Using AL-Tememe Transform to Solve System of Linear Second **Order Ordinary Differential Equations With Variable Coefficients**

Ali Hassan Mohammed Aabass85@yahoo.com

Ayman Mohammed Hassan Ayman_bmw2008@yahoo.com

University of Kufa\Faculty of Education for Girls Department of Mathematics

Abstract

Our aim is to apply AL-Tememe transform to solve system of linear second order ordinary differential equations(L.O.D.E) with variable coefficients.

Introduction:

We will use Al-Tememe Transform (T.T) to solve systems of linear Second order ordinary differential equations with variable coefficients. And the method summarized by taking $(\mathcal{T}.T)$ to both sides of the equations then we take (T^{-1}, T) to both sides of the equations and by using partial fraction decomposition we find the values of values constants.

Definition 1: [1]

Let f is defined function at period (a, b) then the integral transformation for f whose it's symbol F(p) is defined as:

$$F(p) = \int_{a}^{b} k(p, x) f(x) dx$$

Where k is a fixed function of two variables, called the kernel of the transformation, and a, b are real numbers or $\pm \infty$, such that the above integral converges.

Definition 2: [2]

The Al-Tememe transformation for the function f(x); x > 1 is defined by the following integral:

$$\mathcal{T}[f(x)] = \int_{1}^{\infty} x^{-p} f(x) dx = F(p)$$

such that this integral is convergent, p is positive constant

Property 1: [2]

This transformation is characterized by the linear property, that is

$$\mathcal{T}[Af(x) + Bg(x)] = A\mathcal{T}[f(x)] + B\mathcal{T}[g(x)],$$

Where A, B are constants, the functions f(x), g(x) are defined when x > 1.

The Al-Tememe transform for some fundamental functions are given in table(1) [2]:

ID	Function, $\mathbf{f}(\mathbf{x})$	$F(p) = \int_{1}^{\infty} x^{-p} f(x) dx$ $= \mathcal{T}[f(x)]$	Regional of convergence
1	k; k=constant	$\frac{k}{p-1}$	p > 1
2	x^n , $n \in R$	$\frac{1}{p - (n+1)}$	p > n + 1
3	lnx	$\frac{1}{(p-1)^2}$	p > 1
4	$x^n lnx$, $n \in R$	$\frac{1}{[p-(n+1)]^2}$	p > n + 1
5	sin(alnx)	$\frac{a}{(p-1)^2+a^2}$	p > 1 a =constant
6	cos(alnx)	$\frac{p-1}{(p-1)^2+a^2}$	p > 1 a =constant
7	sinh(alnx)	$\frac{a}{(p-1)^2-a^2}$	$ \mathbf{p} - 1 > a$ $\mathbf{a} = \text{constant}$
8	cosh(alnx)	$\frac{p-1}{(p-1)^2 - a^2}$ table(1)	$ \mathbf{p} - 1 > \mathbf{a}$ a = constant

From the Al-Tememe definition and the above table, we get:

Theorem 1:

If $\mathcal{T} f(x) = F(p)$ and a is constant, then $\mathcal{T} f(x^{-a}) = F(p+a)$.see [2]

Definition 3: [2]

Let f(x) be a function where (x > 1) and $\mathcal{T} f(x) = F(p)$, f(x) is said to be an inverse for the Al-Tememe transformation and written as

 $\mathcal{T}^{-1} F(p) = f(x)$, where \mathcal{T}^{-1} returns the transformation to the original function.

Property 2: [2]

If $\mathcal{T}^{-1}F_1(p) = f_1(x)$, $\mathcal{T}^{-1}F_2(p) = f_2(x)$,..., $\mathcal{T}^{-1}F_n(p) = f_n(x)$ and a_1 , a_2 , ... a_n are constants, then

$$\mathcal{T}^{-1}[a_1F_1(p) + a_2F_2(p) + \dots + a_nF_n(p)] = a_1f_1(x) + a_2f_2(x) + \dots + a_nf_n(x)$$

Theorem 2: [2]

If the function f(x) is defined for x > 1 and its derivatives $f^{(1)}(x)$, $f^{(2)}(x)$, ..., $f^{(n)}(x)$ are exist then:

$$\mathcal{T}[x^n f^{(n)}(x)] = -f^{(n-1)}(1) - (p-n)f^{(n-2)}(1) - \cdots$$
$$-(p-n)(p-(n-1))\dots(p-2)f(1) + (p-n)!F(p)$$

Definition 4: [3]

A function f(x) is piecewise continuous on an interval [a, b] if the interval can be partitioned by a finite number of points

 $a = x_0 < x_1 < \cdots < x_n = b$ such that:

1. f(x) is continuous on each subinterval (x_i, x_{i+1}) , for i = 0, 1, 2, ..., n - 1

2. The function f has jump discontinuity at x_i , thus

$$\left|\lim_{x \to x_i^+} f(x)\right| < \infty$$
, $i = 0, 1, 2, ..., n - 1$;
 $\left|\lim_{x \to x_i^-} f(x)\right| < \infty$, $i = 0, 1, 2, ..., n$

Al-Tememe Transform Method for Solving linear Systems of Ordinary Differential Equations:

Let us consider, we have a linear system of ordinary differential equation of second order with variable coefficients which we can write it by:

$$x^{2}y_{1}'' + b_{1}xy_{1}' = a_{11}y_{1} + a_{12}y_{2} + g_{1}(x)$$

$$x^{2}y_{2}'' + b_{2}xy_{2}' = a_{21}y_{1} + a_{22}y_{2} + g_{2}(x)$$
...(1)

Subject to some initial conditions $y_1(1), y'_1(1), y_2(1)$ and $y'_2(1)$.

Where b_1 , b_2 , a_{11} , a_{12} , a_{21} and a_{22} are constants, y_1' and y_1'' are derivatives of function $y_1(x)$, and y_2' and y_2'' are derivatives of function $y_2(x)$, such that $y_1(x)$ and $y_2(x)$ are continuous functions and the $(\mathcal{T}.T)$ of $g_1(x)$ and $g_2(x)$ are known.

For solving the system (1) we take $(\mathcal{T}.T)$ to both sides of it, and after simplification we put $Y_1 = \mathcal{T}(y_1)$, $Y_2 = \mathcal{T}(y_2)$, $G_1 = \mathcal{T}(g_1)$, $G_2 = \mathcal{T}(g_2)$ so, we get:

$$(p-2)(p-1)Y_1 - (p-2)y_1(1) - y_1'(1) + b_1(p-1)Y_1 - b_1y_1(1)$$

= $a_{11}Y_1 + a_{12}Y_2 + G_1(p)$

$$(p-2)(p-1)Y_2 - (p-2)y_2(1) - y_2'(1) + b_2(p-1)Y_2 - b_2y_2(1)$$

= $a_{21}Y_1 + a_{22}Y_2 + G_2(p)$

Hence,

$$(p^{2} + c_{1}p + c_{2})Y_{1} - a_{12}Y_{2}$$

$$= (p - 2)y_{1}(1) + y'_{1}(1) + b_{1}y_{1}(1) + G_{1}(p) \qquad \cdots (2)$$

Also,

$$-a_{21}Y_1 + (p^2 + d_1p + d_1)Y_2$$

= $(p-2)y_2(1) + y_2'(1) + b_2y_2(1) + G_2(p)$...(3)

Where
$$c_1 = b_1 - 3$$
 , $c_2 = 2 - b_1 - a_{11}$, $d_1 = b_2 - 3$ $d_2 = 2 - b_2 - a_{22}$ and

By multiplying eq. (2) by $(p^2 + d_1p + d_1)$ and (3) by a_{12} and collecting the result terms we have :

$$Y_1 = \frac{q_1(p)}{h_1(p)}$$
 ; $h_1(p) \neq 0$...(4)

By similar method, we find

$$Y_2 = \frac{q_2(p)}{h_2(p)}$$
 ; $h_2(p) \neq 0$, ...(5)

where q_1 , q_2 , h_1 and h_2 are polynomials of p, such that the degree of q_1 is less than the degree of h_1 and the degree of q_2 is less than the degree of h_2 .

By taking the inverse of Al-Tememe transform $(\mathcal{T}^{-1}.T)$ to both sides of equations (4) and (5) we get:

$$y_{1} = \mathcal{T}^{-1} \left[\frac{q_{1}(p)}{h_{1}(p)} \right]$$

$$y_{2} = \mathcal{T}^{-1} \left[\frac{q_{2}(p)}{h_{2}(p)} \right]$$
...(6)

Equations (6) represents the general solution of system (1) which we can be written it as follows: $y_1 = A_1 k_1(x) + A_2 k_2(x) + \cdots + A_m k_m(x)$

$$y_2 = B_1 \rho_1(x) + B_2 \rho_2(x) + \dots + B_m \rho_m(x)$$

Where $\ \lambda_1$, λ_2 ,..., λ_m and ρ_1 , ρ_2 ,..., ρ_m are functions of x , and

 A_1 , A_2 ,..., A_m are constants, which is number equals to the degree of $h_1(p)$ also B_1 , B_2 ,..., B_m are constants, which is, number equals to the degree of $h_2(p)$.

To find the values of constants of A_1 , A_2 ,..., A_m and B_1 , B_2 ,..., B_m we used partial fraction decomposition.

Example(1):For solving the system

$$x^{2}y_{1}'' - xy_{1}' = -y_{1} + y_{2} + x^{-3}$$
 ; $y_{1}(1) = 0$, $y'_{1}(1) = 0$
 $x^{2}y_{2}'' + 7xy_{2}' = y_{1} - 9y_{2} + x$; $y_{2}(1) = 0$, $y'_{2}(1) = 0$

We take Al-Tememe transform to both sides of above system and we get:

$$(p-2)(p-1)Y_{1} - (p-2)y_{1}(1) - y'_{1}(1) - (p-1)Y_{1} + y_{1}(1)$$

$$= -Y_{1} + Y_{2} + \frac{1}{p+2} \qquad ; \quad p > -2 \qquad \cdots (7)$$

$$(p-2)(p-1)Y_{2} - (p-2)y_{2}(1) - y'_{1}(1) + 7(p-1)Y_{2} - 7y_{2}(1)$$

$$= Y_{1} - 9Y_{2} + \frac{1}{p-2} \qquad ; \quad p > -2 \qquad \cdots (8)$$

After simplification eq. (7) and eq. (8) we get

$$(p-2)^{2}Y_{1} - Y_{2} = \frac{1}{p+2}$$

$$(p+2)^{2}Y_{2} - Y_{1} = \frac{1}{p-2}$$

$$\cdots (10)$$

By multiplying eq. (9) by $(p + 2)^2$ and eq. (10) by 1 we get:

$$(p-2)^{2}(p+2)^{2}Y_{1} - (p+2)^{2}Y_{2} = (p+2)$$

$$-Y_{1} + (p+2)^{2}Y_{2} = \frac{1}{p-2}$$

we get:

$$Y_1 = \frac{1}{(p-2) \ (p^2 - 5)}$$

and

$$Y_2 = \frac{1}{(p+2) \ (p^2 - 5)}$$

Therefore, after using \mathcal{T}^{-1} . T we get:

$$y_1 = \mathcal{T}^{-1} \left[\frac{A_1}{p-2} + \frac{B_1 p + C_1}{p^2 - 5} \right]$$
$$y_2 = \mathcal{T}^{-1} \left[\frac{A_2}{p+2} + \frac{B_2 p + C_2}{p^2 - 5} \right]$$

And after using partial fractions decomposition we get the equations:

$$A_1 + B_1 = 0$$

-2B₁ + C₁ = 0
-5A₁ - 2C₁ = 1

And hence,

$$\begin{array}{l} A_1=-1\ ,\,B_1=1\ ,C_1=2\\ \Longrightarrow \,y_1=-x+x^{-1}cosh\sqrt{5}\ lnx+\frac{2\sqrt{5}}{5}x^{-1}sinh\sqrt{5}\ lnx\\ A_2+B_2=0\\ 2B_2+C_2=0\\ -5A_2+2C_2=1\\ \text{Also we get:} \end{array}$$

 $A_2 = -1$, $B_2 = 1$, $C_2 = -2$

$$A_{2} = -1, B_{2} = 1, C_{2} = -2$$

$$\Rightarrow y_{2} = -x^{3} + x^{-1} \cosh\sqrt{5} \ln x - \frac{2\sqrt{5}}{5} x^{-1} \sinh\sqrt{5} \ln x$$

Example (2): For solving the system

$$x^{2}y_{1}'' + xy_{1}' = y_{2} + x^{-2}$$
 $y_{1}(1) = 0$, $y'_{1}(1) = 0$
 $x^{2}y_{2}'' + 5xy_{2}' = y_{1} - 4y_{2} + lnx$ $y_{2}(1) = 0$, $y'_{2}(1) = 0$

Sol: We take Al-Tememe transform to both sides of above system and we get:

$$(p-2)(p-1)Y_{1} - (p-2)y_{1}(1) - y'_{1}(1) + (p-1)Y_{1} - y_{1}(1)$$

$$= Y_{2} + \frac{1}{p+1} \qquad \cdots (11)$$

$$(p-2)(p-1)Y_{2} - (p-2)y_{2}(1) - y'_{1}(1) + 5(p-1)Y_{2} - 5y_{2}(1)$$

$$= Y_{1} - 4Y_{2} + \frac{1}{(p-1)^{2}} \qquad \cdots (12)$$

After simplification eq. (11) and eq. (12) we get

$$(p-1)^2 Y_1 - Y_2 = \frac{1}{p+1}$$
 ; $p > -1$... (13)

$$(p+1)^2 Y_2 - Y_1 = \frac{1}{(p-1)^2}$$
 ; $p > 1$... (14)

By multiplying eq. (13) by $(p + 1)^2$ and eq. (14) by 1 we get:

$$(p-1)^{2}(p+1)^{2}Y_{1} - (p+1)^{2}Y_{2} = (p+1)$$
$$-Y_{1} + (p+2)^{2}Y_{2} = \frac{1}{(p-1)^{2}}$$

we get:

$$Y_1 = \frac{p^3 - p^2 - p + 2}{p^2 (p-1)^2 (p^2 - 2)}$$

and

$$Y_2 = \frac{p+2}{p^2 (p+1)(p^2-2)}$$

Therefore , after using \mathcal{T}^{-1} . T and partial fractions decomposition

$$\begin{aligned} y_1 &= \mathcal{T}^{-1} \left[\frac{A_1}{p} + \frac{B_1}{p^2} + \frac{C_1}{p-1} + \frac{D_1}{(p-1)^2} + \frac{E_1 p + F_1}{p^2 - 2} \right] \\ A_1 &+ C_1 + E_1 = 0 \\ -2A_1 + B_1 - C_1 + D_1 - 2E_1 + F_1 &= 0 \\ -A_1 - 2B_1 - 2C_1 + E_1 - 2F_1 &= 1 \\ 4A_1 - B_1 + 2C_1 - 2D_1 + F_1 &= -1 \\ -2A_1 + 4B_1 &= -1 \\ -2B_1 &= 2 \end{aligned}$$

Hence,

$$A_1 = {}^{-3}/_2$$
, $B_1 = -1$, $C_1 = 0$, $D_1 = -1$, $E_1 = {}^{3}/_2$, $F_1 = 2$
 $\Rightarrow y_1 = {}^{-3}/_2 x^{-1} - x^{-1} \ln x - \ln x + {}^{3}/_2 x^{-1} \cosh \sqrt{2} \ln x + \sqrt{2} x^{-1} \sinh \sqrt{2} \ln x$

By the same method we find:

$$A_2 = \frac{1}{2}$$
, $B_2 = -1$, $C_2 = -1$, $D_2 = \frac{1}{2}$, $E_2 = 0$
 $\Rightarrow y_2 = \frac{1}{2}x^{-1}cosh\sqrt{2}lnx + \frac{1}{2}x^{-1} - x^{-1}lnx - x^{-2}$

REFERENCES

- [1]. Gabriel Nagy, "Ordinary Differential Equations" Mathematics Department, Michigan State University, East Lansing, MI, 48824. October 14, 2014.
- [2]. Mohammed, A.H. ,AtheraNemaKathem, "Solving Euler's Equation by Using New Transformation", Karbala university magazine for completely sciences ,volume (6), number (4), (2008).
- [3]. William F. Trench, "Elementary Differential Equations" Trinity University, 2013.