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ABSTRACT
In this paper, we give some definitions and properties of the width distance and
find the Hosoya polynomials, Wiener indices, and the average distances of some special
cog-graphs with respect to the width distance.
Keyword: Width distance, Hosoya polynomial, Wiener index, average distance, cog-
graphs.
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1. Introduction:

Because of the development of parallel architectures for interconnection
computer networks, there has recently been interest in generalizations of the distance
concept, for examples, the n-distance [1], Steiner distance [5], and width distance [2].

In [2] A. S. Aziz obtained Hosoya polynomials of the width distance of some
special graphs and some compound graphs. It would be interesting to compute this
polynomial for various graphs and to study its properties. It would also be interesting to
see if this object yields any useful information in chemistry , group theory , or computer
science. For more information about these concepts and their relation to networks , see
the article of Hsu [6].

Let u and v be any two distinct vertices in a connected graph G, define the
container C(u,v) as a set of vertex-disjoint paths between vertices u and v, i.e., any two
paths in C(u,v) have only u and v in common. The container width w = w(C(u,Vv)), is the
number of paths in the container, i.e., w(C(u,v)) = | C(u.v) |. The length of a container
I = I(C(u,v)) is the length of the longest path in C(u,v). For a fixed positive integer w,
define the width distance (w-distance) between u and v ([2],[7]) as:

dy, (u,V|G) = &Li,g) I(C(u,v)),

where the minimum is taken over all containers C(u,v) of width w. We may denote the
width distance between any two distinct vertices u and v in G by dj,(u,Vv) if there is no
confusion.
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Note that when w = 1, then dj, (u,v) reduces to the usual distance between
vertices u and v which denoted by d(u, V) ([4],[7]). Therefore, in this paper, we take
2 <w <K, inwhich Kk, is the connectivity of G [3].

To define the diameter and radius of any connected graph G with respect to the
width distance , we first define the eccentricity.

The w-eccentricity ey, (v) of the vertex v in a graph G is the greatest possible w-
distance from v to all other vertices of G, that is

e, (V)= max {d;, (u,v)}.

ueV(G)

The w-diameter §,,=5,, (G) of G is defined by

d,, (G) =diam G = VQQ%)EW (v) = V,E%G){dw (u,v)}.

The minimum w-distance m,, = m,, (G) of G is defined by
m,,(G) = min {d, (u,V)}

The w-radius r,=r,,(G) of G is defined by

ro(G)=rad,G= Vg/l(ré)ew(v) .

A vertex v in G is said to be w-central vertex if e, (v)=rad,G, a graph G may
contain more than one w-centeral vertex ,we define the w-center of a graph G,
Z,,(G), as the set of all w-central vertices of G.

It is clear that the w-distance in connected graphs does not satisfy the metric
axioms, because for w>2, d,(u,v) > 2, d,(u,v) =d,, (v,u), but
d,, (u,y)+d,, (y,v) >d,,(u,Vv) is not satisfactory for all vertices u and v of G. To show
that, we take the next example .
Example: Let G be a graph of order 10 and size 12, as shown in Fig.1.1.

°
. u
Fig. 1.1.

We notice that d,(v,y) =2 =d,(u,y), but d,(u,v) =6, so
d;(u, y)+d5(y,v) <dy (u, V).
Moreover, it is clear that for all connected graphs G
e 3§,(G)>5(G), where 5(G) is diameter of G.
e 1,(G)=r(G), where r(G) is radius of G.
Equality holds if w = 1.
Concerning the width minimum distance m, (G) , we have
e m,(G) =2 iff G contains a triangle or a cycle of order 4.

124



Hosoya Polynomials of The Width Distance of Some Cog-Special Graphs

2. Hosoya Polynomial of The Width Distance

Let G be a connected graph of order p, size g, and let w be a fixed positive
integer such that 2<w<k,, and w-diameter is §,. The Wiener index of the w-
distance (w-Wiener index) is the sum of all w-distances in G, that is [2]

W, (G)= >d,(uv), u=v.

u,veV(G)
The Hosoya polynomial with respect to the width distance function dV: (called
w-Hosoya polynomial) is defined by [2]:
Ha(Gix)= 3 x%we),
u,veV(G)
If C,,(G,k)is the number of unordered pairs of distinct vertices that has k w-distance

apart, m,, <k <8, then

B
Hy(Gix) = 2 Cy (G kX",
k=m,,
If w>2, then w-distance is not less than 2, (d, (u,v)>2,w >2).
It is clear that

* d * 6; *
WW(G)=d—XHW(G;X)IX:1= D kCy(G.K),
k=m,,

The average w-distance, p.,(G), of G is defined as :

ha(G) = vv;;(G)/ @ ,

We define the w-Hosoya polynomial of a vertex vin G as :

6W
Ho(V,G;x)= D Cu(v,G,k)x* , for 2<w <Kk,.
k=m,,
where CV: (v,G, k) is the number of vertices in V(G)-{v} that are at w-distance k from
vertex v. We note that
> C,(v,G,k)=2C,(G,k), for m, <k<§, ,and 2<w<K,.

veV(G)
From the previous discussion, we note that

D H, (v,G;X) =2H,(G;X).
veV(G)
Let S be a nonempty subset of V(G), then define

Ho(S:X) =Y H, (v;G;x),
veS
Moreover, we define CV: (§,G, k) as the number of pairs {u,v} of vertices of S such that
dy, (u,v|G) =k, therefore we define H,,(S,G;x) = ZCV:(QG, k)X
k=2

Finally, if T,,T,, ... , T, is a partition of V(G) , then
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r
2H,(G;x)=>_H, (T;:G;X).
i=1
3. On The Coefficients of The w-Hosoya Polynomial

8,(G)
If Hy(G;X)= Y. C,(G,k)x*,2<w<k, is the w-Hosoya polynomial of a

k=m,,
connected graph G for a fixed w, then the sequence of a graph G invariant
{C;(G,k)}i*w:fz, for a fixed w ,2<w<k,, often possesses some distinguished
properties.

1. The polynomial H\;(G;x) is called unimodal if , for some index h,
C.(G,m,)<C.(G,m, +1) <C,(G,m,, +2) < ... <C_(G,h) >C(G,h+1) > ...>C(G,5,(G)), (3.1)

and it is strong-unimodal if (3.1) holds without equalities.
For example, [2] : IfG =k, x P, is the graph as shown in Fig. 3.1, then

BEDENSE0

Fig.3.1. G

m-1 .

H3(G:x) = 2(m—1)x2 + (5m —6)x% +2 > [2m — 2i —1Jx| @+3/2]

i=2
is strong-unimodal at index h=3.

2. The polynomial HV:(G;X) is called palindromic if

C,.(G,k)=C,,(G,5,,(G)—Kk), for m, <k <5.(G), ..(3.2)
and it is j-semi-palindromic if (4.2) holds for k=m,, +j,m,, + j+1,....8,,(G) -] ,
for some j>1.

For example, [2] : If C,isacycle of order p, p >3, then
p(x P2 L x )2 L xP2 4 xPT) i pis odd,

H,(C.;X) = p/2 ..(3.3)
B X + . +XP2 4 xP) if pis even.
is palindromic if p is odd , and it is 1-semi-palindromic if p is even.

3. The polynomial HV:(G;X) is called monotonically increasing (or
monotonically decreasing ) if C(G,k)<C, (G,k+1) or C,(G,k=>C, (G k+1),
respectively, for all m,, <k <3,(G).

For example, [2] : If Pnf Is the square of a path P, of order m>5, then
[m/2]
H3(P2x)=3(m-2)x*+ > [2m—4k+3]x*,
i=3
is monotonically decreasing.
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4. w-Hosoya Polynomial of Some Cog- Special Graphs:

4.1. Cog-complete Graph K :

Definition: A cog-complete graph K7, is the graph constructed from a complete graph
K,,m>3, [3], of vertex set V={v;,v,, .. ,v,,} with m additional vertex set
U={u,,u,, .. ,u,}, and 2m edges {u,v,,u,v,,:i=1,2, .. ,m}, (v,,=V,), as
shown in Fig. 4.1.

Fig. 4.1. K,

It is clear that p(K ) =2m,q(K},)= %m(m +3), and k, =2. Thus, w must be 1 or 2

only.
Therefore, we take w = 2.

We notice that m, (K¢ )=2, and 8,(KS)=3.

Proposition 4.1.1: 2-Hosoya polynomial of K{,,m>4 is
H,(KS:x) = (m(3Bm—1)/2)x? +(m(m-1)/2)x°.

Proof:Let u and v be any two distinct vertices of , then we consider the following cases:
To find 2-Hosoya polynomial of K ,m >4, there are three cases:

Case (1): If u,ve U, then

(i). If u and v are adjacent to a common vertex of V, then there are two internally
disjoint paths between the vertices uand v of lengths 2 and 3; therefore

d,(u,v) =3.Hence , the number of such pairs of vertices is m.
(i). If u and v are not adjacent to a common vertex of V, then there are two internally
disjoint paths between the vertices uand v, each has length 3, therefore d(u,v)=3.

Hence, the number of such pairs of vertices is %m(m -3).
(i) and (ii) produce the polynomial H;(U,K £;x) = %m(m ~Dx3.

Case (2): If u,veV, then there is always a container C(u,v) of length 2. Thus,

H;(V,Knﬁ;x):%m(m—l)xz.

Case (3): If ueU,and veV, then
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(i). There are two internally disjoint paths between the vertices u and v of lengths 1
and 2, whenuv e E(K), then d,(u,v) =2. Hence, the number of such pairs of vertices

is 2m.
(if). There are two internally disjoint paths between the vertices u and v each of length

2, when uv ¢ E(KE), then d,(u,v)=2. Hence, the number of such pairs of vertices is
m(m-2).
(i) and (i) produce the polynomial  H,(M,KS;x)=m?x*,  where
M={(u,v):ueU,veV}
From three cases, we obtain

H,(KS:x) = (m(Bm—1)/2)x% +(m(m-1)/2) x°.
Corollary 4.1.2: For m>4,

“,c «,cy 9IM=5 . e

W, (K;,)=m(@m-5) /2, and uz(Km):m, and u,(Kf,)<2.25.

Remark:
o Hy(KS;x)=12x% +3x%, W,(K$) =33, and p,(KS)=11/5 .

4.2. Cog-star Graphs:
Definition: [8] A cog-star graph S, is the graph constructed from astar S,,,m> 4, of
vertex set V={v,,v,, .. ,Vo;,V,} with (m-1) additional vertex set
U={u;,u,, .. U, Uy}, and edges {u;v;,; ,u;Vv,,:1=12, ..., m=1}, (V4 =V,)

1y Ym=-21

, as shown in Fig. 4.2.

Fig. 4.2. S¢

It is clear that p(S,)=2m-1, q(S,)=3(m-1), we notice that w = 2 ,
5,(SE)=m—1,and m,(S)=2, m>5.
Theorem 4.2.1: For m>6,
m-2
H, (S5 ;x) = (m —1)[3x3 +x* +xm‘1+22xi} . .(4.2.2)
i=2

Proof: When w = 2, there are four cases:
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Case (1): If u,u" e U,u=u", then there are two internally disjoint paths between uand
u’ having lengths 2 and 4 when u and u’are adjacent to a common vertex of V , then
dy(u,uSs)=4.
The number of such pairs of vertices {u, u’} such that d,(u, u’|Snﬁ) =4 is (m-1).
Also, there are two internally disjoint paths between u and u’ having length 4 and
d(u, u’|Snﬁ—{v1}) when u and u’ are not adjacent to a common vertex of V.
SE{v,})=4,6,8, ... Z{mT_lj then
dy(u,uSS) =d(u,u’Ss—{v,}).

m-1

Let d(u,u’|Sy—{v,}) =k ,for k=4,6,8, ... ZLTJ

It is clear that then d(u,u’

Hence, the number of pairs {u,u’} when u and u’ are not adjacent to a common

vertex of V such that d;(u,u’|8nﬁ):k, for k=4,6,8, ... ZLmT_lj is m-1, except

when m is odd, and d;(u,u’|8nf):m—l, then the number of such pairs {u,u’} is
m-1

2

Thus , from this case, we get
i -3

3

4

x4 + 2

X%+ =x™ 1 if misodd,

Nl

N

N

H3(U, S5 %) = (m-1)

|3
AN

4

x4+ 2

X, if miseven.

ot

N

Case (2): If v,v'eR=V—-{v;},v=V , then there are three internally disjoint paths
between vand V' having lengths 2, d(v,V|S:—{v;}) and 2(m-1) -d(v,V|S; <V, }) .
Thus,

d, (v, v'|S,%) = min[max{2,d(v, VIS v D3} max{2,2(m -1) —d(v, V'S, <{v, )},
max{d(v, V|Ss <viH}.2(m —1) —d(v, V|Sa—<v: )} | .
Since d(v,V'S:—{v,})=2,4,6, ... Z{mT_lJ ,then d,(v,V'S,S) = d(v,V|SS—{v,}).

Let d(v,v’|Sr§—{v1}):k ,for k=2,4,6, ... ZtmT_lJ

Hence, the number of pairs {v,v'} such that d,(v, v'|Snﬁ) =k, for
k=2,4,6, ... ZtmT_lJ is m-1, except when m is odd, and d;(v,v’|8nﬁ):m—1, then

the number of such pairs {v,V'}is mT—l .

Thus , from this case, we get
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3
b

x? +%xm‘1, if misodd,

I

H3(R,S5;X) = (m—1)

|3

-1

x| if mis even.

Ml\)

[y

Case (3): IfueU,and veV —{v,}, then
either there are two internally disjoint paths between the vertices u and v of length 1
and 3 when uv e E(S;,), then dj(u,v[S;5) =3.

It is clear that the number of pairs of vertices {u, v} with uve E(S},) is 2(m-1).
Or there are two internally disjoint paths between the vertices u and v of length 3,
and d(u,v|S;—{v,}) when uveE(S},).

It is clear that d(u,v|Snﬁ—{vl}) :3,5,7,...,2{%J—1, then

d;(u,VIS,5) =d(u, VS ~v;}).

Let d(u,vSS—{v,}) =k, for k:3,5,7,...,ng—1.

Hence, the number of pairs of {uv}, uveE(S;), such that d§(u,v|Sr§)=k, for
m

k:3,5,7,...,2[EJ—1, is 2(m-1), except when m is even and d;(u,v|8n§) =m-1, then

the number of pairs {u,v} is (m-1).
Thus, in this case, we get

3
b

x2*1 if mis odd

LMy

H,(M,SE :x) = 2(m —1)x* + 2(m —1)

-2

]

i 1 1 . .
x2'*1+5xm L if miseven,

i=1

where M={(u,v):ueU,veV-{v}} .

Case (4): There are two internally disjoint paths between v, and u;, 1<i<m-1, that
have length 2 , then d;(vl,ui|8nf)=2, 1<i<m-1, and there are three internally
disjoint paths between v, and v;, 2<i<m, that have length 1, 3, and 3, then

d3(vy, vi[S,S) = min[max{1,3}, max{123)}, max{3,3)}|=3, 2<i<m.

Hence , H(v;,S5;X) =(m-1)x? +(m-1)x3

From  H,(SC;x) =H;(U,SC;x)+H, (R, S :X) +H5 (M, SC,:x) +H5 (v,,S%:X), we get
(4.2.1).

We notice from (4.2.1), that the 2-Hosoya polynomial of S ,m>9, is 3-semi-
palindromic. m

Remark:
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o H,(S5;x) =6x%+12x3 +3x*.
o H,(SE;x) =8x%+20x> +8x”.
Corollary 4.2.2: For m>4,
(@ W,(S:) =(m-1)(m*-2m+12).
(b) uz(Sh) = (M?* —2m+12)/(2m-1).

© 1) < forall m=5. m

4.3. Cog-wheel Graphs:

Definition: [8] A cog-wheel graph W, is the graph constructed from a wheel

W,,,m >4, of order m, with vertex setV ={v,,v,, .. ,V,_;,Vn}, and with (m-1)
additional vertex set U={u;,uy, ... Uy o, Uy}, and edges
{UiVig UVt 1=12, .. ,m-1}, (V4 =V,) , as shown in Fig. 4.3.

Fig. 4.3 WS

It is clear that p(W,,) =2m -1, q(W, ) =4(m-1),and w = 2.

. m+1
sz(wrm{

J, m=>7,and m,(S5)=2, m=>4.

Theorem 4.3.1: For m>8, then
H,(WE: x) = 2(m=1)x? + (m-1)x3 + 2(m -1)x*

-3

3

2 g omi oy oma
Zx'+—x 2 +2x 2 if misodd,

i 8 8

+4m-1) (43.1)

my

2 . m

Zx'+£x2 . if mis even ,
| iz 2

Proof: To prove (4.3.1), we consider three cases
Case (1): There are two internally disjoint paths between u;and u;.,, 1<i<m-1,
(U =Uy) having length 2 and 4, then dj(u;,u;,;|W5) =4, 1<i<m-1, (u, =u,), and
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the number of pairs of vertices {u;,u;,; }, 1<i<m-1, (u, =u,) is (m-1). In addition ,
there are two internally disjoint paths between u;and u;,,, 1<i<m-1,
(u, =u, and u,,,; =u,) having length 3 and 4, then d;(ui,ui+2|W,§) =4,1<i<m-1,
(u, =u, and u,,, =U,), and the number of pairs of vertices {u;,u;,, }, 1<i<m-1,
(u,=u; and u,,, =U,) is (m-1).

Now, there are two internally disjoint paths between the vertices u; and uj,
1<i<m-4,i+3<j<m-1,(except for i=1,j#m—-2,m-1; and for i=2, j#m-1)
m+1

2

having lengths 4 , and d(u;, uj‘W,f,—{vl}) . Since, 4 <d(u;, uj‘Wn‘j«{vl}) < { J , then

oy (uy, U5 W) = d(uy, ug Wi v, ).

Let d(u;,u;W i—{v,}) =k, for all 4sks{m+1J.

The number of pairs {u;,u;} such that d;(ui,uj‘wnﬁ): k, for all 4£kgtm2+lJ, IS

m-1, except if m is odd , then the number of {u;, u;} such that d;(ui’uj‘wng) = m2+1’
is m_2—1, 1<i<m-4, i+3<j<m-1, (except for i=1, j=m-2,m-1; and for
i=2, j#m-1).

Hence,

-1

3

m+1

X! +%x2, if misodd,

|

H, (U, WS;x) = 2(m —1)x* + (m—1)

x', if mis even.

[CEE

I
~

Case (2): If v,v' eV ,v= V', then we consider 3 subcases:

(1) If v,v'eV-{v}, and w' e E(W), then there are four internally disjoint paths
between v and Vv’ having lengths 1, 2, 2 , m-2, then dZ(v,v’Wn‘j) =min{2,m-2}=2,
m>4,

Hence, the number of pairs{v,v’}, such that d;(v,V|W ) =2, w’ e E(WS,)is (m-1).

(I If v=v,,v =v;, 2<i<m, then there are three internally disjoint paths between

the vertices v;and v;, 2<i<m having lengths 1,2, and 2, then d;(vl,vi|Wnﬁ):2,

2<i<m,
It is clear that the number of such pairs {v;,v;}, 2<i<m,is (m-1).

(1) If v,v'eV—-{v;}, and w' ¢ E(W;,), then there are three internally disjoint paths
Wovi}) and

between the wvertices v and V', having lengths 2, d(v,V'
(m-1)—d(v,V|W —{v,}). Then
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d;’(v, v'|Wnﬁ) = min{max{z, d(v, v'|Wnﬁ—{v1})}, max{2,(m—1) —d(v, v'|Wnﬁ—{v1})
max{d(v, VW S —{v;3), (M ~1) — d(v, VW v, )] .
m-1

Wnﬁ—{vl})s{ 5 J,then,
W)= min{d(v,v'|Wn‘§—{v1}), (m-1)—d(v,V'

Since 2<d(v,V'

W~V =d(v, VW5 —H{v}) .

J, then the number of pairs {v,Vv'},

d,(v,V’

Let d(v,V' m-1

W :{v,}) =k, for all ZSKSL

m2 1J, is (m-1), except when

W' ¢ E(WS) such that d,(v,Vv|W ) =k, forall 2<k < {

m-1 1

m is odd and d,(v,V|W °) == then the number of pairs {v,V' } is mT_ .

Hence,
-3

3

LS
x'+=x 2 if misodd,

N
N

H3(V, WE1) = 2(m D5 + (m 1) =

m_
2

1

X', if mis even.
2

Case (3): If ue U and v eV, then there are two internally disjoint paths between the
vertices u and v for each of the following subcases :
(@ If u=u;, 1<i<m-1, and v=v, then two paths each has length 2; therefore

d;(vy, u;|W) =2, 1<i<m-1, and the number of these pairs is m-1.

(b) If veV —{v,}and uveE(W,.), then the two paths have length 1, and 2, therefore
d, (v, u|Wnﬁ) =2, and the number of such pairs {u, v} is 2(m-1).

() If veV—{v,}, and u and v are adjacent to a common vertex of V —{v,}, then the
two paths have lengths 2, and 3 , therefore d;(u,v|Wnﬁ) =3, and the number of such

pairs {u,Vv}is2(m-1).
(d) If veV—{v,}, and u and v are neither adjacent nor adjacent to a common vertex of
V —{v,}, then the two paths have lengths 3, and d(u,v|an—{vl}) . Since,

3<d(u, VW i~v} < {%J , then d;(u, VW 5) =d(u, VW i<V }).
Let d(u,v|W,T°,—{v1}) =k, forall 3<k< L%J then the number of pairs {u, v} such
that d;(v,u|Wn§) =k, forall 3<k< {%J is 2(m-1), except if m is even, in which the

number of {u,v} such that d(v,u/W5) :% ,is (m-1).
Thus,
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3

-1

X, if misodd,

Nngs

H, (R, WE:x) =(m—-1)x? +2(m-1)x> + 2(m —1)

|3

_l E
X' 2

IV

Il
N

1 . .
+EX , If mis even,

where R ={(u,Vv):u e U,v e V}, such that d;(u,v|Wnﬁ):k ,forall 2<k SL%J

From H,(WS;x) =H, (U, WE:x) +H,(V, WE:X) +H, (R, WS;X),, we get (4.3.1). m

We notice , from (4.3.1), that H, (W< ;x) is 3-semi-palindromic for m>16 .

Remark:

o H,(WE;x)=18x +2x°.

o H,(WE;x)=22x% +10x> + 4x*.

o H,(Wg;x)=30x?+15x> +10x*.

o Hy(WES;x)=36x?+27x> +15x".
Corollary 4.3.2: For m>6,
(@) W,(WS) =(m-1)(m*+22)/2 .
(b) pa(Wg) =(m*+22)/(4m-2). m
Notice that W, (W5) =42, W,(WE) =90, p,(WS) =2 and p,(WE) =25 .

Corollary 4.3.3: For m>4, p,(WS) < m:S , m>4. ™

4.4. Cog Cycles C;.

LetC, =v,,V,, .. ,V,,,V, beacycle of order m. The cog cycle C;, , m>3, is

m !

obtained from C,_ by adding m new vertices u,,u,,..,u,, and edges
{u,v,,uv., i=12, ... ,m};v,_., =V,[8], as shown in Fig.4.4.1.
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It is clear that p(C%)=2m, q(C5)=3m, w = 2, §,(CS)=m, and
mW(Cfn):z-
Theorem 4.4.1: For m>7, then

H,(CE ;) =3mx? + 3mx™* + mx™

2 o oq M
me"+5x 2 if misodd,
+4m| = ..(4.4.0)
m-4
2, i T 1T
D x™eox2 4+ =x2if miseven.
= 8 8
Proof: Let V ={v,,v,, ... ,v,},and U={u,,u,, ... ,u,}, then there are three cases to

prove (4.4.1).
Case (1): If u,u’"e U,u=u’, then there are two internally disjoint paths between uand

u' having length d(u,u’|C;) and (m+2)—d(u,u|Cy).

m+2

Since 2<d(u,uCy) g{ J then d;(u,u|C) = (m+2)—d(u,u’Cy).

m+2

Let d(u,u’

Cr)=k,forall 2<k st J , then the number of pairs {u,u’ } such that

d;(u,u'|Crﬁ) =(m+2)-k is m, except if m is even, in which the number of {u,u’} such
that

* m+2 . m
d,(u,u’lCl) = L is —.
2( | m) 2 2
Hence,
(m-3
2 )
Z x™ " if mis odd,
H,(U,CS:x)=m| "=°
m, m
2 - —+1

xm! +EX2 ,if m is even.

o

L i=
Case (2): If v,v' e V,v=V' , then either w' e E(C,S),or w'¢E(C;).

If w'eE(C,;), then there are three internally disjoint paths between v and V', having
lengths 1,2, and m-1, thus

d, (v, V|C,%) = min[max{1,2}, max{1, m — 1}, max{2,m - 1}]= 2.

Cr)=2, WeE(C;) ism.

Now, if w’ g E(C,;), then there are two internally disjoint paths between v and
C.l).

The number of pairs {v,V'}, such that d(v,Vv’

V', having lengthsd(v,V/C5), and m—d(v,V’

Since 2<d(u,V|C,5) < {%J , then
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dy(v,V|C)=m—d(v,V|C5) =m—d(v,V’
Hence , from this case and (3.3) , we have
H,(V,CS ;x) =H,(C,;x) — mx™ 1+mx?

Mm-1

Cp) =d5(v,V[Cpy).

m-i

x™ 1 x%if misodd,

M|

[3

_]_ m
1 E 2 . .
+§X +x° ,1f m is even.

m-—i

X

gl

Case (3): If ue U, and veV, then either uve E(C;), or uvg E(C;).

If uveE(C,;), then there are two internally disjoint paths between the vertices uand v
of length 1 and 2, then d,(u,v|C5) =2.

It is clear that the number of pairs {u,Vv}, such that d§(u,v|Cnﬁ) =2, uveE(C;) is

2m.
Now, if uv ¢ E(C,), then there are two internally disjoint paths between the vertices u

and v having length d(u,v|C) , and (m+1)—d(u,v|Cy).

m+1

Since 2<d(u,v|C) s[ J then d,(u,v[CS) = (m+1)—d(u,V[Cy).

m2+1J’ then the number of pairs {u, v} such that

Let d(u,v|C:) =k, for all Zskgt

d;(u,v|C,§) =(m+1) -k is 2m, except if m is odd, in which the number of {u, v} such

m+1 .
,Ism.

that d,(u,v|CS) =

Thus, from this case, we get

mT% 1 m+l

D xm ox +x?, if mis odd ,
H,(R,CE;x) =2m| '*

my
2 .

> xm +x2,if mis even,
L i=1

where R ={(u,v):ueU,veV}.
From H;(CS,;x) =H,(U,C%;x) +H,(V,CS;x) +H,(R,C%:x), we get (5.7.1). =

Remark:

H,(CS; x) =12x2 +3%°.

e H,(CS;x)=14x* +10x° +4x".

o H,(CE;x) =15x% +10x> +15x* +5x°

o H,(CE;x)=18x" +3x> +21x* +18x° +6x°.

Corollary 4.4.2: If C,,m>23 be a cog-cycle graph of order 2m, then
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(8) W,(C)=m(@m? —6m+13)/2 .
(b) p,(CS)=(3m? —6m+13)/(4m-2) .

CFNCIEELY .
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