Journal University of Kerbala, Vol. 15 No.1 Scientific . 2017

New Properties of T_n – SPACES

 $T_{\scriptscriptstyle D}$ – خصائص جدیده للفضاءات

Bushra Kadum Awaad

* Department of Mathematics, College of Education, Al-Mustansiryah University

Abstract:

The main purpose of this paper is to study T_{p} - space and we will given the relation between T_D - space and T0 - spaces, T0 - Alexandroff spaces Also ,som other properties of T_D - spaces are proved.

المستخلص: T_D البحث هو دراسة الفضاء T_D وسوف نقوم بتقديم العلاقة بين الفضاءات و T_D و الفضاءات -TD و وفضاءات الكيساندروف - TD كذلك بعض خصائص الفضاءات T_D وستبرهن .

1- Introduction:

The concept of T_p - spaces were introduced and studied by [1] . in order to extend many of the properties of locally closed sets introduced and investigated by [2]. in this work, we study the relationships between the $T_{\scriptscriptstyle D}$ - spaces, T0-spaces and T0- Alexandoffspaces . further we prove that the property of being $T_{\scriptscriptstyle D}$ - spaces is atopological property , but the containuous image of a $T_{\scriptscriptstyle D}$ spaces is not necessarily a T_D - spaces . Also several other properties of T_D - spaces are proved.

2- Basic Definitions, Remarks and Examples:

In this section, we recall the basic definitions, remarks and examples needed in this work.

Definition (2.1):[1]

Let (X,T) be a topological space, Then X is called a T_D space if every point (singleton set) is locally closed.

Definition (2.2):[2]

Let (X, τ) be a topological spaces X is called a $T\frac{1}{2}$ - space if every point is open.

Definition (2.3):[2]

Let (X, τ) be a topological spaces let $S \subseteq X$ we say that S is locally closed if $S = A1 \cap A2$ where A1 is open and A2 is closed.

Remarks and Examples (2.4):

- (i) Every open set is locally closed also every closed set is locally closed.
- (ii) Every T½ spaces is a T_D space let X be a T½ space let $x \in X$ now $\{x\}$ is either open or closed so $\{x\}$ is locally closed which means that X is a T_D - space
- (iii) (IR, Tu) is a T_D space (Tu is the usual topology on IR) because (IR, Tu) is a T1-space hence it is a $\ T^{1/2}$ - space therefore (IR,,Tu) is a $\ T_{D}$ - space

Journal University of Kerbala, Vol. 15 No.1 Scientific . 2017

3. Main Results:

In this section, we state and prove several new properties of $T_{\scriptscriptstyle D}$ - spaces .

proposition (3.1):

Every T_D - space is a T0 - space.

Proof:

Let (X, τ) be a T_D - space let $x \in X$, $\{x\}$ is locally closed now every locally closed set is λ -closed [2] this means that every singleton is λ -closed in [3], it was proved that X is a T0-space iff every singleton is λ -closed hence X is a T0-space before we state the next proposition we recall the following definition

Definition (3.2)[5]

Let (X, τ) be a topological spaces X is called Alexandroff space if every intersection of open sets is again open .

proposition (3.3):

Every T0 - Alexandroff space is a T_D - space.

Proof:

Let X be a T0 - Alexandroff space, let $x \in X$ now $x \in \{ \bar{x} \} = \text{closure of } \{x\}$ and $x \in \text{ker}\{x\} = \text{the intersection of all open sets containing } \{x\}$ see [3].

so $x \in \ker\{x\} \cap \{\bar{x}\}$ we will prove that $\{x\} = \ker\{x\} \cap \{\bar{x}\}$ suppose that $y \in \ker\{x\} \cap \{\bar{x}\}$, $y \neq x$ since $y \in \ker\{x\}$, every neighborhood of x contains y now $y \in \{\bar{x}\}$, so every neighborhood of y contains x now this is impossible for two distinct points in a T0 – space (recall that x is a T0 – space if given $x \neq y$, then there exists a neighborhood containing one of them but not the other) hence $\{x\} = \ker\{x\} \cap \{\bar{x}\}$ which means that every singleton is locally closed therefore X is a T_D – space.

Remark (3.4):

Both T½ and T0 – alexandroff imply $T_{\scriptscriptstyle D}$, But there is no relation between T½ and T0 – alexandroff spaces because

- (i) (IR,Tu) is T½ but is not alexandroff consider \bigcap_{N}^{∞} (-1/n, 1/n) this intersection = {0} which is not open.
- (ii) $X = \{a,b,c\}$, $T = \{\emptyset, X, \{a\}, \{a,b\}\}$ now (X,T) is a T0 alexandroff space but (X,T) is not $T^{1/2}$ (the point $\{b\}$ is neither open nor closed)

proposition (3.5):

the continuous image of a $T_{\scriptscriptstyle D}$ - space , is not necessarily a $T_{\scriptscriptstyle D}$ - space .

Proof.

Consider I_{\Re} : (IR, Tu) \rightarrow (IR, Ti) (Ti is the indiscrete topology on IR, and I_{\Re} is the identity on IR now I_{\Re} is continuous and onto (IR,Tu) is a T_D - space but (IR,Ti) is not a TO-space hence it is not a T_D - space.

Journal University of Kerbala, Vol. 15 No.1 Scientific . 2017

proposition (3.6):

the property of being $T_{\scriptscriptstyle D}$ is a topological property

Proof:

Let X be a T_D - space and let $f: X \to Y$ be a homomorphism let $y \in Y$ and $x \in X$ such that y = f(x) now X is a T_D - space hence $\{x\}$ is locally closed hence $\{x\} = U \cap V$, where U is open in X and V is closed in X now y = f(x), then $= f(U \cap V) = f(U) \cap f(V)$ now f(U) is open and f(V) is closed in Y hence $\{y\}$ is locally closed which means that Y is T_D - space \blacksquare

4. References:

- [1] C .E. Aull and W. J .Thorn , "separation axioms between T0 and T1" , Indagationesmath . 24 (1962) , 26-37 .
- [2] N. Boubaki, "General Topology", part 1, Addision-Wesley, Reading. Mass, 1966.
- [3] -, H . J . Mustafa , " $T\frac{1}{2}$ spaces ", Journal of the college of Education , AL Mustansiriyah University ,(2002) .
- [4] Hadi J Mustafa, and Awaad , B . K ., "Certain properties of λ closed spaces ", accepted in the Journal of the University of karbala 2016.
- $\cite{Mustafa}$, and A . AL . Badeery " $\,$ Al exandroff Spaces ", $\,$,M.sc Thesis , Kufa University , 2011.