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ABSTRACT 

 The numerical stability analysis of Brusselator system has been done in one and 

two dimensional space. For one dimension we studied the numerical stability for 

explicit and implicit (Crank- Nicolson) methods and we found that explicit method for 

solving Brusselator system is stable under the conditions  
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While the implicit method is unconditionally stable. For two dimensional space we 

found that ADE method is stable under condition  
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ADI is unconditionally stable. 
Keywords: numerical stability, Brusselator system. 

 Brusselatorالاستقرار العددي لنظام 

 سيفإفاضل  رستم سعيد سعد احمد مناع
 امعة دهوك، جكلية التربية جامعة صلاح الدين ، كلية العلوم زاخو جامعة ، كلية العلوم

 21/02/2010تاريخ قبول البحث:                                   22/11/2009تاريخ استلام البحث: 

 صخالمل
فتتب دعتتد  افتتد  فتتب دعتتدين  فتتب المعتتد الوافتتد تمتتد  Brusselatorراستتة اتستتتيرارلة العددنتتة ل  تتام تمتتد د 

 تحتد الرتر  ةمستتير  ةالصترلح ةالطرليت  أن قد  جتداا  ةالضم ي ة الطرلي ةالصرلح ةدراسة اتستيرارلة العددنة للطرلي
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ADE  تحد الرر  ةمستير 
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   Brusselatorا ام ، اتستيرارلة العددنةالكلمات المفتاحية: 

1.  Introduction 

 Stability concepts are basic in many engineering and other applications. They 

are suggested by physics, where stability means, roughly speaking, that a small change 

(a small disturbance) of a physical system at some instant changes the behavior of the 

system only slightly at all future times t. Mathematically, stable means small 

perturbation in the initial data (or small error at any time) that remains small at later 

times. However, if small changes in the initial data produce large change in the final 

results, the case will be unstable. [1] 

 The numerical stability of the numerical methods is studying the errors 

introduced by the truncation of the series which are used to represent the derivatives in 

the process of replacing the differential equations by finite difference equation and the 

growth of these errors and finding the conditions for which the errors will be decay 

from one time step to the next. [5] 

2.  Mathematical Model: 

 A general class of nonlinear-diffusion system is in the form  
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with homogenous Dirchlet or Neumann boundary condition on a bounded domain Ω, 

n≤3, with locally Lipschitz continuous boundary. It is well known that reaction and 

diffusion of chemical or biochemical species can produce a variety of spatial patterns. 

This class of reaction diffusion systems includes some significant pattern formation 

equations arising from the modeling of kinetics of chemical or biochemical reactions 

and from the biological pattern formation theory. 

 In this group, the following four systems are typically important and serve as 

mathematical models in physical chemistry and in biology:   

Brusselator Model: 

   
 

Gray-Scott Model:  
 

 

Glycolysis Model:  
 

 

Schnackenberg Model:  
 

 

 The Brusselator model describes the case in which the chemical reactions follow 

the scheme  

 

 

 

 

where A, B, D, E, U and V are chemical components. Let u(x,t) and v(x,t) be the 

concentrations of U and V, and assume that the concentrations of the input components 

A and B are held constant during the reaction process, denoted by a and b respectively. 

Then one obtains the following system of two nonlinearly coupled reaction-diffusion 

equations,  

  

,                              
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where  are positive constants. [7]  

Yakov and Hunscok [6] studied the dynamics of the local map. Discussing the set of 

trajectories that escape to infinity as well as analyze the set of bounded trajectories.  

Yuan shun [8] investigated responses of dynamic system to pulse perturbations 

theoretically and experimentally. Complex phenomena such as limit cycles, periodic 

solutions and chaos were numerically demonstrated. 

3.  Numerical Stability in One Dimension in Space: 

 The Von Neumann analysis is the most commonly used method of determining 

stability criteria as it is generally the easiest to apply, the most straight-forward and 

most dependable. This method developed by Von Neumann during World War II, was 

first discussed in detail by O’Brien, Hyman and Kaplan in a paper published in 1951. 
 

3.1  Numerical Stability of Explicit Method:  
 

 The general form of Von Neumann method is to substitute the  solution in finite 

difference method at the time t by 
xiet  )( , when  >0 and 1−=i  [5]. To apply this 

method, the system in equation (1) must be in the linearizes form [2], then we use the 

explicit method to obtain the following form 
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where for the first equation of the 

system, for some values of a, ka is zero, [3]. So  
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Dividing both sides of the equation by 
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For some values of  , we can assume that )2/(sin 2 x  is one [3], and  





=+−−=

+
))1(41(

)(

)(
1 bkr

t

tt
  

It is stable if |  , so 

│ ))1(41( 1 +−− bkr │ 1 , which implies 1))1(411 1 +−−− bkr  

Case 1: ))1(411 1 +−−− bkr
4

)1(2
)1(24 11

+−
+−

bk
rbkr ,  or 

Case 2: 1))1(41 1 +−− bkr
4

)1(
1

+−


bk
r  which implies that   



 Saad A. Manaa - Rostam K. Saeed & Fadhil H. Easif 
 

 

 46 

The equation is stable under the conditions
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r  and for the second equation 

of the system (1)  
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To study the stability of the second equation we let xi
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Finally the system is conditionally stable under the conditions
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3.2  Numerical Stability of Implicit Method: 
 

 We use Crank-Nicolson finite difference in the first equation of the system (1) to 

obtain 
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Substituting qpu ,  by 
xiet  )(  in the above equation, yields 
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Dividing  both sides of the equation by 
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Multiplying both sides of the equation by k to obtain 
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Hence the Crank-Nicolson method is unconditionally stable for the first equation of 

Brusselator model, and for the second equation  
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Since for both equations of the system we have | | ≤1, the Crank-Nicolson method is 

unconditionally stable.  
 

4.  Numerical Stability in Two Dimensional Space: 
 

4.1  Numerical stability of ADE: 
 

 The Von-Neumann method has been used to study the stability analysis of 

Brusselator Model in two dimensions; we can apply this method by substituting the 

solution in finite difference method at time t by ,)( ymxm eet   where   and ,0  and 
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4.2  Numerical Stability of ADI: 
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 In order to study the stability of the above equation, let
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Dividing both sides of the above equation by  ymxm ee   to get 
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Rearranging the above equation  
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For some values of  and  assume that )2/(sin 2 x and )2/(sin 2 y  are unity [4] , 

so the equation will take the form 
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Similarly for the second equation of the Brusselator model we assume that 
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nqp eetv  )(,, = , where 1−=m , the Finite difference form of this equation is 
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Then 
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Dividing both sides of the equation by ymxm ee  , to get 
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For some values of  and  we have 2/(sin 2 x ) and  )2/(sin 2 y  are unity, so we 

have )()()41( 1 tttm  =++  and 
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Where 111  and stand for the I-plane and II-plane respectively, each of the above 

terms 111  and is conditionally stable. 

 However the combined two-level has the form 
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Thus the above scheme is unconditionally stable, each individual equation is 

conditionally stable by itself, and the combined two-level is completely stable.   
 

5.  Conclusion  
 

 We concluded that the explicit method for solving Brusselator system is stable 

under the condition   
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While the implicit method is unconditionally stable. For two dimension in space we 

found that ADE method is stable under condition  
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ADI is unconditionally stable. 
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