Journal of Education for Pure Science- University of Thi-Qar Vol.10, No.2 (June, 2020)

DOI: http://doi.org/10.32792/utq.jceps.10.02.012

Cartesian Product of Intuitionistic Fuzzy Modular Spaces

Mohammed Jawad Kadhim, Mohammed Jassim Mohammed

(Department of Mathematics, College of Education for Pure Science, Thi-Qar University, Thi-Qar, Iraq)

This work is licensed under a <u>Creative Commons Attribution 4.0 International License.</u>

Abstract:

In this paper, we define the concepts of intuitionistic fuzzy modular space and cartesian product in intuitionistic fuzzy modular space. Also, some properties of them are considered.

Keywords: modular space, cartesian product, fuzzy modular space, intuitionistic fuzzy modular space.

1. Introduction:

The concept of fuzzy sets was introduced by Zadeh [8]in1965 and study the it properties .1986, Atanassov [1] defined the notion of intuitionistic fuzzy set. The concept of modular space was introduced by Nakano [4] in 1950. Soon after, Musielak and Orlicz [3] redefined and generalized the notion of modular space in 1959. The concept of fuzzy modular space was introduced by Young Shen and Wei Chen [7] in 2013. The definition of cartesian product of two fuzzy modular spaces was introduced by Noor F. Al-Mayahi and Al-ham S. Nief [5] in 2019 and prove some results related with it .In this paper, we define the concepts of intuitionistic fuzzy modular space and cartesian product in intuitionistic fuzzy modular space . Also, some properties will be considered.

2. Preliminaries:

Definition (2.1)[8]:

Let X be a non-empty set and Let I = [0,1] be the closed interval of real numbers . A fuzzy set μ in X (or a fuzzy subset form X) is a function from X to I = [0,1].

If μ is a fuzzy set in X then μ is described as characteristic function which connects every $x \in X$ to real number $\mu(x)$ in the interval I. $\mu(x)$ is the grade of membership function to x in μ . μ can be described completely as:

 $\mu = \{\langle x, \mu(x) \rangle : x \in X, 0 \le \mu(x) \le 1\} \text{ or } \mu = \{\frac{\mu(x)}{x} : x \in X\} \text{ where } \mu(x) \text{ is called the membership function for the fuzzy set } \mu$. The family of all fuzzy sets in X is denoted by I^X .

Definition (2.2)[1]:

Let *X* be a non-empty set . An intuitionistic fuzzy set *A* is given by : $A = \{\langle x, \mu_A(x), v_A(x) \rangle : x \in X \}$, where the functions $\mu_A : X \to I$ and

Journal of Education for Pure Science- University of Thi-Qar Vol.10, No.2 (June, 2020)

Website: <u>iceps.utq.edu.iq</u> Email: jceps@eps.utq.edu.iq

 $v_A: X \to I$ denote the degree of membership and the degree of nonmembership to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$, for each $x \in X$. The set of all intuitionistic fuzzy sets in X denoted by IFS(X).

Definition (2.3)[4]:

Let *X* be a vector space over a field *F*.

- (1) A function $\rho: X \to [0, \infty]$ is called modular if
 - (a) $\rho(x) = 0$ if and only if x = 0;
 - (b) $\rho(\alpha x) = \rho(x)$ for $\alpha \in F$ with $|\alpha| = 1$, for all $x \in X$;
 - (c) $\rho(\alpha x + \beta y) \le \rho(x) + \rho(y)$ iff $\alpha, \beta \ge 0$ whenever $\alpha + \beta = 1$,

for all $x, y \in X$. If (c) is replaced by

- (c') $\rho(\alpha x + \beta y) \le \alpha \rho(x) + \beta \rho(y)$ iff $\alpha, \beta \ge 0, \alpha + \beta = 1$ for all $x, y \in X$, then the modular ρ is called convex modular.
- (2) A modular ρ defines a corresponding modular space , i. e. , the space X_{ρ} given by

$$X_{\rho} = \{x \in X : \rho(\alpha x) \to 0 \text{ as } \alpha \to 0\}.$$

Definition (2.4)[6]:

Let * be a binary operation on the set I = [0,1], i.e * : $[0,1] \times [0,1] \rightarrow$

[0,1] is a function, then * is said to be t-norm (triangular-norm) on the set *I* if * satisfies the following axioms:

- (1) * is commutative and associative.
- (2) a * 1 = a for all $a \in [0,1]$.
- (3) If $b, c \in I$ such that $b \le c$, then $a * b \le a * c$ for all $a \in I$.

In addition, if * is continuous then * is called a continuous t-norm.

Theorem (2.5)[2]:

Let * be a continuous t-norm on the set I = [0,1], then:

- (1) 1 * 1 = 1
- (2) 0 * 1 = 0
- (3) 0 * 0 = 0
- $(4) a * a \leq a, \forall a \in I$
- (5) If $a \le c$ and $b \le d$, then $a * b \le c * d$ for all $a, b, c, d \in I$.

Definition(2.6)[7]:

The 3- tuple $(X, \mu, *)$ is said to be a fuzzy modular space (shortly, F-modular space) if X is a vector space, * is a continuous t-norm and μ is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions, for all $x, y \in X, t, s > 0$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$:

$$(FM. 1) \mu(x, t) > 0,$$

$$(FM.2) \mu(x,t) = 1$$
 for all $t > 0$ if and only if $x = 0$,

$$(FM.3) \mu(x,t) = \mu(-x,t),$$

$$(FM.4) \mu(\alpha x + \beta y, t + s) \ge \mu(x, t) * \mu(y, s),$$

$$(FM.5) \mu(x,.): (0,\infty) \rightarrow (0,1]$$
 is continuous.

Generally ,if $(X, \mu, *)$ is fuzzy modular space, we say that $(\mu, *)$ is a fuzzy modular on X.

Journal of Education for Pure Science- University of Thi-Qar Vol.10, No.2 (June, 2020)

Definition(2.7)[6]:

Let δ be a binary operation on the set I = [0,1], then δ is said to be t-conorm (triangular-conorm) on the set I if δ satisfies the following axioms:

- (1) \Diamond is commutative and associative,
- (2) $a \lozenge 0 = a$ for all $a \in [0,1]$,
- (3) If $b, c \in I$ such that $b \le c$, then $a \land b \le a \land c$ for all $a \in I$.

In addition, If \Diamond is continuous then \Diamond is called a continuous t-conorm.

Theorem (2.8)[2]:

Let \Diamond be a continuous t-conorm on the set I = [0,1], then :

- (1) $0 \lozenge 0 = 0$
- (2) $1 \lozenge 0 = 1$
- $(3) 1 \Diamond 1 = 1$
- (4) $a \lozenge a \ge a, \forall a \in I$
- (5) If $a \le c$ and $b \le d$, then $a \lozenge b \le c \lozenge d$ for all $a, b, c, d \in I$

3. Main Results:

Definition (3.1):

The 5-tuple $(X, \mu, v, *, \diamond)$ is said to be an intuitionistic fuzzy modular space (shortly,IF-modular space) if X is a vector space,* is a continuous t-norm, \diamond is a continuous t-conorm and μ, v are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions: for all $x, y \in X, t, s > 0$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$,

$$(IFM.1)\,\mu(x,t)+v(x,t)\leq 1,$$

$$(IFM. 2) \mu(x, t) > 0,$$

(IFM. 3)
$$\mu(x, t) = 1$$
 if and only if $x = 0$,

$$(IFM.4) \mu(x,t) = \mu(-x,t),$$

$$(IFM.5) \mu(\alpha x + \beta y, t + s) \ge \mu(x, t) * \mu(y, s),$$

(*IFM*. 6)
$$\mu(x, .)$$
: $(0, \infty) \rightarrow (0, 1]$ is continuous,

$$(IFM.7) v(x,t) < 1,$$

(IFM. 8)
$$v(x,t) = 0$$
 if and only if $x = 0$,

$$(IFM.9) v(x,t) = v(-x,t),$$

$$(IFM.10) v(\alpha x + \beta y, t + s) \le v(x, t) \delta v(y, s),$$

$$(IFM. 11) v(x, .): (0, \infty) \rightarrow (0, 1]$$
 is continuous.

Definition(3.2):

Let $(X, \mu, \nu, *, \delta)$ be an intuitionistic fuzzy modular space, Then

1) A sequence $\{x_n\}$ in X is said to be convergent to $x \in X$, if for t > 0, there exists $n_0 \in Z^+$ such that

$$\mu(x_n - x, t) > 1 - \epsilon$$
 and $v(x_n - x, t) < \epsilon$ for all $n \ge n_0$. (or equivalently $\lim_{n \to \infty} \mu(x_n - x, t) = 1$ and $\lim_{n \to \infty} v(x_n - x, t) = 0$).

every $\epsilon \in (0,1)$ and

Journal of Education for Pure Science- University of Thi-Qar Vol.10, No.2 (June, 2020)

2) A sequence $\{x_n\}$ in X is said to be Cauchy if for every $\epsilon \in (0,1)$ and t > 0, there exists $n_0 \in Z^+$ such that $\mu(x_n - x_m, t) > 1 - \epsilon$ and $v(x_n - x_m, t) < \epsilon$ for all $n, m \ge n_0$. (or equivalently $\lim_{n,m\to\infty} \mu(x_n - x_m, t) = 1$ and $\lim_{n,m\to\infty} v(x_n - x_m, t) = 0$).

3) An intuitionistic fuzzy modular space $(X, \mu, \nu, *, \delta)$ is said to be Complete if every Cauchy sequence is convergent.

Definition(3.3):

Let $(X, \mu, \nu, *, \delta)$ be an intuitionistic fuzzy modular space. The open ball B(x, r, t) and the closed ball B[x, r, t] with center $x \in X$ and radius 0 < r < 1, t > 0 are defined as follows:

$$B(x, r,t) = \{ y \in X : \mu(x - y, t) > 1 - r \text{ and } v(x - y, t) < r \},$$

$$B[x, r, t] = \{ y \in X : \mu(x - y, t) \ge 1 - r \text{ and } v(x - y, t) \le r \}.$$

.....

Definition(3.4):

Let $(X, \mu_1, v_1, *, \diamond)$ and $(Y, \mu_2, v_2, *, \diamond)$ be two intuitionistic fuzzy modular spaces. the cartesian product of $(X, \mu_1, v_1, *, \diamond)$ and $(Y, \mu_2, v_2, *, \diamond)$ is the product space $(X \times Y, \mu, v, *, \diamond)$ where $X \times Y$ is the cartesian product of the sets X and Y and μ, v are functions $\mu, v : (X \times Y \times (0, \infty)) \to [0,1]$ is given by: $\mu((w,z),t) = \mu_1(w,t) * \mu_2(z,t)$, $v((w,z),t) = v_1(w,t) \diamond v_2(z,t)$ for all $(w,z) \in X \times Y$ and t, > 0.

Theorem(3.5):

Let $(X, \mu_1, v_1, *, \delta)$ and $(Y, \mu_2, v_2, *, \delta)$ be two intuitionistic fuzzy modular Spaces .Then $(X \times Y, \mu, v, *, \delta)$ is an intuitionistic fuzzy modular space.

Proof:

Let $(w, z) \in X \times Y$, we have

1) since
$$\mu_1(w,t) > 0$$
 , $\mu_2(z,t) > 0 \ \forall t > 0$,then

$$\mu((w,z),t) = \mu_1(w,t) * \mu_2(z,t) > 0$$
 and

since
$$v_1(w,t) < 1$$
, $v_2(z,t) < 1 \forall t > 0$, then

$$v((w,z),t) = v_1(w,t) \diamond v_2(z,t) < 1.$$

2)
$$\mu_1(w,t)=1 \Leftrightarrow w=0$$
, also $\mu_2(z,t)=1 \Leftrightarrow z=0$. Then

$$\mu_1(w,t) * \mu_2(z,t) = 1 \Leftrightarrow (w,z) = 0$$
 .
Hence $\mu \big((w,z),t \big) = 1 \Leftrightarrow$

$$(w,z) = 0 \ \forall t > 0 \ \text{and} \ v_1(w,t) = 0 \Leftrightarrow w = 0, \ \text{also} \ v_2(z,t) = 0 \Leftrightarrow z = 0.$$

Then $v_1(w,t) \land v_2(z,t) = 0 \Leftrightarrow (w,z) = 0$. Hence $v((w,z),t) = 0 \Leftrightarrow (w,z) = 0 \ \forall t > 0$.

3) since
$$\mu_1(w,t) = \mu_1(-w,t)$$
, $v_1(w,t) = v_1(-w,t) \ \forall t > 0$ and $\mu_2(z,t) = \mu_2(-z,t)$, $v_2(z,t) = v_2(-z,t) \ \forall t > 0$, then

$$\mu((w,z),t) = \mu_1 (w,t) * \mu_2 (z,t) = \mu_1 (-w,t) * \mu_2 (-z,t)$$
$$= \mu(-(w,z),t)$$

and

$$v((w,z),t) = v_1(w,t) \delta v_2(z,t) = v_1(-w,t) \delta v_2(-z,t)$$

$$= v(-(w,z),t).$$
4) $\mu(\alpha(w_1,z_1) + \beta(w_2,z_2),t) \ge \mu((\alpha w_1 + \beta w_2,\alpha z_1 + \beta z_2),t)$

$$\ge \mu_1(\alpha w_1 + \beta w_2,t) * \mu_2(\alpha z_1 + \beta z_2,t)$$

$$\ge \mu_1(w_1,t) * \mu_1(w_2,t) * \mu_2(z_1,t) * \mu_2(z_2,t)$$

$$\ge \mu_1(w_1,t) * \mu_2(z_1,t) * \mu_1(w_2,t) * \mu_2(z_2,t)$$

$$\ge \mu((w_1,z_1),t) * \mu((w_2,z_2),t) \text{ and}$$

$$v(\alpha(w_1,z_1) + \beta(w_2,z_2),t) \le v((\alpha w_1 + \beta w_2,\alpha z_1 + \beta z_2),t)$$

$$\le v_1(\alpha w_1 + \beta w_2,t) \diamond v_2(\alpha z_1 + \beta z_2,t)$$

$$\le v_1(w_1,t) \diamond v_1(w_2,t) \diamond v_2(z_1,t) \diamond v_2(z_2,t)$$

$$\le v_1(w_1,t) \diamond v_2(z_1,t) \diamond v_1(w_2,t) \diamond v_2(z_2,t)$$

$$\le v((w_1,z_1),t) \diamond v((w_2,z_2),t)$$
5) since $\mu_1(w,t)$: $(0,\infty) \to (0,1]$ is continuous , $\mu_2(z,t)$: $(0,\infty) \to (0,1]$ is continuous and since $v_1(w,t)$: $(0,\infty) \to (0,1]$ is continuous and $v((w,z),t)$: $(0,\infty) \to (0,1]$ is continuous and $v((w,z),t)$: $(0,\infty) \to (0,1]$ is continuous.

Theorem(3.6):

Let $\{w_n\}$ be a sequence in intuitionistic fuzzy modular space $(X, \mu_1, \nu_1, *, \delta)$ which converges to w in X and $\{z_n\}$ is a sequence in the intuitionistic fuzzy modular space $(Y, \mu_2, \nu_2, *, \delta)$ which converges to z in Y. Then $\{(w_n, z_n)\}$ is a sequence in intuitionistic fuzzy modular space($X \times Y, \mu, \nu, *, \emptyset$) converges to (w, z) in $X \times Y$.

Proof:

To prove that sequence $\{(w_n, z_n)\}$ in $X \times Y$ converges to (w, z)we show that $\lim_{n\to\infty} \mu((w_n, z_n) - (w, z), t) = 1$ and $\lim_{n\to\infty} v\big((w_n, z_n) - (w, z), t\big) = 0$ by theorem (3.5) $(X \times Y, \mu, \nu, *, \delta)$ is an intuitionistic fuzzy modular space since $\{w_n\}$ be a sequence in $(X, \mu_1, v_1, *, \delta)$ convergence to wthen $\lim_{n\to\infty} \mu_1(w_n-w,t)=1$ and $\lim_{n\to\infty} v_1(w_n-w,t)=0$ since $\{z_n\}$ be a sequence in $(Y, \mu_2, \nu_2, *, \delta)$ convergence to z then $\lim_{n\to\infty} \mu_2(z_n-z,t)=1$ and $\lim_{n\to\infty} v_2(z_n-z,t)=0$ then that $\lim_{n\to\infty} \mu((w_n, z_n) - (w, z), t) = \lim_{n\to\infty} \mu_1(w_n - w, t)$ $* \lim_{n \to \infty} \mu_2(z_n - z, t) = 1 * 1 = 1$ and $\lim_{n\to\infty}v\big((w_n,z_n)-(w,z),t\big)=\lim_{n\to\infty}v_1(w_n-w,t)\,\,\emptyset\,\lim_{n\to\infty}v_2(z_n-z,t)=0\,\,\emptyset\,\,0=0.$ Hence $\{(w_n, z_n)\}$ converges to (w, z).

Theorem(3.7):

Let $\{w_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(X, \mu_1, \nu_1, *, \diamond)$ and $\{z_n\}$ is a Cauchy sequence in intuitionistic

fuzzy modular space $(Y, \mu_2, \nu_2, *, \delta)$ then $\{(w_n, z_n)\}$ is a Cauchy sequence in intuitionistic fuzzy modular space $(X \times Y, \mu, \nu, *, \delta)$.

Proof:

By theorem (3.5) $(X \times Y, \mu, \nu, *, \diamond)$ is intuitionistic fuzzy modular space since $\{w_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(X, \mu_1, \nu_1, *, \diamond)$

then
$$\lim_{n,m\to\infty} \mu_1(w_n-w_m,t)=1$$
 and $\lim_{n,m\to\infty} v_1(w_n-w_m,t)=0$

since $\{z_n\}$ be a Cauchy sequence in intuitionistic fuzzy modular space $(Y, \mu_2, \nu_2, *, \delta)$

then
$$\lim_{n,m\to\infty} \mu_2(z_n-z_m,t)=1$$
 and $\lim_{n,m\to\infty} v_2(z_n-z_m,t)=0$

then
$$\lim_{n,m\to\infty} \mu((w_n,z_n)-(w_m,z_m),t) = \lim_{n,m\to\infty} \mu_1(w_n-w_m,t)$$

$$* \lim_{n \to \infty} \mu_2(z_n - z_m, t) = 1 * 1 = 1$$
 and

$$\lim_{n,m\to\infty} v((w_n, z_n) - (w_m, z_m), t) = \lim_{n,m\to\infty} v_1(w_n - w_m, t)$$

$$\Diamond \lim_{n,m\to\infty} v_2(z_n-z_m,t) = 0 \Diamond 0 = 0.$$

Hence $\{(w_n, z_n)\}$ is a Cauchy sequence in $(X \times Y, \mu, \nu, *, \delta)$.

<u>Theorem(3.8):</u>

If $(X \times Y, \mu, \nu, *, \delta)$ is an intuitionistic fuzzy modular space, then?

 $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are intuitionistic fuzzy modular spaces by defining

$$\mu_1(w,t) = \mu((w,0),t), v_1(w,t) = v((w,0),t)$$
 and

$$\mu_2(z,t) = \mu((0,z),t), v_2(z,t) = v((0,z),t)$$
 for all $w \in X, z \in Y$ and $t > 0$.

Proof:

1)
$$\mu_1(w,t) = \mu((w,0),t) > 0$$
, $v_1(w,t) = v((w,0),t) < 1 \ \forall w \in X$

2) For all
$$t > 0, 1 = \mu_1(w, t) = \mu((w, 0), t) \Leftrightarrow w = 0$$
 and $0 = v_1(w, t) = v((w, 0), t) \Leftrightarrow w = 0$.

3) For all
$$t > 0$$
, $\mu_1(w, t) = \mu_1(-w, t) = \mu(-(w, 0), t)$ and $v_1(w, t) = v_1(-w, t) = v(-(w, 0), t)$.

4)
$$\mu_1(\alpha w + \beta w_1, t) = \mu((\alpha w + \beta w_1, 0), t)$$

$$\geq \mu((w,0),t)*\mu((w_1,0),t) \geq \mu_1(w,t)*\mu_1(w_1,t)$$
 and

$$v_1(\alpha w + \beta w_1, t) = v((\alpha w + \beta w_1, 0), t)$$

$$\leq v((w,0),t) \, \delta \, v((w_1,0),t) \leq v_1(w,t) \, \delta \, v_1(w_1,t) \, .$$

5)
$$\mu_1(w,.) = \mu((w,0),.)$$
 and $\nu_1(w,.) = \nu((w,0),.)$ are continuous from

 $(0, \infty)$ to (0,1] for all $w \in X$. Then $(X, \mu_1, \nu_1, *, \delta)$ is intuitionistic fuzzy modular space Similarly we can prove that $(Y, \mu_2, \nu_2, *, \delta)$.

<u>Theorem(3.9):</u>

Let $(X, \mu_1, v_1, *, \delta)$ and $(Y, \mu_2, v_2, *, \delta)$ be two intuitionistic fuzzy modular spaces, then the product $(X \times Y, \mu, v, *, \delta)$ is complete intuitionistic fuzzy modular space if and only if $(X, \mu_1, v_1, *, \delta)$ and $(Y, \mu_2, v_2, *, \delta)$ are

complete intuitionistic fuzzy modular spaces.

Proof:

Suppose that $(X \times Y, \mu, \nu, *, \delta)$ is complete intuitionistic fuzzy modular space

Since $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are intuitionistic fuzzy modular spaces By theorem (3.8)

Let $\{w_n\}$ be a Cauchy sequence in $(X, \mu_1, v_1, *, \delta)$

Then $\{(w_n, 0)\}\$ be a Cauchy sequence in $X \times Y$

Since $X \times Y$ is complete intuitionistic fuzzy modular space

Then there is (w, 0) in $X \times Y$ such that $\{(w_n, 0)\}$ convergent to (w, 0)

Now,
$$\lim_{n\to\infty}\mu_1(w_n-w,t)=\lim_{n\to\infty}\mu\big((w_n-w,0),t\big)=1$$
 and

$$\lim_{n \to \infty} v_1(w_n - w, t) = \lim_{n \to \infty} v((w_n - w, 0), t) = 0$$

Then $(X, \mu_1, \nu_1, *, \delta)$ is complete intuitionistic fuzzy modular space

Similarly we can prove that $(Y, \mu_2, \nu_2, *, \emptyset)$ is complete intuitionistic fuzzy modular space.

Conversely, suppose that $(X, \mu_1, v_1, *, \diamond)$ and $(Y, \mu_2, v_2, *, \diamond)$ are complete intuitionistic fuzzy modular spaces

Let $\{(w_n, z_n)\}$ be a Cauchy sequence in $X \times Y$

since $(X, \mu_1, \nu_1, *, \delta)$ and $(Y, \mu_2, \nu_2, *, \delta)$ are complete intuitionistic fuzzy modular spaces

then $\exists w \text{ in } X \text{ and } z \text{ in } Y \text{ such that } \{w_n\} \text{ convergent to } w \text{ and } \{z_n\} \text{ convergent to } z$.

So
$$\lim_{n \to \infty} \mu_1(w_n - w, t) = 1$$
, $\lim_{n \to \infty} v_1(w_n - w, t) = 0$ and

$$\lim_{n \to \infty} \mu_2(z_n - z, t) = 1, \lim_{n \to \infty} v_2(z_n - z, t) = 0$$
 then

$$\lim_{n \to \infty} \mu((w_n, z_n) - (w, z), t) = \lim_{n \to \infty} \mu_1(w_n - w, t) * \lim_{n \to \infty} \mu_2(z_n - z, t)$$

$$= 1 * 1 = 1$$
 and

$$\lim_{n\to\infty}v\big((w_n,z_n)-(w,z),t\big)=\lim_{n\to\infty}v_1(w_n-w,t)\,\,\delta\,\lim_{n\to\infty}v_2(z_n-z,t)$$

$$= 0 \diamond 0 = 0$$

Hence $\{(w_n, z_n)\}$ convergent to (w, z) in $X \times Y$.

Hence $(X \times Y, \mu, \nu, *, \delta)$ is complete intuitionistic

fuzzy modular space.

4. References :

- [1] K. Atanassov, Intuitionistic fuzzy set, Fuzzy Sets and Systems 20, 87 96,1986.
- [2] J. Buckley and E. Eslami, An introduction to fuzzy logic and fuzzy Sets, New York: Physica-verlag, 2002.
- [3] J. Musielak, W. Orlicz, On modular spaces, Studia Math. vol. 18, pp. 49 65,1959.
- [4] H. Nakano, Modulared semi-ordered liner spaces, Tokyo, 1950.
- [5]F. Noori Al-Mayahi, S. Al-ham Nief, Some Properties of Cartesian

Journal of Education for Pure Science- University of Thi-Qar Vol.10, No.2 (June, 2020)

product of Two Fuzzy Modular spaces, Eng. & Tech. Journal, Vol. 6, Issue 5, pp. 9279 — 9281, May 2019.

- [6] B. Schweizer and A. Sklar, Statistical Metric Spaces, Pacific J. Math., 314 334, 10,1960.
- [7] Y. Shen and W. Chen, On Fuzzy Modular Spaces, Journal of Applied Mathematics, Vol. 2013, Article ID576237,8 pages, 2013.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control, 338 353, 8, 1965.