2.8) that

 $0 \leq \lim_{n \to \infty} \sup ||x_n - \tilde{x}_n|| \leq \lim_{n \to \infty} \sup \frac{(LY + 2Y)}{(1 - \kappa)}$ $(1-\kappa)$ From theorem(1) we have that $\lim x_n = \rho$, thus, using this fact together with the assumption $\lim_{n \to \infty} \tilde{x}_n = \tilde{\rho}$, we obtain

$$
\|\rho - \tilde{\rho}\| \le \frac{(LY+2Y)}{(1-\kappa)} \quad , \ Y > 0 \ \text{and} \ \kappa \in (0,1)
$$

Conclusions

The convergence result for modified S – Iteration has been proved when applied to the mapping which that $H: G \to G$ is quasi asymptotically pseudocontractive in a real Banach space. Also the data Dependence result of modified S - Iteration has been established when applied to the mapping which that $H: G \rightarrow G$ is quasi asymptotically pseudocontractive and the mapping $\tilde{H}: G \to \tilde{G}$ is an approximate operator of H satisfying $||Hx - \tilde{H}x|| \leq Y$, $\forall x \in G$ and for $Y > 0$.

Reference:

- [1] SS. Chang , Some Results for Asymptotically Nonexpansive Mappings .Proc. Am. Math. Soc. 129,pp.(845-853),2001.
- [2] X. Zhiqun and Lv., Guiwen , Strong Convergence Theorems For Uniformly L-Lipschitzian Asymptotically Pseudocontractive Mappings in Banach Spaces .J.of Inequalities and Appl.,2014.
- [3] S.M. Soluts , Data Dependence for Ishikawa Iteration Lecturas Matematicas,25(2):149-155, 2004.
- [4] S.M. Soltuz and T. Grosan ,Data Dependence for Ishikawa Iteration When Dealing with Contractive Like Operators , Hindawi Publishing Corporation,2008.
- [5] A. Rafiq, M.A. Ana and F. Sofonea , An Iterative Algorithm for Two Asymptotically Pseudocontractive Mappings .Int J.Open Problems Compt.Math.,Vol.(2),No.(3),2009.
- [6] G.S. Saluja , On the Convergence of Modified S-Iteration Process for Generalized Asymptotically Quasi –Nonexpansive Mappings in CAT(0) Spaces. Functional Analysis, Approximation and Computation ,Vol.(6),No.(2).,pp.(29-38),2014.
- [7] V. Berinde, Iteration Approximation of Fixed Points. Berlin, Germany: Springer; 2007.
- [8] Alao M. A., Modified Noor Iterative for Three Asymptotically Pseudocontractive Maps , Int. J. Open Problems Compt. Math .,Vol. 6,No.1,2013.
- [9] S. M. Soltus and B.E. Rhoades, Characterization For The Convergence Of Krasnoselskij Iteration For Non- Lipschitizian Operatotors ,International J. of Math. And Math .Science , Vol.(10),No.(1155),2008.
- [10] Y.J. Cho, J.K. Kim and H.Y. Lan, Three Step Iterative Procedure with Errors for Generalized Asymptotically Quasi –Nonexpansive Mappings in Banach Spaces Taiwanese J. of Math.,Vol.(12), No.(8),pp.(2155-2178),2008.