

Ibn Al-Haitham Journal for Pure and Applied Sciences

Angal Heritann Internal Linguist Harry State 1 Linguist Harry State 1

Journal homepage: jih.uobaghdad.edu.iq

(1) -Semi-p Open Set

Muna L. Abd Ul Ridha

Department of Mathematics , College of Education for Pure Sciences, Ibn Al – Haitham, University of Baghdad, Baghdad, Iraq.

mona.laith1203a@ihcoedu.uobaghdad.edu.iq

Suaad G. Gasim

Department of Mathematics , College of Education for Pure Sciences, Ibn Al – Haitham, University of Baghdad, Baghdad , Iraq. suaad.gedaan@yahoo.com

Article history: Received 3 Augest 2022, Accepted 24 Augest 2022, Published in January 2023.

doi.org/10.30526/36.1.2969

Abstract

Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called (α)-preopen in 2002 and 2005, respectively. Definitions of (α)-preinterior and (α)-preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called (α)-semi-p-open set. We present the definition of this set with its equivalent. We give definition of (α)-semi-p-interior and (α)-semi-p-closure of a set and discuss their properties. Also the properties of (α)-preinterior and (α)-preclosure are discussed. In addition, we give a new type of continuous function in a generalized topological space as ((α)₁, (α)₂)-semi-p-continuous function and ((α)₁, (α)₂)-semi-p-irresolute function. The relationship between them is showed. We prove that every (α)-open (α)-preopen) set is an (α)-semi-p-open set, but not conversely. Every ((α)₁, (α)₂)-semi-p-irresolute function is an ((α)₁, (α)₂)-semi-p-continuous function, but not conversely. Also we show that the union of any family of (α)-semi-p-open sets is an (α)-semi-p-open set, but the intersection of two (α)-semi-p-open sets need not to be an (α)-semi-p-open set.

Keywords:(α)-semi-p-open , (α)-semi-p-interior , (α)-semi-p-closure, ((α)-semi-p-irresolute and ((α)-semi-p-continuous.

1.Introduction and Preliminaries

In this paper, we denote a topological space by (Z, X) and the closure (interior) of a subset H of Z by cl(H)(int(H)), respectively.

1. The interior of H is the set int(H) = $\bigcup \{ \mathbb{U} : \mathbb{U} \in \mathbb{X} \text{ and } \mathbb{U} \subseteq \mathbb{H} \}$.

2. The closure of H is the set $cl(H) = \bigcap \{F: F \in X' \text{ and } H \subseteq F\} [1]$, where X' symbolizes the family of closed subsets of Z.

The term "preopen" was introduced for the first time in 1984 [2]. A subset A of a topological space (Z, X) is called a preopen set if $A \subseteq Int(clA)$. The complement of a preopen set is called a preclosed set. The family of all preopen sets of Z is denoted by PO(Z). The family of all preclosed sets of Z is denoted by PC(Z). In 2000, Navalagi used "preopen" term to define a "Semi-p-open set" [3]. A subset A of a topological space (Z, X) is said to be semi-p-open set if there exists a preopen set U in Z such that $U \subseteq A \subseteq \text{pre-cl } U$. The family of all semi-p-open sets of Z is denoted by S-PO(Z). The complement of a semi-p-open set is called semi-p-closed set. The family of all semi-p-closed sets of Z is denoted by S-PC(Z). A function $f:(Z_1, X_1) \to (Z_2, X_2)$ is said to be a continuous function if the inverse image of any open set in \mathbb{Z}_2 is an open set in \mathbb{Z}_1 [4]. Navalagi used the term "preopen" to introduce new types of a continuous function "pre-irresolute function" and "pre-continuous function". A function $f:(Z_1,X_1) \to (Z_2,X_2)$ is called pre-irresolute(pre-continuous) function if the inverse image of any pre-open set in Z₂ is a pre-open set in Z₁ (the inverse image of any open set in Z₂ is a pre-open set Z₁). In [5], Al-Khazraji used the term of "Semi-p-open set" to define new types of continuous functions "semi-p-irresolute" and "semi-p-continuous" function. A function f: $(Z_1, X_1) \rightarrow (Z_2, X_2)$ is called a semi-p-irresolute (semi-p-continuous) function if the inverse image of any semi-p-open set in Z₂ is a semi-p-open set in Z₁(the inverse image of any open set in Z_2 is a semi-p- open set in Z_1). Let Z be a nonempty set, a collection (1) of subsets of Z is called a generalized topology (in brief, GT) on Z if \emptyset belongs to (x) and the arbitrary unions of elements of (x) is an element in (x), (Z, (x)) is called generalized topological space (in brief, GTS) [6]. Every set in (x) is called (x)-open, while the complement of (x)-open is called (x)-closed; the family of all (1)-closed sets is denoted by (1)'. The union of all (1)-open set contained in a set H is called the (1)- interior of H and is denoted by int $\omega(H)$, whereas the intersection of all (1)-closed set containing H is called the (x)-closure of H and is denoted by $cl_{(x)}(H)[7]$.

2. (1)-Pre-Open Set

Definition 2.1 [8]

In a GTS (Z, (x)) by an (x)-pre-open (in brief, (x) - p - o) set, we mean a subset H of Z with $H \subseteq \operatorname{int}_{(x)}\operatorname{cl}_{(x)}H$. An (x)-pre-closed (in brief, (x) - p - c) set is the complement of an (x)-pre-open set. The collection of all (x) - p - o ((x) - p - c) subsets of Z will be denoted by (x)-PO(Z) ((x)-PC(Z), respectively).

Proposition 2.2

For a subset H of a (Z, G), we have $U_{\alpha \in \Lambda} \operatorname{int}_{G} \operatorname{cl}_{G} H_{\alpha} \subseteq \operatorname{int}_{G} \operatorname{cl}_{G} U_{\alpha \in \Lambda} H_{\alpha}$.

Proof

 $H_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} H_{\alpha}$, for every $\alpha \in \Lambda$, so $cl_{\omega}H_{\alpha} \subseteq cl_{\omega} \bigcup_{\alpha \in \Lambda} H_{\alpha}$ for every $\alpha \in \Lambda$, it follows that $int_{\omega}cl_{\omega}H_{\alpha} \subseteq int_{\omega}cl_{\omega} \bigcup_{\alpha \in \Lambda} H_{\alpha} \ \forall \alpha \in \Lambda$.

Hence $\bigcup_{\alpha \in \Lambda} \operatorname{int}_{(\omega)} \operatorname{cl}_{(\omega)} H_{\alpha} \subseteq \operatorname{int}_{(\omega)} \operatorname{cl}_{(\omega)} \bigcup_{\alpha \in \Lambda} H_{\alpha}$.

Proposition 2.3

The union of any collection of (x) - p - 0 sets is an (x) - p - 0 set.

Proof:

Let $\{ H_{\alpha} : \alpha \in \Lambda \}$ be a family of (x) - p - o sets, so $H_{\alpha} \subseteq \operatorname{int}_{(x)} \operatorname{cl}_{(x)} H_{\alpha}$, $\forall \alpha \in \Lambda$. Which means $\bigcup_{\alpha \in \Lambda} H_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} \operatorname{int}_{(x)} \operatorname{cl}_{(x)} H_{\alpha}$, but $\bigcup_{\alpha \in \Lambda} \operatorname{int}_{(x)} \operatorname{cl}_{(x)} H_{\alpha} \subseteq \operatorname{int}_{(x)} \operatorname{cl}_{(x)} \bigcup_{\alpha \in \Lambda} H_{\alpha}$ (by Proposition 2.2), therefore, we obtain $\bigcup_{\alpha \in \Lambda} H_{\alpha} \subseteq \operatorname{int}_{(x)} \operatorname{cl}_{(x)} \bigcup_{\alpha \in \Lambda} H_{\alpha}$, hence $\bigcup_{\alpha \in \Lambda} H_{\alpha}$ is an (x) - p - o set.

Corollary 2.4

The intersection of any collection of (x) - p - c sets is an (x) - p - c set.

Definition 2.5: [6]

Let (Z, G) be a *GTS*, and H be a subset of Z

- 1. The union of all (x) p o sets contained in H is called the (x)-preinterior of H and denoted by pre-int(x)H.
- 2. The intersection of all (x) p c sets containing H is called the (x)-preclosuer of H and denoted by pre-cl_(x)H.

Theorem 2.6

Let H and T be subsets of (Z, G). Then, the following properties are true:

- 1. $H_{\mathbf{G}} \subseteq \operatorname{pre-cl}_{\mathbf{G}} H_{\mathbf{G}}$.
- 2. pre-int_(i) $H \subseteq H$.
- 3. If $H \subseteq T$, then pre-int_(i) $H \subseteq \text{pre-int}_{(i)}T$.
- 4. If $H_{\mathcal{G}} \subseteq \mathcal{G}$, then $\operatorname{pre-cl}_{\mathcal{G}} H_{\mathcal{G}} \subseteq \operatorname{pre-cl}_{\mathcal{G}} \mathcal{G}$.

Proof:

- 1. From Definition of pre-cl₍₁₎H₀.
- 2. From Definition of pre-int₍₁₎H₁.
- 3. Let $H \subseteq T$, we have from 2, pre-int₍₁₎ $H \subseteq H$, so pre int₍₁₎ $H \subseteq T$, but pre int₍₁₎T is the largest (1) p o set contained in T. So pre int₍₁₎ $H \subseteq T$ pre int₍₂₎T.
- 4. Let $H \subseteq T$, we have from 1, $T \subseteq \operatorname{pre-cl}_{\omega}T$, so $H \subseteq \operatorname{pre-cl}_{\omega}T$, but $\operatorname{pre-cl}_{\omega}H$ is the smallest $T \cap P = C$ set containing $T \cap P = C$ set containing $T \cap P = C$ set $T \cap P = C$ set T

Proposition 2.7

Let (Z, G) be a *GTS* let H be a subset of Z. Then:

- 1. H is an (x) p c set, if and only if H = pre-cl_{ω}H.
- 2. H is an (1) p oset, if and only if $H = pre-int_{(1)}H$.

Proposition 2.8

$$\bigcup_{\alpha \in \Lambda} \operatorname{pre} - \operatorname{cl}_{(x)} H_{\alpha} \subseteq \operatorname{pre} - \operatorname{cl}_{(x)} \bigcup_{\alpha \in \Lambda} H_{\alpha}$$

Proof:

$$\begin{split} &H_{\alpha}\subseteq U_{\alpha\in\Lambda}\,H_{\alpha},\,\text{for every }\alpha\in\Lambda,\,\text{so pre-cl}_{\omega}H_{\alpha}\subseteq\text{pre-cl}_{\omega}\,\,U_{\alpha\in\Lambda}\,H_{\alpha}\,\,\text{for every }\alpha\in\Lambda\,\,,\,\text{therefore,}\\ &U_{\alpha\in\Lambda}\,\text{pre}-\text{cl}_{\omega}H_{\alpha}\subseteq\,\text{pre}-\text{cl}_{\omega}\,\,U_{\alpha\in\Lambda}\,H_{\alpha}. \end{split}$$

Remark 2.9

The reverse of Proposition 2.8 is not correct in general, as we show in the following example:

For example

$$Z = \{a, b, c\}, (x) = \{Z, \emptyset, \{a, b\}\}, \text{ and } (x)' = \{Z, \emptyset, \{c\}\}, \text{ then:}$$

(a)-PO(Z) =
$$\{Z, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$$

let $H_{\sigma} = \{b\}$ and $T_{\sigma} = \{a\}$, so pre-cl_{(ω)} $H_{\sigma} = \{b\}$ and pre-cl_{(ω)} $H_{\sigma} = \{a\}$, note that $H_{\sigma} \cup T_{\sigma} = \{a,b\}$, and pre-cl_{(ω)} $H_{\sigma} \cup H_{\sigma} = \{a,b\}$.

Hence, $\operatorname{pre-cl}_{\omega}(H_{U} \cup T_{U}) \not\subseteq \operatorname{pre-cl}_{\omega}H_{U} \cup \operatorname{pre-cl}_{\omega}T_{U}$.

Proposition: 2.10

If H is any subset of a topological space (Z, X), then:

- 1. $[pre int (H)]^c = pre cl (H^c)$.
- 2. $pre int(H^c) = [pre cl(H)]^c$.

3. (1)-Semi-P-Open Set

Definition 3.1

A subset G of a GTS (Z, (x)) is said to be (x)-semi-p-open(in brief, (x) - sp - o) set if there exists an (x) - p - o set H in Z such that $H \subseteq G \subseteq pre-cl_{(x)}H$. Any subset of Z is called (x)-semi-p-closed(in brief, (x) - sp - c) set if its complement is (x)-semi-p-open set. The collection of all (x) - sp - c subsets of Z will be denoted by (x)-SPO(Z). The collection of all (x) - sp - c subsets of Z will be denoted by (x)-SPC(Z).

Theorem 3.2

Let (Z, ω) be a *GTS* and $G \subseteq Z$. Then G is an ω – sp – oset $\Leftrightarrow G \subseteq \text{pre-cl}_{\omega}\text{pre-int}_{\omega}G$.

Proof:

The "if" part

Assume that G is an (x) – sp – oset, then there exists a (x) – p – o subset H of Z such that H \subseteq G \subseteq pre-cl_(x)H, it follows by Theorem 2.6 (4) that pre-int_(x)H \subseteq pre-int_(x)G, but pre-int_(x)H = H, therefore H \subseteq pre-int_(x)G. It follows by Theorem 2.6 (3) that pre-cl_(x)H \subseteq pre-cl_(x)pre-int_(x)G. Now, we get G \subseteq pre-cl_(x)H \subseteq pre-cl_(x)pre-int_(x)G. Thus G \subseteq pre-cl_(x)pre-int_(x)G.

The "only if" part

Assume that $G \subseteq \operatorname{pre-cl}_{(x)}\operatorname{pre-int}_{(y)}G$, we have to show that G is a $(x) - \operatorname{sp}$ – oset. Take $\operatorname{pre-int}_{(y)}G = H$, then H is a $(x) - \operatorname{p}$ – o set and $H \subseteq G \subseteq \operatorname{pre-cl}_{(y)}H$. Hence G is an (x) – sp – oset.

Corollary 3.3

Let (Z, \mathcal{U}) be a *GTS* and $F \subseteq Z$. Then H is $\mathcal{U} - sp - cif$ and only if pre- $int_{\mathcal{U}}(pre-cl_{\mathcal{U}}H) \subseteq H$.

Proof:

The "if" part

Let F be an (x) – sp – c subset of Z, then pre-cl_(x) H = H (by Proposition 2.9(1)) which implies pre-int_(x)(pre-cl_(x)H) \subseteq H, since pre-int_(x)H \subseteq H (by Theorem 2.3(2).

The "only if" part

Assume that pre- $\operatorname{int}_{(j)}\operatorname{pre-cl}_{(j)}\operatorname{H} \subseteq \operatorname{H}$. We have to show H is an (\mathfrak{c}) – sp – cset . Since $\operatorname{pre-int}_{(j)}\operatorname{pre-cl}_{(j)}\operatorname{H} \subseteq \operatorname{H}$, then $\operatorname{H}^c \subseteq [\operatorname{pre-int}_{(j)}(\operatorname{pre-cl}_{(j)}\operatorname{H})]^c$, so we obtain from Proposition 2.10 $\operatorname{H}^c \subseteq \operatorname{pre-cl}_{(j)}(\operatorname{pre-cl}_{(j)}\operatorname{H})^c$ and $\operatorname{H}^c \subseteq \operatorname{pre-cl}_{(j)}\operatorname{pre-int}_{(j)}\operatorname{H}^c$. Hence H^c is an (\mathfrak{c}) – sp – o set by Theorem (2.2.2) which means H is an (\mathfrak{c}) – sp – c .

Proposition 3.4

The union of any collection of (x) - sp - o sets is an (x) - sp - o set.

Proof:

Let $\{G_{\alpha}, \alpha \in \Lambda\}$ be any family of (x) - sp - o sets. Then there exists an (x) - p - o set H_{α} for each G_{α} , $\alpha \in \Lambda$ such that $H_{\alpha} \subseteq G_{\alpha} \subseteq \operatorname{pre-cl}_{(x)} H_{\alpha}$, so $U_{\alpha \in \Lambda} H_{\alpha} \subseteq U_{\alpha \in \Lambda} G_{\alpha} \subseteq U_{\alpha \in \Lambda} \operatorname{pre} - \operatorname{cl}_{(x)} H_{\alpha}$, but $U_{\alpha \in \Lambda} H_{\alpha}$ is an (x) - p - o set by Theorem 2.3, and $U_{\alpha \in \Lambda} \operatorname{pre} - \operatorname{cl}_{(x)} H_{\alpha} \subseteq \operatorname{pre-cl}_{(x)} H_{\alpha}$

Corollary 3.5

The intersection of any collection of (x) - sp - c sets is an (x) - sp - c set.

Proof:

Let $\{F_{\alpha}: \alpha \in \Lambda\}$ be any family of (x) - sp - c subsets of Z, we have to show that $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an (x) - sp - c set, we know that $Z - \bigcap_{\alpha \in \Lambda} F_{\alpha} = \bigcup_{\alpha \in \Lambda} (Z - F_{\alpha})$ (De Morgan's laws). But $\bigcup_{\alpha \in \Lambda} (Z - F_{\alpha})$ is an (x) - sp - c set, so $Z - \bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an (x) - sp - c set. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an (x) - sp - c.

Remark 3.6

The intersection of two (1) - sp - o sets need not to be an (1) - sp - o set, as we show in the following example:

Example

Let
$$Z = \{a, b, c, d\}$$
, $(x) = \{Z, \emptyset, \{a\}, \{d\}, \{a, d\}\},\$
 (x) -PO(Z) = $\{Z, \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\},\$ and

 ω SPO(Z)=

 $\{Z, \emptyset, \{a\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}.$ Let $\{a, b, c\}$ and $\mathcal{T} = \{b, d\}$, $\mathcal{T} = \{b\}$ which is not an $\mathcal{T} = \{b\}$ which is not a

Remark 3.7

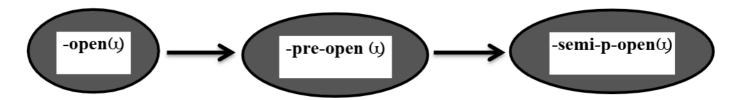
If H and T are two (x) - sp - c sets, then H \cup T need not be(x) - sp - c as we show in the following example:

Example

From the example of Remark 3.7 Let $H_0 = \{d\}$ and $T_0 = \{a, c\}$.

Ho and To are (a) - sp - c set, but Ho U To = {a, c, d} is not an (a) - sp - c set because Z - {a, c, d} = {b} is not an (a) - sp - o set.

The following diagram illustrates the relation among (y)-open, (y)-pre-open, and (y)-semi-p-open set



Definition 3.8

- 1. The union of all (x) sp o sets contained in H is called the (x)-semi-p-interior of H, denoted by s-p-int $_{(x)}(H)$.
- 2. The intersection of all (x) sp c sets containing H is called the (x)-semi-p-closure of H, denoted by s-p-cl(x)(H).

Proposition 3.9

Let H and T be two subsets of (Z, G). Then, the following properties are true:

- 1. $H_0 \subseteq s p cl_{(x)} H_0$.
- 2. If $H_{\sigma} \subseteq T$, then $s p cl_{(\tau)}H_{\sigma} \subseteq s p cl_{(\tau)}T$.
- 3. $s-p-cl_{\omega}H_{\sigma} \cup s-p-cl_{\omega}T_{\sigma} \subseteq s-p-cl_{\omega}$ ($H_{\sigma} \cup T_{\sigma}$).
- 4. $s p cl_{(x)}(H_0 \cap T_0) \subseteq s p cl_{(x)}H_0 \cap s p cl_{(x)}T_0$

Proof:

- 1. It is clear from Definition 3.14(2).
- 2. Let $H_0 \subseteq T_0$, from (1) we have $T_0 \subseteq s p cl_{(i)}T_0$, so $H_0 \subseteq s p cl_{(i)}T_0$ which is $G_0 = sp c$ set, but $S_0 = p cl_{(i)}T_0$ is the smallest $G_0 = sp c$ set containing $G_0 = sp c$ set $G_0 = sp c$ s

- 3. Since $\mathbb{H}_{S} \subseteq \mathbb{H}_{S} \cup \mathbb{T}_{S}$ and $\mathbb{T}_{S} \subseteq \mathbb{H}_{S} \cup \mathbb{T}_{S}$, it follows from (1) that $s p \operatorname{cl}_{(x)}\mathbb{H}_{S} \subseteq s p \operatorname{cl}_{(x)}$
- 4. Since $(H_0 \cap T_0) \subseteq H$ and $(H_0 \cap T_0) \subseteq T$, so semi-p-cl_{(ω)} $(H_0 \cap T_0) \subseteq$ semi-cl_{(ω)} H_0 and $s p \text{cl}_{(\omega)}(H_0 \cap T_0) \subseteq s p \text{cl}_{(\omega)}T_0$, thus $s p \text{cl}_{(\omega)}(H_0 \cap T_0) \subseteq s p \text{cl}_{(\omega)}T_0$.

Theorem 3.10

Proof: Is clear.

Corollary 3.11

$$s - p - \operatorname{cl}_{\scriptscriptstyle{(1)}} Z = Z.$$

Theorem 3.12

Let H and T be two subsets of (Z, (x)). Then the following properties are true:

- 1. $s p \operatorname{int}_{\omega} H_{\omega} \subseteq H_{\omega}$.
- 2. If $\mathbb{H} \subseteq \mathbb{T}$, then $s p \operatorname{int}_{(x)} \mathbb{H} \subseteq s p \operatorname{int}_{(x)} \mathbb{T}$.
- 3. $s p \operatorname{int}_{\omega} (H_{\bullet} \cap T_{\bullet}) \subseteq s p \operatorname{int}_{\omega} H_{\bullet} \cap s p \operatorname{int}_{\omega} T_{\bullet}$
- 4. $s-p-\operatorname{int}_{\omega} H_{\sigma} \cup s-p-\operatorname{int}_{\omega} T_{\sigma} \subseteq s-p-\operatorname{int}_{\omega} H_{\sigma} \cup T_{\sigma}$).

Proof:

- 1. Clear.
- 2. Let $H \subseteq T$, from (1) we have $s p \operatorname{int}_{(x)} H \subseteq H$, so $s p \operatorname{int}_{(x)} H \subseteq T$ where $s p \operatorname{int}_{(x)} H$ is (x) sp 0 set, but $s p \operatorname{int}_{(x)} T$ is the largest (x) sp 0 set contained in T, hence $s p \operatorname{int}_{(x)} H \subseteq S p \operatorname{int}_{(x)} T$.
- 3. Since $(H_{\mathcal{G}} \cap U) \subseteq H$ and $(H_{\mathcal{G}} \cap U) \subseteq U$, so $s p \operatorname{int}_{\mathcal{G}}(H_{\mathcal{G}} \cap U) \subseteq s p \operatorname$
- **4.** Since $\mathbb{H} \subseteq \mathbb{H} \cup \mathbb{T}$ and $\mathbb{T} \subseteq \mathbb{H} \cup \mathbb{T}$, then $s p \operatorname{int}_{(j)} \mathbb{H} \subseteq s p \operatorname{int}_{(j)} (\mathbb{H} \cup \mathbb{T})$ and $s p \operatorname{int}_{(j)} \mathbb{T} \subseteq s p \operatorname{int}_{(j)} \subseteq s$

Theorem 3.13

H is an (x) - sp - o set $\Leftrightarrow H = s - p - int_{(x)}H$.

Proof: Is Clear.

Corollary 3.14

$$s - p - int_{(i)}\emptyset = \emptyset$$

4. $((1)_1, (1)_2)$ -semi-p-continuous function

Definition 4.1:[8]

Let $(Z, (x)_1)$ and $(Y, (x)_2)$ be two GTS·s. A function $f: Z \to Y$ is said to be $((x)_1, (x)_2)$ -continuous function if the inverse image of any $(x)_2$ -open subset of Y is an $(x)_1$ -open set in Z.

Definition 4.2:[9]

A function $f:(Z, (x)_1) \to (Y, (x)_2)$ is called $((x)_1, (x)_2)$ -M- pre-open function if the direct image of any $(x)_1$ - pre-open set in Z is an $(x)_2$ - pre-open set in Y.

Definition 4.3:

A function $f:(Z, \omega_1) \to (Y, \omega_2)$ is called (ω_1, ω_2) -M-semi-p-open $((\omega_1, \omega_2)$ -M-semi-p-closed) function if the direct image of any $(\omega_1$ -semi-p-open $(\omega_1$ -semi-p-closed) set in Z is an $(\omega_2$ -semi-p-open $(\omega_2$ -semi-p-closed) set in Y.

Definition 4.4

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is said to be (ω_1, ω_2) -semi-p-continuous function if the inverse image of any ω_2 -open set in Y is an ω_1 -semi-p-open set in Z.

Theorem 4.5

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is an (ω_1, ω_2) -semi-p-continuous function \Leftrightarrow the inverse image of any ω_2 -closed set in Y is an ω_1 -semi-p-closed set in Z.

Proof:

The "if" part. Let F be any $(x)_2$ -closed set in Y, thus (Y - F) is an $(x)_2$ -open set in Y, then $f^{-1}(Y - F)$ is an $(x)_1$ -semi-p-open set in Z (since f is an $(x)_1$ -semi-p-continuous function), but $f^{-1}(Y - F) = Z - f^{-1}(F)$, then $f^{-1}(F)$ is an $(x)_1$ -semi-p-closed set.

The "only if" part. Let H be any $(x)_2$ -open set in Y, thus (Y - H) is an $(x)_2$ -closed set in Y, then $f^{-1}(Y - H)$ is an $(x)_1$ -semi-p-closed set in Z (by hypothesis) but $f^{-1}(Y - H) = Z - f^{-1}(H)$, then $f^{-1}(H)$ is an $(x)_1$ -semi-p-open set in Z, therefore f is an $(x)_1$ -semi-p-continuous function.

Definition 4.6

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is said to be (ω_1, ω_2) -semi-p-irresolute function if the inverse image of any ω_2 -semi-p-open set in Y is an ω_1 -semi-p-open set in Z

Theorem 4.7

A function $f: (Z, (x)_1) \to (Y, (x)_2)$ is an $(x)_1, (x)_2$ -semi-p-irresolute function \Leftrightarrow the inverse image of each $(x)_2$ -semi-p-closed set in Y is an $(x)_1$ -semi-p-closed set in Z.

Proof:

The "if" part. Let F be any $(x)_2$ -semi-p-closed set in Y, thus (Y - F) is an $(x)_2$ -semi-p-open set in Y, then $f^{-1}(Y - F)$ is an $(x)_1$ -semi-p-open set in Z (since f is an $(x)_1$ -semi-p-irresolute function), but $f^{-1}(Y - F) = Z - f^{-1}(F)$, therefore $f^{-1}(F)$ is an $(x)_1$ -semi-p-closed set.

The "only if" part. Let H be any $(x)_2$ -semi-p-open set in Y, thus (Y-H) is an $(x)_1$ -semi-p-closed set in Y then $f^{-1}(Y-H)$ is an $(x)_1$ -semi-p-closed set in Z (by hypothesis), but $f^{-1}(Y-H) = Z - f^{-1}(H)$, then $f^{-1}(H)$ is an $(x)_1$ -semi-p-open set in Z, therefore f is an $(x)_1$ -semi-p-irresolute function.

Proposition 4.8

Every (ω_1, ω_2) -semi-p-irresolute function is an (ω_1, ω_2) -semi-p-continuous function.

Proof:

Let f be any (ω_1, ω_2) -semi-p-irresolute function from (Z, ω_1) into (Y, ω_2) . Let H by any (ω_2) -open in Y, thus H is an (ω_2) -semi-p-open set (Corollary 3.11), then $f^{-1}(H)$ is an (ω_1) -semi-p-open set in Z(since f is (ω_1, ω_2) -semi-p-irresolute function), therefore f is an (ω_1, ω_2) -semi-p-continuous function.

Remark 4.9

The reverse of Proposition 4.7 is not correct in general as we show in the following example:

Example

Let
$$Z = \{1,2,3,4\}, \omega_1 = \{Z,\emptyset,\{1\},\{4\},\{1,4\}\},$$

 $\omega_1 - PO(Z) = \{Z,\emptyset,\{1\},\{4\},\{1,4\},\{1,2,4\},\{1,3,4\}\}, \text{ and}$
 $\omega_1 - SPO(Z) = \omega_1 - PO(Z) \cup \{\{1,2\},\{1,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\},\}.$
Let $Y = \{a,b,c,d\}, \ \omega_2 = \{\emptyset,\{b,d\}\}, \ \omega_2 - PO(Y) = \{\emptyset,\{b,d\},\{b\},\{d\}\},$
 $\omega_2 - SPO(Y) = \mathbb{P}(Y)$ (The power set of Y).
Define $f : (Z,\omega_1) \to (Y,\omega_2)$ such that $f(1) = f(2) = \{d\}, f(3) = \{b\}$

f is an (ω_1, ω_2) -semi-p-continuous function. But not (ω_1, ω_2) -semi-p-irresolute function, since $\{b\}$ is an $(\omega_2$ -semi-p-open set in Y, but $f^{-1}(\{b\}) = \{3\}$ is not an $(\omega_1$ -semi-p-open set in Z.

Proposition 4.10

Every (ω_1, ω_2) -continuous function is an (ω_1, ω_2) -semi-p-continuous function.

Proof:

Let f be any $(\mathfrak{U}_1, \mathfrak{U}_2)$ - continuous function from (Z, \mathfrak{U}_1) into (Y, \mathfrak{U}_2) . Let H by any \mathfrak{U}_2 -open in Y, it follows from Definition 4.1 that $f^{-1}(H)$ is an \mathfrak{U}_1 - open set in Z, but every \mathfrak{U}_1 - open set is an \mathfrak{U}_1 -semi-p-continuous function.

Remark 4.11

The reverse of Remark 4.9 is not correct in general as we show in the following example:

Example

Let
$$Z = \{1,2,3\}$$
, $\omega_1 = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$, and $\omega_1 - PO(Z) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$,

$$(x)_1 - SPO(Z) = \mathbb{P}(Z)$$
 (The power set of Z).

Let
$$Y = \{a, b, c, d\}, \ (x)_2 = \{\emptyset, \{b, d\}\}, \ (x)_2 - PO(Y) = \{\emptyset, \{b, d\}, \{b\}, \{d\}\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{b, d\}, \{b\}, \{d\}\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{b, d\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{b, d\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{b, d\}, \{d\}\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{b, d\}, \{d\}\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{d\}, \{d\}\}, \{d\}\}, \ (x)_2 = \{\emptyset, \{d$$

$$(x)_2 - SPO(Y) = \mathbb{P}(Y)$$
 (The power set of Y).

Define
$$f: (Z, G)_1) \to (Y, G)_2$$
 such that $f(1) = f(2) = \{a\}, f(3) = \{b\},$

f is an $((1)_1, (1)_2)$ -semi-p-continuous function, but it is not an $((1)_1, (1)_2)$ -continuous function, since $\{b, d\}$ is an $(1)_2$ -open set in Y, but $f^{-1}(\{b, d\}) = \{3\}$ is not an $(1)_2$ -open set in Z.

Proposition 4.12

The composition of (ω_1, ω_2) -semi-p-irresolute function and (ω_2, ω_3) -semi-p-irresolute function is an (ω_1, ω_3) -semi-p-irresolute function.

Proof

Let $f: (Z, (x)_1) \to (Y, (x)_2)$ be $(x)_1, (x)_2$ -semi-p-irresolute function and $g: (Y, (x)_2) \to (W, (x)_3)$ be $(x)_2, (x)_3$ -semi-p-irresolute functions, we have to show that $g \circ f: (Z, (x)_1) \to (W, (x)_3)$ is an $(x)_1, (x)_3$ -semi-p-irresolute function. Let H be any $(x)_3$ -semi-p-open set in H, then $(g \circ f)^{-1}(H) = f^{-1} \circ g^{-1}(H) = f^{-1}(g^{-1}(H))$, but $g^{-1}(H)$ is an $(x)_2$ -semi-p-open set in H (since H is an $(x)_3$ -semi-p-open set in H (since H is an $(x)_3$ -semi-p-irresolute function), and H is an H

Remark 4.13

The composition of (ω_1, ω_2) -semi-p-continuous function and (ω_2, ω_3) -semi-p-continuous function need not to be (ω_1, ω_3) -semi-p-continuous function as we show in the following example:

Example

Let
$$Z = \{1, 2, 3\}, \ (x)_1 = \{Z, \emptyset, \{1, 2\}\},\$$

$$Y = \{a, b, c\}, (x)_2 = \{Y, \emptyset, \{a, b\}\},\$$

$$W = \{i, j, k\}, \quad (x)_3 = \{W, \emptyset, \{i, k\}\},\$$

$$(x)_1$$
-PO(Z)= {Z, Ø, {1}, {2}, {1, 2}, {1, 3}, {2, 3}} = $(x)_1$ -SPO(Z)

$$(x)_2$$
-PO(Y)= {Y, \emptyset , {a}, {b}, {a, b}, {a, c}, {b, c}} = $(x)_2$ -SPO(Y), and

$$(x)_3$$
-PO(W)= {W, Ø, {i}, {k}, {i, j}, {i, k}, {j, k}} = $(x)_3$ -SPO(W)

Define
$$f: (Z, \omega_1) \to (Y, \omega_2)$$
 by $f(1) = f(3) = \{b\}$, $f(2) = \{c\}$.

And
$$g: (Y, (x)_2) \to (W, (x)_3)$$
 by $g(a) = g(c) = \{j\}$, $g(b) = \{k\}$.

Then $g \circ f: (Z, \omega_1) \to (W, \omega_3)$ is defined by:

$$g \circ f(1) = g(f(1)) = g(b) = \{k\},\$$

$$g \circ f(2) = g(f(2)) = g(c) = \{j\},\$$

$$g \circ f(3) = g(f(3)) = g(b) = \{k\},\$$

f is an (ω_1, ω_2) -semi-p-continuous function and g is an (ω_2, ω_3) -semi-p-continuous function. But $g \circ f$ is not an (ω_1, ω_3) -semi-p-continuous function, since $\{i, k\}$ is an $(\omega_3$ -semi-p-open set in W, but $f^{-1}(\{i, k\}) = \{3\}$ is not $(\omega_1$ -semi-p-open set in Z.

Proposition 4.14

The composition of an (ω_1, ω_2) -semi-p-continuous function and (ω_2, ω_3) - continuous function is an (ω_1, ω_3) -semi-p-continuous function.

Proof:

Let $f: (Z, (x)_1) \to (Y, (x)_2)$ be any $((x)_1, (x)_2)$ -semi-p-continuous function and $g: (Y, (x)_2) \to (W, (x)_3)$ be any $((x)_2, (x)_3)$ - continuous function. We have to show that $g \circ f: (Z, (x)_1) \to (W, (x)_3)$ is an $((x)_1, (x)_3)$ -semi-p-continuous function. Let H be any $(x)_3$ - open set in W. Then, $g^{-1}(H)$ is an $(x)_2$ -open set in W (since W is an $(x)_3$ -continuous function), so W is an W is a

Theorem 4.15

Let $f: (Z, (x)_1) \to (Y, (x)_2)$ be an onto function, then f is an $(x)_1, (x)_2$ -M-semi-p-open function if and only if it is an $(x)_1, (x)_2$ -M-semi-p-closed function.

Proof:

The "if" part. Let F be any $(x)_1$ -semi-p-closed set, so (Z - F) is an $(x)_1$ -semi-p-open set, then f(Z - F) is an $(x)_2$ -semi-p-open set (since f is an $(x)_1$ -semi-p-open function), but f(Z - F) = Y - f(F), therefore f(F) is an $(x)_2$ -semi-p-closed. Hence $f(x)_1$ and $f(x)_2$ -semi-p-closed function.

The "only if" part. Let H be any $(\mathfrak{A}_1$ -semi-p-open set, so (Z - H) is an $(\mathfrak{A}_1$ -semi-p-closed set, then f(Z - H) is an $(\mathfrak{A}_2$ -semi-p-closed set (since f is an $(\mathfrak{A}_1, \mathfrak{A}_2)$ -M-semi-p-closed function), but f(Z - H) = Y - f(H), therefore f(H) is an $(\mathfrak{A}_2$ -semi-p-open. Hence f an $(\mathfrak{A}_1, \mathfrak{A}_2)$ -M-semi-p-closed function.

Theorem 4.16

Let $f: (Z, (x)_1) \to (Y, (x)_2)$ be a bijective function, then f is an $((x)_1, (x)_2)$ -M-semi-p-open function, $\Leftrightarrow f^{-1}: (Y, (x)_2) \to (Z, (x)_1)$ is an $((x)_1, (x)_2)$ -semi-p-irresolute function.

Proof

The "if" part. Suppose that f is an $((x)_1, (x)_2)$ -M-semi-p-open function, to show that f^{-1} is an $((x)_1, (x)_2)$ -semi-p-irresolute function. Let H be any $(x)_1$ -semi-p-open set in Z, then $(f^{-1})^{-1}(H) = (f^{-1})^{-1}(H)$

f(H) is an $(\omega)_2$ -semi-p-open set in Y (since f is an $(\omega)_1, (\omega)_2$)-M-semi-p-open function), so f^{-1} is an $(\omega)_1, (\omega)_2$)-semi-p- irresolute function.

The "only if" part. Suppose that f^{-1} is an $(\mathfrak{U}_1, \mathfrak{U}_2)$ -semi-p-irresolute function, to show that f is an $(\mathfrak{U}_1, \mathfrak{U}_2)$ -M-semi-p-open function. Let H be any \mathfrak{U}_1 -semi-p-open set in H, then $(f^{-1})^{-1}(H) = f(H)$ is an \mathfrak{U}_2 -semi-p-open set in H(since H is an H(H)-semi-p-irresolute function), so H is an H(H)-M-semi-p-open function.

Definition 4.17

A bijection function $f: (Z, (x)_1) \to (Y, (x)_2)$ is called $((x)_1, (x)_2)$ -semi-p-homeomorphism function if f is both $((x)_1, (x)_2)$ -semi-p-irresolute function and $((x)_1, (x)_2)$ -M-semi-p-open function.

References

- 1. Engelking, R., General Topology, Sigma Ser. Pure Math. 6, Heldermann Verlag Berlin, 1989.
- 2.Mashhour, A.S.; Abd El-Monsef, M.E.; El-Deeb, S.N. On Pre-Topological Spaces Sets, *Bull. Math. Dela Soc. R.S. de Roumanie*, **1984**,28(76), 39-45.
- 3. Navalagi G.B. Definition Bank in General Topology, Internet 2000.
- 4. Sharma, L.J.N. Topology, Krishna Prakashan Media (P) Ltd, India, Twenty Fifth Edition, 2000.
- 5.Al-Khazraji, R.B., On Semi-P-Open Sets, M.Sc. Thesis, University of Baghdad, 2004.
- 6.Dhana Balan, A.P.; Padma, P. Separation Spaces in Generalized Topology, *International Journal of Mathematics Research*, **2017**, *9*, *1*, 65-74. ISSN 0976-5840.
- 7. Suaad, G. Gasim; Muna L. Abd Ul Ridha, New Open Set on Topological Space with Generalized Topology, *Journal of Discrete Mathematical Sciences and Cryptography*, to appear.
- 8.Basdouria, I.; Messaouda, R.; Missaouia, A. Connected and Hyperconnected Generalized Topological Spaces, *Journal of Linear and Topological Algebra*, **2016**, *05*, *04*,229-234
- 9. Suaad, G. Gasim; Mohanad, N. Jaafar, New Normality on Generalized Topological Spaces, *Journal of Physics*: Conference Series, **2021**.