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Abstract:  
This paper aims to study the bifurcation of solution in singularly perturbed differential algebraic equations 

(DAEs): 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 0) 

0 = 𝑔(𝑥, 𝑦, 𝛼, 0). 

Obtained from singularly perturbed ODEs when s approach to 0. 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 𝜖), 

𝜖𝑦˙ = 𝑔(𝑥, 𝑦, 𝛼, 𝜖). 

The main conclusion of this paper is that, under the hypothesis  

𝑟𝑎𝑛𝑘𝐷𝑦𝑔(x0, y0, α0, 0)  =  𝑚 −  1, 

the bifurcation of solution in the DAE system will be studied through effect of the system by using 

Lyapunov Schmidt reduction. Sufficient conditions for the occurrence of some types of bifurcation in the 

solution are given, such as (Fold, Pitchfork and Transcritical Bifurcation) in n dimensional. 

 

Keywords: DAE, Bifurcation, Singularly Perturbed ODEs, Lyapunov Schmidt Reduction. 

____________________________________________________________________________________ 

1. INTRODUCTION: 

The theory of singularly perturbed is form the mathematical point of view a very inter- esting 

subject became it is possible to apply with success the results of the more abstract theory of 

differential equation. There are a lot of scientists and researchers who work on the singularly 

perturbed ODEs theory. 
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Ali Nayef. [2] in 1981 published” introduction to perturbed techniques and perturbed method in 

applied mathematics”. 

Eckhaus, W. [7] in 1979 studied the asymptotic analysis of singular perturbation (asymptotic 

expansions) in terms of a small or a large parameter or coordinating. He started with model 

simple ordinary equations that can be solved exactly and which progress toward complex 

partial differential equations. 

R. E. O’Malley in [14] applied perturbation methods on the nonlinear differential equations 

problems by providing a new phenomena occururence which has no place in the 

corresponding linear problems, also explained the major purpose for introducing the per 

turbation methods on nonlinear problem in order to improve the result in distinctively new 

phenomena by studying the existence of solutions of periodic problems for all frequencies rather 

than only a set of characteristic values. His objective was to show the dependence of amplitude 

on frequency, removal of resonance infinities, and appearance of jump phenomena. 

The method of finite dimensional reduction was introduced by Lyapunov [10] (1906) and 

Schmidt [15] (1908). 

Hale and Sakamoto [8] in (1988) applied Lyapunov Schmidt reduction to construct singulary 

perturbed equilibrium solution to differential equation. 

Arnold Neumaier [3] in (1991), the lyapunov Schmidt reduction for parameterized equation near 

singular points. 

In [9] (2007) the asymptotic stability of an equilibrium solution of the differential algebraic 

equations (DAEs) is investigated by reducing such DAEs by Liapunov-Schmidt reduction to a 

corresponding one. 

[18] In (2008) the Lyapunov Schmidt reduction for the singularity analysis of finite dimensional 

is presented 

Consider the DAEs: 

 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 0), (1.1) 

0 = 𝑔(𝑥, 𝑦, 𝛼, 0), (1.2) 

where(f, g) ∶ 𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅  → 𝑅𝑛  ×  𝑅𝑚. Define the following related sets: 

M =  {(x, y, α, 0)  ∈  𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 ∶  0 =  g(x, y, α, 0)}, (1.3) 

and the set: 

                              T = M \S,                                                                         (1.4) 

where S is defined by: 

𝑆 =  {(𝑥, 𝑦, 𝛼, 0)  ∈  𝑀 ∶  𝑟𝑎𝑛𝑘𝐷𝑦𝑔(𝑥, 𝑦, 𝛼, 0)  =  𝑚 −  1}.    (1.5) 

Let(x0, y0, α0, 0) ∈  𝑀  such that 𝑓(x0, y0, α0, 0) =  0.  If 𝑟𝑎𝑛𝑘𝐷𝑦𝑔(x0, y0, α0, 0) =  𝑚  then 

(x0, y0, α0, 0) ∈  𝑇 and it is just a non-degenerate equilibrium point. The degenerate equilibrium 

points belong to the singular surface S that is the points which satisfy the rank condition 

𝑟𝑎𝑛𝑘𝐷𝑦𝑔(𝑥, 𝑦, 𝛼, 0)  =  𝑚 −  1. 

Since 
𝜕𝑔

𝜕𝑦
(𝑥, 𝑦, 𝛼, 0) is singular at singular point (x0, y0, α0, 0)  the solution may bifurcate at that point, there 

may be impasse for which the solution does not exist near that point, or the solution is well defined through 
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the singularly. Our study includes the stability of degenerate equilibrium points (x0, y0, α0, 0) ∈  𝑆 of the 

DAEs for which the solution near that point exists and well is defined. Let (x0, y0, α0, 0) ∈  𝑀  be an 

equilibrium point for α =  0, (i.e), 𝑓 (x0, y0, α0, 0)  =  0, and that  

                                       𝑟𝑎𝑛𝑘𝐷𝑦𝑔(x0, y0, α0, 0) =  𝑚 − 1                                                            (1.6) 

The assumption (1.6) states that zero is an eigenvalue of 𝐷𝑦𝑔(x0, y0, α0, 0). 

2. Definitions and Concepts 

Slow System)-Fast-2.1 [5][12]((m, n) Definition 

System of ordinary differential equations has the form: 

dx

dτ
= ẋ = ϵf(x, y, ϵ),                                                                                                (2.1) 

dy

dτ
= ẏ = g(x, y, ϵ) ,                                                                                                 (2.2) 

is called a m fast-slow system? 

Where variable 𝑥 is called fast variable, variable y is called slow variable. A time-scale decomposition of 

the singularly perturbed system yields reduced-order representations for the slow and fast subsystems. More 

specifically in the limit ϵ → 0 the fast dynamics become instantaneous in the slow time-scale t. By applying 

the time scale:   

setting t = τϵ ⇒ τ =
t

ϵ
 

dx

dt
=
dx

dτ

dτ

dt
 ⇒

dx

dt
=
dx

dτ

1

ϵ
= f(x, y, ϵ) 

and 

dy

dt
=
dy

dτ

dτ

dt
 ⇒

dy

dt
=
1

ϵ

dy

dτ
=
1

ϵ
g(x, y, ϵ) ⇒ ϵ

dy

dt
= g(x, y, ϵ) 

The gives the equivalent form: 

 

dx

dt
= ẋ = f(x, y, ϵ)                                                                                        (2.3) 

               
dy

dt
= ϵẏ = g(x, y, ϵ)                                                                              (2.4) 

the systems (2.3), (2.4) is called n fast-slow system. It refers to t as the fast time scale or fast time and to τ 

as the slow time scale or slow time. 

When s approaches to 0 for system (2.3),(2.4) we get: 

               ẋ = f(x, y, 0)                

0 = g(x, y, 0)  

which represent to DAEs with index one, and it can be readily reduced to an ODEs. Sometimes, one finds 

that the x variables are slow and the y variables are fast with similar or no changes regarding the notation 

for the functions f and g. 

Definition 2.3 [6] The singularity perturbed ODEs obtained by setting s approaches to 0 on the fast time 

scale formulation (2.3),(2.4) is called a fast subsystem or fast vector field: 
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x˙ =  f (x, y, 0), (2.7) 

 

0 =  g(x, y, 0). (2.8) 

The flow of (2.7), (2.8) is called the fast flow. 

Bifurcation is a French word that has been introduced into nonlinear dynamics by (Poincare et al. 1899). 

Bifurcation theory studies the change in behavior of the system with the change in parameters that involves 

the change in the dynamics behavior. These changes are only qualitative in nature. But there may be 

changes in situations as well. In bifurcation problems, it is useful to consider a space formed by using the 

state variables and the control parameters, called the state-control space. Before introduce the definition of 

bifurcation we will mention to the definition of topological equivalent: 

Definition 2.4 [11]  

Suppose that f ∈  C1(E1)  and 𝑔 ∈  C1(E2)where E1 and E2 are open subsets of 𝑅𝑛 . Then the two 

autonomous systems of differential equations 

𝑥˙ =  𝑓 (𝑥), (2.9) 

and 

𝑦˙ =  𝑔(𝑦), (2.10) 

are said to be topologically equivalent if there is a homeomorphism 𝐻 ∶  E1  →  E2 which maps trajectories 

of (2.9) onto trajectories of (2.10) and preserves their orientation by time. 

Definition 2.5 [17] The appearance of a topologically nonequivalent phase portrait under variation of 

parameters is called a bifurcation. 

Thus, a bifurcation is a change of the topological type of the system as its parameters pass through a 

bifurcation (critical) value. 

Definition 2.6 (Bifurcation point [16]) The sudden change in the behavior of the system when a parameter 

passes through a critical value. 

Definition 2.7 (Bifurcation diagram [17]) A bifurcation diagram of the dynamical system is a 

stratification of its parameter space induced by the topological equivalence, together with representative 

phase portraits for each stratum. 

Thus, bifurcation is a complex phenomenon occurs in nonlinear systems, it is referring to the branching of 

solutions at some critical value parameters, which results in a loss of the structural stability and it is one of 

routes to chaos [1]. Here we will state the bifurcation kinds such as (fold, transcritical and pitchfork 

bifurcation). 

____________________________________________________________________________________ 

3. Implicit Function Theorem [4] 

This theorem is very important because it represents the beginning point of the basic work in this paper, 

thus it is convenient to mention it. The Implicit Function Theorem in finite dimensions is concerned with 

system of equations of the form: 

𝑓𝑖(𝑥1,· · · , 𝑥𝑛 , 𝛼1 ,· · · , 𝛼𝑘) =  0,                  𝑖 =  1,· · · , 𝑛.                                (3.1) 

which can be written as vector form where 𝐹 ∶ 𝑅𝑛   ×  𝑅𝑘  → 𝑅𝑛 . 

The Jacobian matrix for (3.2) is: 

𝐽(𝑥, 𝛼) = (
𝜕𝑓𝑖
𝜕𝑥𝑗

(𝑥, 𝛼))
𝑖,𝑗=1,…,𝑛

                (3.3) 
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We will use a neighborhood of fixed point (𝑥0, 𝛼0) ∈  𝑅𝑛  ×  𝑅𝑘. 

____________________________________________________________________________________ 

Theorem 3.1 (Implicit Function Theorem [13].) 

Suppose that F be given in (3:2), such that: 

𝐹 (𝑥0, 𝛼0)  =  0, (3.4) 

and 

                                             𝑑𝑒𝑡𝐽 (𝑥0, 𝛼0)  ≠  0.                                           (3.5) 

Then there exists neighborhoods 𝑈 of 𝑥0in 𝑅𝑛 and V of 𝛼0 in 𝑅𝑘 and a function  : 

𝑉 →  𝑈 such that for every 𝛼 ∈  𝑉, (3.2) has a unique solution 𝑥 =  𝑋(𝛼) in 𝑈. Moreover, if 𝐹 ∈  𝐶s(Rn), 

then 𝑋 ∈  𝐶s(Rk). In symbols 

𝐹 (𝑋(𝛼), 𝛼)  =  0, 𝑋(𝛼0)  =  𝑥0. (3.6) 

____________________________________________________________________________________ 

4. LYAPUNOV SCHMIDT REDUCTION OF SINGULARLY PERTURBED ODES IN 𝑹𝒏 [9]. 

Consider singularly parameterized ODEs: 

𝑥˙ =  𝑓 (𝑥, 𝑦, 𝛼, 𝜖), (4.1) 

𝜖𝑦˙ =  𝑔(𝑥, 𝑦, 𝛼, 𝜖),      (4.2) 

where 𝑓 ∶ 𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 →  𝑅𝑛, 𝑔 ∶  𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 →  𝑅𝑚, 𝑥 ∈  𝑅𝑛 is a slow variable, 

𝑦 ∈   𝑅𝑚  is a fast variable, 0 <  𝜖 ≪  1 and 𝛼 is the bifurcation parameter. When 𝜖 approaches to zero we 

have a parameterized DAEs as follows: 

𝑥˙ =  𝑓 (𝑥, 𝑦, 𝛼, 0), (4.3) 

0 =  𝑔(𝑥, 𝑦, 𝛼, 0). (4.4) 

Suppose that 𝑆0 is a set of all equilibrium points of (4.3),(4.4) it is defined as: 

𝑆0 = {((𝑥∗, 𝑦∗, 𝛼∗, 0)  ∈  𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 ∶  𝑓 (𝑥∗, 𝑦∗, 𝛼∗, 0)  =  𝑔(𝑥∗, 𝑦∗, 𝛼∗, 0)  =  0}, 

and the critical points of (4.3) and (4.4) should satisfy the constraint condition. Define the function F as 

follows: 

𝐹 (𝑥, 𝑣, 𝛼, 0) = [
 𝑓 (𝑥, 𝑣, 𝛼, 0),
 𝑔(𝑥, 𝑣, 𝛼, 0),

]                                (4.5) 

In this section Lyapunov Schmidt reduction in 𝑅𝑛 will be introduced and we use it to study bifurcation 

theory on singularly perturbed ODEs when perturbed parameter 𝜖 approach to zero. 

Consider the DAEs: 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 0),                                            (4.6) 

0 = 𝑔(𝑥, 𝑦, 𝛼, 0),                                            (4.7) 

such that the rank condition: 

𝑟𝑎𝑛𝑘𝐷𝑦𝑔(x0, y0, α0, 0) =  𝑚 − 1                       (4.8) 

is satisfied. Assume that the equilibrium point is (0, 0, 0, 0) and let 𝐷𝑦𝑔(0, 0, 0, 0) =  𝐵, then from rank 

condition we have 𝑟𝑎𝑛𝑘(𝐵)(0, 0, 0, 0)  =  𝑚 −  1. 

Choose complements vector spaces 𝐻 and 𝑁 to 𝑘𝑒𝑟𝐵 and 𝑟𝑎𝑛𝑔𝑒𝐵 respectively. Then 

𝑅𝑚 = 𝑘𝑒𝑟𝐵 ⨁𝐻 

𝑅𝑚 = 𝑁 ⨁𝑟𝑎𝑛𝑔𝑒𝐵 
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Then we  conclude that 𝑑𝑖𝑚𝐻  =   𝑚 −  1  and 𝑑𝑖𝑚𝑁  =   1 .  Define the projections  𝐸 ∶    𝑅𝑚  →

 𝑟𝑎𝑛𝑔𝑒𝐵 and the complementary projection (𝐼 −  𝐸) ∶  𝑅𝑚  →  𝑁 such that the DAEs (4.6),(4.7) expanded 

to an equivalent pairs of equations 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 0),                     (4.9) 

0 = 𝐸𝑔(𝑥, 𝑦, 𝛼, 0),                       (4.10) 

and 

𝑥˙ = 𝑓 (𝑥, 𝑦, 𝛼, 0), 

0 = (𝐼 −  𝐸)𝑔(𝑥, 𝑦, 𝛼, 0). 

Because of this splitting any vector 𝑦 ∈ 𝑅𝑚can be decomposed in the form 𝑦 =  𝑣 +  𝑤, where 𝑣 ∈

 𝑘𝑒𝑟𝐵 and 𝑤 ∈  𝐻. Then the equation (4.9), (4.10) can be written as: 

𝑥˙ = 𝑓 (𝑥, 𝑣 +  𝑤, 𝛼, 0),                            (4.11) 

0 = 𝐸𝑔(𝑥, 𝑣 +  𝑤, 𝛼, 0).                             (4.12) 

Then in (4.11), (4.12) the second equation can be considered as a map 

𝜑 ∶ 𝑅𝑛  ×  𝑘𝑒𝑟𝐵 ×  𝐻 ×  𝑅𝑟  →  𝑟𝑎𝑛𝑔𝑒𝐵, 

where 

  𝜑(𝑥, 𝑣, 𝑤, 𝛼, 0)  =  𝐸𝑔(𝑥, 𝑣 +  𝑤, 𝛼, 0). 

Now we have: 

(
∂Eg(x,v + w,𝛼)

∂w
) (0, 0, 0,0) = EB. 

Since 𝐸 act as the identity map on 𝑟𝑎𝑛𝑔𝑒𝐵 so 

(
∂Eg(x,v + w,𝛼)

∂w
) (0, 0, 0,0) = EB. 

and since 𝐵 ∶  𝐻 →  𝑟𝑎𝑛𝑔𝑒𝐵 has a full rank at (0, 0, 0, 0), it follows from the implicit function theorem 

that the second equation of (4.9),(4.10) can be solved uniquely for w near (0, 0, 0, 0), i.e., 

𝑤 =  𝑊 (𝑥, 𝑣, 𝛼, 0), where 𝑊 ∶  𝑅𝑛  ×  𝑘𝑒𝑟𝐵 ×  𝑅𝑟  →  𝑀 satisfies 

𝐸𝑔(𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0) ≡  0,         𝑊 (0, 0, 0, 0)  =  0. 

From the second equation of (4.11), (4.12) and from DAE (4.6), (4.7) we get the reduced DAEs: 

𝑥˙ = 𝐹 (𝑥, 𝑦, 𝛼, 0), (4.13) 

0 = 𝐺(𝑥, 𝑦, 𝛼, 0), (4.14) 

where (𝐹, 𝐺) ∶  𝑅𝑛  ×  𝑘𝑒𝑟𝑙𝐵 ×  𝑅𝑟  →  𝑅𝑛  ×  𝑁 defined by: 

𝐺(𝑥, 𝑦, 𝛼, 0)  = (𝐼 −  𝐸)𝑔(𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0), (4.15) 

𝐹 (𝑥, 𝑦, 𝛼, 0)  = 𝑓 (𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0).             (4.16) 

____________________________________________________________________________________ 

Definition 4.1 The equation 

𝐺(𝑥, 𝑣, 𝛼, 0)  =  (𝐼 −  𝐸)𝑔(𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0)  =  0, 

is called bifurcation equation in one dimensional. 

The reduced DAEs equation (4.13), (4.14) has all the information we need from the Liapunov Schmidt. 

The only disadvantage that it maps the second component y between one dimensional subspaces of 𝑅𝑚. 

Now the Lyapunov Schmidt reduction will generalize to n-dimensional sub-space. 

Consider the ODEs: 

𝑥˙ =  𝐹 (𝑥, 𝑣, 𝛼, 𝜖),                                     (4.17) 

𝜖𝑦˙ = 𝐺(𝑥, 𝑣, 𝛼, 𝜖),                                       (4.18) 

when 𝜖 approach to 0 we get: 
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𝑥˙ =  𝐹 (𝑥, 𝑣, 𝛼, 0),                            (4.19) 

0 =  𝐺(𝑥, 𝑣, 𝛼, 0),                             (4.20) 

where 

(𝐹, 𝐺) ∶  𝑅𝑛  ×  𝑘𝑒𝑟𝐵 ×  𝑅 →  𝑅𝑛  ×  𝑁, 

define by 

𝐹 (𝑥, 𝑣, 𝛼, 0)  = 𝑓 (𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0),             (4.21) 

𝐺(𝑥, 𝑣, 𝛼, 0)  = (𝐼 −  𝐸)𝑔(𝑥, 𝑣 +  𝑊 (𝑥, 𝑣, 𝛼), 𝛼, 0), (4.22) 

and (𝑓, 𝑔) ∶  𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 →  𝑅𝑛 × 𝑅𝑚. 

Choose explicit coordinate on 𝑘𝑒𝑟𝐵  and N and assume 𝑣  and 𝑣∗  be none-zero vectors in 𝑘𝑒𝑟𝐵  and 

(𝑟𝑎𝑛𝑔𝑒𝐵)⊥ respectively. Then the vector 𝑣 ∈  𝑘𝑒𝑟𝐵 can be uniquely written in the form 𝑣 =  𝑦𝑣0 where 

𝑦 ∈  𝑅 and 𝑣0   ∈  𝑘𝑒𝑟𝐵. 

Define 

�̌�(𝑥, 𝑦, 𝛼, 0)  =< 𝑣0
 ∗, 𝐺(𝑥, 𝑦𝑣0 , 𝛼, 0)  >, 

where 𝐺 is reduced equation (4.23). Now we show that �̌�(𝑥, 𝑦, 𝛼, 0) = 0  iff 𝐺(𝑥, 𝑦𝑣0 , 𝛼, 0) = 0 so the 

zero of �̌� are one to one correspondence with the solutions of 𝑔(𝑥, 𝑦 , 𝛼, 0) = 0.  Then the function �̌�  can 

be written in terms of the original DAEs (4.6),(4.7) by using (4.19), (i.e.)  

�̌�(𝑥, 𝑦, 𝛼, 0) =< 𝑣0
 ∗, 𝑔(𝑥, 𝑦𝑣0 +W(𝑥, 𝑦𝑣0 , 𝛼), 𝛼, 0).                     (4.23) 

The function �̌�  is the reduced function to the constraint equation g in the DAEs (4:6),(4.7) 

in a new change of coordinates. Also the relation between �̌�  and G is that �̌�  is just a 

representation of G in new coordinates. Hence the reduced DAEs in new coordinate are 

given by 

𝑥˙ =  �̌�(𝑥, 𝑦, 𝛼, 0),                        (4.24) 

0 =  �̌�(𝑥, 𝑦, 𝛼, 0),                        (4.25) 

where (�̌�, �̌�) ∶  𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 →  𝑅𝑛 × 𝑅𝑚such that F˜  defined by  

�̌�(𝑥, 𝑦, 𝛼, 0)  =  𝑓 (𝑥, 𝑦𝑣0  +  𝑊 (𝑥, 𝑦𝑣0, 𝛼), 𝛼, 0),        (4.26) 

And �̌� as  defined  in  (4.23).  As  we  mentioned  above �̌�(𝑥, 𝑦, 𝛼, 0)  =  0  iff 

 𝐺(𝑥, 𝑦𝑣0, 𝛼, 0)  = (𝐼 −  𝐸)𝑔(𝑥, 𝑦𝑣0  +  𝑊 (𝑥, 𝑦𝑣0, 𝛼), 𝛼, 0)  =  0. 
𝜕𝐺

𝜕𝑦
 (𝑥, 𝑦𝑣0, 𝛼, 0) = (𝐼 −  𝐸)

𝜕𝑔

𝜕𝑦
(𝑥, 𝑦𝑣0  +  𝑊 (𝑥, 𝑦𝑣0, 𝛼), 𝛼, 0) (𝑣0 +

𝜕𝑊

𝜕𝑦
) 

On evaluating at (0, 0, 0, 0) we have: 

𝜕𝐺

𝜕𝑦
 (0, 0, 0, 0)  = (𝐼 −  𝐸)𝐵 (𝑣0 +

𝜕𝑊

𝜕𝑦
(0, 0, 0, 0))  

Since (𝐼 − 𝐸)𝐵 = 0, so 
𝜕𝐺

𝜕𝑦
(0,0,0,0) = 0 by similar way we get 

𝜕�̌�

𝜕𝑦
(0,0,0,0) = 0. That means the reduced 

DAEs have a singularly at (0, 0, 0, 0). 

Definition 4.2 The equation 

�̌�(𝑥, 𝑦, 𝛼, 0)  =  (𝐼 −  𝐸)𝑔(𝑥, 𝑦𝑣0 +  𝑊 (𝑥, 𝑦𝑣0, 𝛼), 𝛼, 0)  =  0, 

is called bifurcation equation in n dimensional. 

4.1 Fold bifurcation in 𝑹𝑛 

A fold bifurcation point is a pair of equilibrium, meets and disappears with a zero eigenvalue [11]. One of the 

equilibrium (saddle) is unstable while the other (node) is stable [16]. Now, consider the DAEs (4.24), (4.25), 

we will study fold bifurcation of the singularly parameterized ODEs system by the following theorem: 
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Theorem 4.1  

Consider the DAEs (4.6),(4.7) defined on 𝑆0 with an equilibrium point (0, 0, 0, 0) and the non-hyperbolic 

conditions 
𝜕𝑓

𝜕𝑥
(0,0,0,0) = 0,

𝜕𝑔

𝜕𝑥
(0,0,0,0) = 0,

𝜕2𝑔

𝜕𝑥𝜕𝑦
(0,0,0,0) = 0 If the following conditions are hold: 

1. < 𝑣0
∗,
𝜕𝑔

𝜕𝛼
(0,0,0,0) >≠ 0 

2. < 𝑣0
∗,
𝜕2𝑔

𝜕𝑥2
(0,0,0,0)(𝑣, 𝑣, ) >≠ 0 

Then (0, 0, 0, 0) is a fold bifurcation point for the reduced DAEs (4.13),(4.14) when 𝜖 approaches to 0. 

Proof : Suppose that (𝑥, 𝑦, 𝛼, 0)  =  (0, 0, 0, 0) is critical point and consider the reduced 

DAE(4.13),(4.14) obtained by Lyapunov Schmidt reduction. Differentiate the bifurcation equation (4.14) 

w.r.t.𝛼 we get: 

𝜕𝑔

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑦

𝜕𝑊

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0)] 

Evaluate at (0,0,0,0), we get: 

𝜕𝑔

𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝛼
(0,0,0,0) +

𝜕𝑔

𝜕𝑦

𝜕𝑊

𝜕𝛼
(0,0,0,0) +

𝜕𝑔

𝜕𝛼
(0,0,0,0)] 

from rank condition (4.8) we get: 

𝜕𝑔

𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸)

𝜕𝑔

𝜕𝛼
(0,0,0,0). 

Then from condition (1) we get: 

𝜕𝐺

𝜕𝛼
(0,0,0,0) ≠ 0. 

To prove the second condition we differentiate bifurcation equation (4.14) w.r.t.𝑥 twice: 

𝜕𝐺

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕𝑔

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑦

𝜕𝑊

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝛼

𝜕𝛼

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0)] 

𝜕2𝐺

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0) +

𝜕2𝑔

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕𝑊

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕2𝑊

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0)].  

Evaluate at (0,0,0,0) we get: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0)  = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥2
(0,0,0,0)  +

𝜕2𝑔

𝜕𝑥𝜕𝑦
(0,0,0,0) 

𝜕𝑊

𝜕𝑥
(0,0,0,0)  +

𝜕𝑔

𝜕𝑦
(0,0,0,0) 

𝜕2𝑊

𝜕𝑥2
(0,0,0,0) ]. 

Then from rank condition (4.8), and condition above given in theorem we get: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥2
(0,0,0,0) ] 
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and from condition 2 we see that: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) ≠ 0 

So the bifurcation equation (4.14) satisfy fold bifurcation conditions. 

________________________________________________________________________ 

5. Transcritical bifurcation in 𝑹𝒏  

A transcritical bifurcation is one in which an equilibrium point exists for all values of a parameter and is 

never destroyed [11]. In transcritical bifurcation there is an exchange of stability between two equilibrium 

points, there is one unstable and the other is stable equilibrium point. Now we will introduce the transcritical 

bifurcation theorem for the singularly parameterized ODEs as follows: 

Theorem 4.2: Consider the DAEs (4.6),(4.7) defined on 𝑆0 with an equilibrium point (0, 0, 0, 0) and the 

non-hyperbolic conditions 
𝜕𝑓

𝜕𝑥
(0,0,0,0) = 0,

𝜕𝑔

𝜕𝑥
(0,0,0,0) = 0,

𝜕2𝑔

𝜕𝑥𝜕𝑦
(0,0,0,0) = 0. are satisfied. If the 

following conditions are hold: 

1. < 𝑣0
∗,
𝜕𝑔

𝜕𝛼
(0,0,0,0) ≥ 0 

2. < 𝑣0
∗,
𝜕2𝑔

𝜕𝑥2
(0,0,0,0)(𝑣, 𝑣, ) >≠ 0 

3. < 𝑣0
∗,

𝜕𝑔2

𝜕𝛼𝜕𝑥
(0,0,0,0)𝑣 > ≠ 0. 

Then (0, 0, 0, 0) is a transcritical bifurcation point for the reduced DAEs (4.13),(4.14) when 𝜖 approaches 

to 0. 

Proof : Suppose that (𝑥, 𝑦, 𝛼, 0)  =  (0, 0, 0, 0) is critical point and consider the reduced DAE(4.13),(4.14) 

obtained by Lyapunov Schmidt reduction. Differentiate the bifurcation equation (4.14) w.r.t.𝛼  as in 

theorem (4.1) we get: 

𝜕𝐺

𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸)

𝜕𝑔

𝜕𝛼
(0,0,0,0). 

Then from condition (1) we get: 

𝜕𝐺

𝜕𝛼
(0,0,0,0) = 0. 

To prove the second condition we differentiate bifurcation equation (4.14) 𝑤. 𝑟. 𝑡. 𝑥  twice as in theorem 

(4.1) we get: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥2
(0,0,0,0)], 

and from condition 2 we see that: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) ≠ 0 

To prove the third condition we differentiate bifurcation equation (4.14) 𝑤. 𝑟. 𝑡. 𝑥  and α we get: 

𝜕2𝐺

𝜕𝑥𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕

𝜕𝑥
(
𝜕𝛼

𝜕𝑥

𝜕𝑥

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑦

𝜕𝑊

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0))]. 
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𝜕2𝐺

𝜕𝑥𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [(

𝜕2𝑔

𝜕𝑥2
𝜕𝑥

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑥

𝜕2𝑥

𝜕𝛼2
(𝑥, 𝑦, 𝛼, 0) +

𝜕2𝑔

𝜕𝑥𝜕𝑦

𝜕𝑊

𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕𝑔

𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝛼
(𝑥, 𝑦, 𝛼, 0) +

𝜕2𝑔

𝜕𝑥𝜕𝛼
(𝑥, 𝑦, 𝛼, 0))].  

Evaluate at (0,0,0,0): 

𝜕2𝐺

𝜕𝑥𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸) [(

𝜕2𝑔

𝜕𝑥2
𝜕𝑥

𝜕𝛼
(0,0,0,0) +

𝜕𝑔

𝜕𝑥

𝜕2𝑥

𝜕𝛼2
(0,0,0,0) +

𝜕2𝑔

𝜕𝑥𝜕𝑦

𝜕𝑊

𝜕𝛼
(0,0,0,0) +

𝜕𝑔

𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝛼
(0,0,0,0) +

𝜕2𝑔

𝜕𝑥𝜕𝛼
(0,0,0,0))].  

Then from rank condition (4.8), and conditions above given in theorem we get: 

𝜕2𝐺

𝜕𝑥𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥𝜕𝛼
(0,0,0,0)], 

and from condition 3 we see that: 

𝜕2G

𝜕𝑥𝜕𝛼
(0,0,0,0) ≠ 0 

So the bifurcation equation (4.14) satisfy transcritical bifurcation conditions. 

__________________________________________________________________________________ 

5.1 Pitchfork bifurcation in 𝑅𝑛 

In the pitchfork bifurcation, an equilibrium point reverses its stability, and two new 

equilibrium points are born [11]. 

Define: 

𝑓 (𝑥, 𝑣, 𝛼, 𝜖)  = 𝑥𝐾(𝑥, 𝑣, 𝛼, 𝜖), 

𝑔(𝑥, 𝑣, 𝛼, 𝜖) = 𝑥𝑈 (𝑥, 𝑣, 𝛼, 𝜖), 

where (𝐾, 𝑈 ) ∶ 𝑅𝑛  ×  𝑅𝑚  ×  𝑅 ×  𝑅 →  𝑅𝑛 × 𝑅𝑚 and α is the bifurcation parameter ,𝑥 ∈ 𝑅𝑛  𝑦 ∈

 𝑅𝑚  𝜖 approach to 0. 

𝐹 (𝑥, 𝑣, 𝛼, 𝜖) = (
𝑓 (𝑥, 𝑣, 𝛼, 𝜖)
𝑔 (𝑥, 𝑣, 𝛼, 𝜖)

) = (
0
0
), 

and      K (0, v, α, 0) =  
∂f

∂x
 at x = 0 , U (0, v, α, 0) =  

∂g

∂x
 at x = 0.  

Now we will state the pitchfork bifurcation theorem for the DAEs as follows: 

Theorem 4.3: Consider the DAEs (4.6),(4.7) defined on 𝑆0 with an equilibrium point (0, 0, 0, 0), and 

suppose that the non-hyperbolic conditions 
𝜕𝑓

𝜕𝑥
(0,0,0,0) = 0,

𝜕𝑔

𝜕𝑥
(0,0,0,0) = 0,

𝜕2𝑔

𝜕𝑥𝜕𝑦
(0,0,0,0) = 0, are 

satisfied. If the following conditions are hold: 

1. < 𝑣∗0,
𝜕𝑔

𝜕𝛼
(0,0,0,0) > = 0, 

2. < 𝑣∗0,
𝜕2𝑔

𝜕𝑥2
(0,0,0,0)(𝑣, 𝑣) > = 0, 

3. < 𝑣∗0,
𝜕𝑔3

𝜕𝑥3
(0,0,0,0)(𝑣, 𝑣, 𝑣) > ≠ 0, < 𝑣∗0,

𝜕𝑔2

𝜕𝛼𝜕𝑥
(0,0,0,0)𝑣 > ≠ 0. 
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Then (0, 0, 0, 0) is a pitchfork bifurcation point for the reduced DAEs (4.13),(4.14),when 𝜖 approaches to 

0. 

Proof : Suppose that (𝑥, 𝑦, 𝛼, 0)  =  (0, 0, 0, 0) is critical point and consider the reduced DAE(4.13),(4.14) 

obtained by Lyapunov Schmidt reduction. Form the proof of theorem (4.1) and theorem (4.2) we can see 

that: 

𝜕𝐺

𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸)

𝜕𝑔

𝜕𝛼
(0,0,0,0). 

Then from condition (1) we get: 

𝜕𝐺

𝜕𝛼
(0,0,0,0) = 0, 

and 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥2
(0,0,0,0)]. 

and from condition 2 we see that: 

𝜕2𝐺

𝜕𝑥2
(0,0,0,0) = 0 

also from the proof of theorem (4.2) we can see that: 

𝜕2𝐺

𝜕𝑥𝜕𝛼
(0,0,0,0) = (𝐼 − 𝐸) [

𝜕2𝑔

𝜕𝑥𝜕𝛼
(0,0,0,0)], 

and from condition 3 we see that: 

𝜕2𝐺

𝜕𝑥𝜕𝛼
(0,0,0,0) ≠ 0. 

To prove  
𝜕3𝐺

𝜕𝑥3
(0,0,0,0) ≠ 0,  we differentiate bifurcation equation (4.14) w.r.t.𝑥 three times: 

𝜕3𝐺

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0)

= (𝐼 − 𝐸) [
𝜕

𝜕𝑥
(
𝜕2𝑔

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0) +

𝜕2𝑔

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕𝑊

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0)

+
𝜕𝑔

𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕2𝑊

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0)] , 

𝜕3𝐺

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕3𝑔

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0) +

𝜕3𝑔

𝜕𝑥2𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕𝑊

𝜕𝑥
(𝑥, 𝑦, 𝛼, 0) +

𝜕2𝑔

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝛼, 0)

𝜕2𝑊

𝜕𝑥2
(𝑥, 𝑦, 𝛼, 0) +

∂2g

∂x ∂y
(x, y, α, 0)

∂2W

∂x2
(x, y, α, 0) +

∂g

∂y
(x, y, α, 0)

∂3W

∂x3
(x, y, α, 0)] .  

Then from rank condition (4.8), and from the condition above given in theorem we get: 

𝜕3𝐺

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0) = (𝐼 − 𝐸) [

𝜕3𝑔

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0)], 

and from condition 3 we see that: 

𝜕3𝐺

𝜕𝑥3
(𝑥, 𝑦, 𝛼, 0) ≠ 0 

So the bifurcation equation (4.14) satisfy pitchfork bifurcation conditions. The following example is 

application of theorem (4.1). 

 

Example 4.1: Consider the singularly parameterized ODEs: 

Let 
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(𝑓, 𝑔) ∶  𝑅 2 × 𝑅 2  ×  𝑅 → 𝑅 2 

given by 

𝐹 (𝑥, 𝑦, 𝛼, 𝜖) =  (𝜖𝑥 −  𝑦, 𝛼 +  𝑥2 −  𝜖 𝑦), 𝑥 ∈ 𝑅 2, 𝑦 ∈ 𝑅 2, 𝛼 ∈  𝑅, 𝜖∈R. 

𝑥˙ =  𝑓 (𝑥, 𝑦, 𝛼, 𝜖) =  𝜖 𝑥 −  𝑦, 

𝜖�̇� = 𝑔 (𝑥, 𝑦, 𝛼, 𝜖) = 𝛼 + 𝑥2 − 𝜖 𝑥 , 

when ϵ approach to zero we get DAEs: 

𝑥˙ =  𝑓 (𝑥, 𝑦, 𝛼, 0) =  − 𝑦, 

0 = 𝑔 (𝑥, 𝑦, 𝛼, 0) = 𝛼 + 𝑥2 , 

Since  𝐹 (0, 0, 0, 0)  =  0, 𝐷𝑥,𝑦𝐹 (0, 0, 0, 0) is singular and 
𝜕𝑓

𝜕𝑥
(0, 0, 0, 0) ≠ 0 invertible. 

So by implicit function theorem we get: 

there is an open neighborhood 𝑈 of (0,0) in R2 ,and an open neighborhood 𝑉 of ( 0) in R, and 𝑎 

map 𝑊 ∶  𝑈 →  𝑉 such that 𝑊 =  𝑊 (𝑥, 𝑦, 𝛼, 0) so that 𝑊 (𝑥, 𝑦, 𝛼, 0) is the unique solution 

in V of the equation 

𝑥˙ =  𝑓 (𝑥, 𝑦 +  𝑊 (𝑥, 𝑦, 𝛼), 𝛼, 0). 

Now (𝑥, 𝑦 +  𝑊 (𝑥, 𝑦, 𝛼), 𝛼, 0)  is an equilibrium of F if and only if  𝑔(𝑥, 𝑦, 𝛼, 0)  =  0, where 

0 =  𝑔(𝑥, 𝑦 +  𝑊 (𝑥, 𝑦, 𝛼), 𝛼, 0). 

A calculation shows that: 

∂g

∂α
(0,0,0,0) = 1 ≠ 0 

and 

∂2g

∂x2
(0,0,0,0) = −2 ≠ 0 

Now we have reduced DAEs above. There is a fold bifurcation at the non-hyperbolic critical point 

(0,0,0,0) at the bifurcation value α =  0. If  α =  0 we get only one equilibrium point which is 

(0,0,0,0). If α >  0  then there are two equilibrium points which are √(∓α, 0). If α <  0  then 

there are no equilibrium points at all. Hence the DAEs satisfies the non-hyperbolic  

conditions 
∂f

∂x
(0,0,0,0) = 0,

∂g

∂x
(0,0,0,0) = 0, our DAEs satisfies the fold bifurcation conditions 

above.[11]    

                                                                                                                                                                                     

Figure 1: Bifurcation diagrams for the Fold Bifurcation. From left to right, ( α <  0, α =  0 and α >  0.). 

____________________________________________________________________________________________ 
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