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ABSTRACT

The numerical stability analysis of Brusselator system has been done in one and
two dimensional space. For one dimension we studied the numerical stability for
explicit and implicit (Crank- Nicolson) methods and we found that explicit method for

solving Brusselator system is stable under the conditions r, < 2=k(b+1) ,and r, <1/2.

While the implicit method is unconditionally stable. For two dimensional space we

found that ADE method is stable under condition r, < % ,and r, <1/4 , while

ADI is unconditionally stable.
Keywords: numerical stability, Brusselator system.
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1. Introduction

Stability concepts are basic in many engineering and other applications. They
are suggested by physics, where stability means, roughly speaking, that a small change
(a small disturbance) of a physical system at some instant changes the behavior of the
system only slightly at all future times t. Mathematically, stable means small
perturbation in the initial data (or small error at any time) that remains small at later
times. However, if small changes in the initial data produce large change in the final
results, the case will be unstable. [1]

The numerical stability of the numerical methods is studying the errors
introduced by the truncation of the series which are used to represent the derivatives in
the process of replacing the differential equations by finite difference equation and the
growth of these errors and finding the conditions for which the errors will be decay
from one time step to the next. [5]

2. Mathematical Model:
A general class of nonlinear-diffusion system is in the form
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1:_{ = ﬂ‘lﬂl.'u + ﬂl'u + bl'lr‘ +f|:.uryj + g]_l:x]

Qi

:: =d,Mu+ a,u+ byv — flw,v) + g, (x)

with homogenous Dirchlet or Neumann boundary condition on a bounded domain €,
n<3, with locally Lipschitz continuous boundary. It is well known that reaction and
diffusion of chemical or biochemical species can produce a variety of spatial patterns.
This class of reaction diffusion systems includes some significant pattern formation
equations arising from the modeling of kinetics of chemical or biochemical reactions
and from the biological pattern formation theory.

In this group, the following four systems are typically important and serve as
mathematical models in physical chemistry and in biology:

Brusselator Model:
ay=—(b+1),by=0a,=b,b,=0,f =uv,g, =a,g, =
0,where a and b are positive constants.

Gray-Scott Model:
ﬂl = _(f+kj,bl = U,ﬂg = U,bj = _F,f = 'ij,gl = GJQE =
F,where F and k are positive constants

Glycolysis Model:

2 ind
a;=-1b,= ka,=0b, ==k, f=uvg =pg =0,

T

where k,p and § are positive constants
Schnackenberg Model:

.,
ay=—kb=a =b=0f=uvg =ag=
b,where k,a and b are positive constants

The Brusselator model describes the case in which the chemical reactions follow
the scheme

A-=U
E+U—-V+D
2U+V =30
U—-E

where A, B, D, E, U and V are chemical components. Let u(x,t) and v(x,t) be the
concentrations of U and V, and assume that the concentrations of the input components
A and B are held constant during the reaction process, denoted by a and b respectively.
Then one obtains the following system of two nonlinearly coupled reaction-diffusion
equations,

| (=1}
=

=dpautuir—b+Duta (Ex)e0,%) x0

™

T Oy
=

v

= d,Av — u“v + bu, (t,x) € (0,%2) xQ (1)

L=+

L

ult,x) =vit,x)=0, t20, xedQ
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u(0, x) = uyx), v(0,x) = vylx), xeQ

where d4,d,,a and b are positive constants. [7]

Yakov and Hunscok [6] studied the dynamics of the local map. Discussing the set of
trajectories that escape to infinity as well as analyze the set of bounded trajectories.
Yuan shun [8] investigated responses of dynamic system to pulse perturbations
theoretically and experimentally. Complex phenomena such as limit cycles, periodic
solutions and chaos were numerically demonstrated.

3. Numerical Stability in One Dimension in Space:

The Von Neumann analysis is the most commonly used method of determining
stability criteria as it is generally the easiest to apply, the most straight-forward and
most dependable. This method developed by Von Neumann during World War 11, was
first discussed in detail by O’Brien, Hyman and Kaplan in a paper published in 1951.

3.1 Numerical Stability of Explicit Method:

The general form of Von Neumann method is to substitute the solution in finite
difference method at the time t by w(t)e'™, when >0 and i =~+/—1 [5]. To apply this

method, the system in equation (1) must be in the linearizes form [2], then we use the
explicit method to obtain the following form

Uy =R Upq tUp ) +(@=2r —k(b+D)u,, +ka

p.g+l — p+1,q
)+(@-2r,)v,, +kbu,

\Y; =T, (VMq +V

p,g+l p-1q

where = ﬂii and r, = i—k ,Ax = hand At =k, for the first equation of the

system, for solr-ne values of a ka is zero, [3]. So

w(t+At)e'™ = [ ()e“ ™ +y (t)e' ) + (1-2r, — k(b + D (t)e'”

Dividing both sides of the equation by e'**, to obtain
w(t+At) =r[e" > +e "y (t) + (1—2r, — k(b +Dw (t)

w(t+At) =y (t)[r,(2cos(aAX)]+y (t)[1-2r, —k(b +1)]

w(t+At) = (t)[2r,(1-2sin* (aAX/ 2)]+w (H)[1-2r, — k(b +1)]

For some values of o, we can assume that sin”(aAx/2) is one [3], and

YAEAD s k1)=&
w(t)
)

i+
It is stable if|L| =1,s0
wit)

| @—4r,—k(b+1)) | <1, which implies —1<1-4r, —k(b+1) <1

Case 1: ~1<1-4r, —k(b+1) = 4r, <2—Kk(b+1) = 1, s—z‘kib”) Cor

Case 2: 1-4r —k(b+D) <1=>r, zw which implies that r = 0
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2—k(b+1)

The equation is stable under the conditions r, < and for the second equation

of the system (1)
d,k

Vg = h2 (Vp+1,q _2Vp,q TV

Hq) +V, o+ kbup'q

Assuming that r, :%k and for some values of b, kb is zero, so the equation will be in

the form

v :rz(vp+l’q+v )+(1—2r2)vp’q

p.q+l p-1q

To study the stability of the second equation we let v, = g(t)e'”™ so the equation will
be in the form
(t+A)e” =1 [p(t)e” "™ +p(t)e” "]+ (1-2r,)p(t)e”
=r,0(t)[e"” (2cos(fAX/ 2)) + (1—2r,) p(t)e™
Dividing both sides of the equation by ¢(t)e”” to obtain
pt+Al) =1,(2cos(pAx)) + (1-2r,)
o(t)
= 2r,(1- 2sin®(BAX/ 2)) + (1-2r,)
=1-4r,sin*(BAX/2) =7

It is stable if |75 | <1, or | % | <1=11-4r,sin°(BAX/2) | <1
@

for some values of S, we can assume that sin®(8Ax/2) is one [4], so
| 1-4r, | <1=-1<@-4r,)<1,

Case1: —1<(1-4r,) =>4r,<2=1r1,<1/2

Case 2: (1-4r,)<1=4r,20=r,20

And this is always true, or At/(Ax)® <1 . Thus the equation is conditionally stable with
condition r, <1/2.

2-k(b+D)

Finally the system is conditionally stable under the conditions r, <
r,<1/2.
3.2 Numerical Stability of Implicit Method:

We use Crank-Nicolson finite difference in the first equation of the system (1) to
obtain

u u

pa+l — Ypg _ d

" ontlUee s
Substituting U, , by w(t)e”™ in the above equation, yields

2u oq TUpiag tTUpagu — 2u o TU p+lVqﬂ] —(b+2u b
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. . d i (X=AX i iy (X+ iy (X—Ax
y(t+ADe”™ —y(e™ _ 2—hlz[w(t)e” M =2y (t)e™ +y (t)e” ™ +y (t+ At)e
k

— 2 (t+ At)e” +p (t + At)e” 0] — (b + Dy (t)e™

Dividing both sides of the equation by € to obtain

l//(t +AB _W(t) N 2(':]12 [l//(t)e—imx _ Zy/(t) + l//(t)eiyAx -H//(t + At)e—iyAx

— 2w (t+At) +y(t+At)e™ ] =—(b+Dy(t)

Multiplying both sides of the equation by k to obtain

_dky(t+At)
2h?

[ (t+ AL —pr (0)] — SO pime 5 ginaeg [e7 —2+e™]=—(b+Dkuy(t)

2h?

Assuming r, :(%k and

[z//(t+At)—y/(t)]—rl‘”—z(t)[zcos(mx)—2]—M[2cos(mx) ~2]=—(b+Dky(t)

[ (t+ At) - ()] + ny (1) [1 - cos(yAX) ]+ ry (t + At)[1 - cos(yAx)] = —(b + Dk (t)

[y (t+ At) —w ()] + L (D[2sin® (JAX ] 2)] + rw (t+ At)[2sin® (yAx ] 2)] = —(b + Dk (t)

And [1+2r;sin®(yAX/ 2)Jw (t + At) =[1—2r, sin® (jAX/ 2) — (b +1)k]Jw (t) which implies

(t+At)  1-(2rsin®()Ax/2)+(b+1)k)

w(t) (1+2r,sin® (yAX/2)

ly (t+At)

20!

| 1—(2r,sin® (3AX/ 2) + (b +1)K)
1+2r,sin’ (yAx/ 2

Hence the Crank-Nicolson method is unconditionally stable for the first equation of

Brusselator model, and for the second equation

Voan ~Voa _ d,
k 2h®

- _ |¢X - - -

Substitute v, , = @(t)e'” in the above equation to obtain
4,

= 2h?
—20(t + At)e'™ + o(t + At)e?]

that ¥

For stability we need <1,i.e,

| <1, forall r,k,b

[Vp—l,q - 2Vp,q + Vp+1,q + Vp—l,q+1 - 2Vp,q+1 + Vp+1,q+1]

(t+At)e™ —p(t)e™ [p(1)e" " — 2p(t)e"™ + p(t)e'* ™ + gt + At)e ™)

k

d t ig(x—Ax i i (X+AX d t+At ig(x—Ax
[(p(t+At)—g0(t)]ei@(_%g)[6¢( ) _ it | it 4 2¢§h2 ) [ei#0-w

k _ 2ei¢x + ei¢(x+Ax)]

multiplying both sides of the equation by k e *to obtain

p(t+At)—op(t) = _dz;(fz(t) [ — 2+ 6™ ]+ —dzk(pz(;j A [e7™ —2+e""™]
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Let r,= %k = p(t+At)—p(t) = M[Z COS(¢AX) — 2]+, @[2 cos(gAx) — 2]
p(t+At) —o(t) = — Rp(t + At)[1-cos(#Ax)] - rp(t)[1 - cos(#Ax)]

P(t+At) —p(t) = — Lt + A)[L— (L— 2sin (JAX/ 2)] - 1,p(t)[L— (L— 2sin (gAX/ 2)]
P(t+At) —(t) = — 2r,p(t + At)sin® (gAx/ 2) — 2r,¢p(t) sin® (gpAX / 2)

@(t+ At) +2r,p(t + At)sin®(¢Ax/ 2) = ¢(t) — 2r,p(t)sin®(gAx / 2)

[1+ 2r, sin®(gAX/ 2) ] p(t + At) =[1— 2r, sin*(gAx/ 2) ] p(t)

p(t+At) [1-2rsin’(gpAx/2)]
p(t)  [1+2rs8in? (4AX/2)]

Thus |‘”(Ltm)|=|§|sl 50

[1-2rsin®(gAX/2) ]
[1+2r,5in? (pAX/2)]
Since for both equations of the system we have |£| <1, the Crank-Nicolson method is
unconditionally stable.

<1, vr,,bk,

4. Numerical Stability in Two Dimensional Space:
4.1 Numerical stability of ADE:

The Von-Neumann method has been used to study the stability analysis of
Brusselator Model in two dimensions; we can apply this method by substituting the

solution in finite difference method at time t by w(t)e™e™, where g and y >0, and
m=,/—1 . To apply Von-Neumann on the first equation of Brussellator Model
2 2
N g2 Y binu+a
t ox® oy
And after eliminating the nonlinear term, then the equation becomes

u =1-4r—-k(b+D)u,,,+n +Uu +U +U ) +ak

p.an+l p.a,n p+L,a.n p-1,0,n p.g+Ln p.g-Ln

dqk
Neglecting az for some values of a [3], where 13 = —, so the equation will be in the
form
w(t+At)e™e™ = (1-4r, —k(b+1D)w (t)e™e™ +r, (w(t)e™e™ 4
l/,(t)emﬁ(X—AX)emyy +l//(t)emﬁ5<em7(y+Ay) +l/,(t)em@<em7(y—Ay)
Now dividing both sides of the equation by w(t)e™e™ to obtain
% =(1-4r,—k(b+1) +r, (™™ +e ™ + g™V 1 g ™W)
7

=(1-4r, —k(b+1)) + r;(2cos(LAX) + 2cos(jAy)

=(1-4r, — k(b +1)) + 2r,(cos(SAX) + cos(jAy)

= (1-4r,—k(b+1)) +r,(1-2sin*(BAx/ 2) +1-2sin’ (yAy / 2))
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For some values of £ and y, sin®(BAx/2) and sin®(yAy/2) is unity [4], so

VAAD _ar, —k(b+1))+ 26, (-2)
w(t)
=(1—4r1—k(b+1))—4l’1
=(1-8r,—k(b+1)=¢
For stable situation, we need | & |<1,s0 —1<(1-8r, —k(b+1)) <1,
Case 1: —1<(1-8r,—k(b+1) =r< 2-k(b+1)

—k(b+1)

Case 2: (1-8r,—k(b+1)<l=r12> =120,

For the second (Linearized) equation of Brusselator model which is in the form
2 2
ol = d2(8_\2/ + 8—\2/) +bu, for small values of “b” we can neglect bu, so we have
ot oX* oy
2 2
% = dz(%+gy—\2/) and we apply the ADE method on this equation, to have
X

\" \"

panl ™ Vpan _ d,
7 = F[Vpﬂ,q,n _2Vp,q,n +Vp—1,q,n +Vp,q+l,n _2vp,q,n +Vp,q—1,n]

Assuming that Ax=Ay =h, andr, = %k

=1-4r)v, +(V +Vo g an Vo g +Vp,q—1,n)

Vp,q,n+1 p.q.n p+L,q.n
To study the stability by Von-Neumann, let V= g(t)e™e™ substituting in the
above equation to obtain
o(t+At)e™e™ = (1-4r,) + rp(t)e™ "™ 1 r,ep(t)e™ e

+ r2¢(t)emﬁxem7(y+Ay) + rzq)(t)emmemy(y—Ay)

Dividing both sides of the equation by ¢(t)e™*e™ to obtain

PULAY) _ o 1—4r,) +m,[e™™ 4 g ™ 4 M | =M
2 2

o(t)
= (1-4m,) +r,[2cos(SAX) + 2cos(yAy)]

= (1-4r,) + 2r,[1- 2sin?(BAX/ 2) +1- 2sin* (JAy / 2)]

= (1-4r,sin’(BAx/ 2) — 4r,sin® (yAy / 2)

= (1-4r,[sin?(BAX/ 2) +sin*(yAy 1 2)])
For some values of £ andy we can assume that sin?(8Ax/2) and sin’(jAy/2)are
unity [4], so

ot J(rt_)At) = £ =(1-8r,) the equation is stable if |£] <1 which implies that
®

|1-8r, |<1=-1<(1-8r,) <1, which are located in two cases
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Case1: -1<(1-8r,) =>8r,<2=r1,<1/4 and
Case 2: (1-8r,)<1=8r,20=r,20 .

So the system is stable under the conditions r, <

#,and r,<1/4.

4.2 Numerical Stability of ADI:
The ADI finite difference form for the first equation of Bruss. Model is

(1+ 2r-l)up,q,m—l = rl(u p+L,g,n+1 + up—l,q,n+1) + r-l(up,q-¢—l,n + up,q—l,n) +
(1-2r,—k(b+D)u

p.q,n
In order to study the stability of the above equation, let u_,, =w(t)e™e™,
where m=+/-1,
L+ 25y (t + At)e™e™ =r, (w (t + At)e™ ™ e™ 1y (t + At)e™*e™) 4
L (w ()™ e™ ) Ly (t)e™e™ VW) ¢ (1-2r, —k (b + 1)) (t)e™*e™
Dividing both sides of the above equation by e™*e™ to get
AL+ 2n)w (t+At) = 1, (w (t + Ae™™ +w(t + At)e ™™ +r, (w(t)e™
+yt)e ™ +(1L-2r, —k(b+1)w(t)
Rearranging the above equation
(L+2r, —re™™ —re ™Yy (t+ At) = np (t)(Ee™Y +e ™) +
(1-2r—k(b+D))p(t) = 1+ 2r, —r,(2cos(SAX))w (t + At) = Ly (t)(2cos(yAt)) +
@A-2r,—k(b+D)w(t) = @+2r, -1, (21— 2sin*(BAX] 2))y (t + At) =
Ly (t)(2@-2sin® (yAy 1 2)) + (L—2r, — k(b + 1))y (t)
For some values of B and y assume that sin’(BAx/2)and sin®(yAy/2) are unity [4] ,
so the equation will take the form
= (1+2r, - 2r,(-Dw (t+ At) = (1)(2(-1)) +
(1-2r —k(b+1)y(t)
= 1+4n)w(t+At) =-2rw )+ (1-2r, — k(b +2)w(t)
N w(t+ At) _ -2r+(1-2r,—k(b+1) _

w(t) 1+4r, d
o w(t+At) _1- (4r, +k(b+1) _¢&
w(t) 1+4r,

Similarly for the second equation of the Brusselator model we assume that
Vo = @(t)e™*e™ where m=+/-1, the Finite difference form of this equation is

v = r1 (V 2Vp,q.n-¢—1 + Vp—l,q,n+l) +

p.g.n+l — p+l,q.n+l
(1+ 2r1)Vp,q,n+1 - IFl(vpﬁ-l,q,n+l + Vp—l,q,n+1) + Vp,q,n
Then
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1+ 2r)p(t + At)e™e™ —r (p(t + At)e™ ™ 4+ p(t + At)e™ ™) =

p(t)e™e™ ) 1 p(t)e™*e™

Dividing both sides of the equation by e™*e™ | to get

[(L+2r) — 1, (™™ +e™™)]p(t + At) = p(t)e™ ™

[1+2r) —r, (2cos(SAX)]p(t + At) = p(t)

Which implies that

[@+2r,) —2r (cos(SAX)]p(t + At) = p(t)

= [1+4r,sin* (BAX] 2)]p(t + At) = p(t)

For some values of B and y we have sin®(fAx/2) and sin®(yAy/2) are unity, so we
have (L+4m)e(t+ At) = p(t) and &, = 4”(;2)“) _ 1+i -

Where & and &, stand for the I-plane and ll-plane respectively, each of the above

terms & and &, is conditionally stable.
However the combined two-level has the form

L. (1@ kD)) 2
Sapl =161 —{ 1l+4r1 j|{1+ 4&}

1-(4r,+k(b+1)
(1+4r)?

Thus the above scheme is unconditionally stable, each individual equation is
conditionally stable by itself, and the combined two-level is completely stable.

= él'éll = |:

5. Conclusion
We concluded that the explicit method for solving Brusselator system is stable

under the condition sw ,and r, <1/2.
While the implicit method is unconditionally stable. For two dimension in space we
found that ADE method is stable under condition r, < # and r, <1/4, while

ADI is unconditionally stable.
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