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1. Introduction

In 1965 Zadeh studied the fuzzy sets (briefly F-sets) (see [5]) which plays such a role in the
field of fuzzy topological spaces (or simply FTS). The fuzzy topological spaces investigated by
Chang in 1968 (see [2]). A. S. Bin Shahna [1] defined fuzzy a-closed sets. In 1997, fuzzy
generalized closed set (briefly Fg-CS) was introduced by G. Balasubramania and P. Sundaram [4].
S. Kalaiselvi and V. Seenivasan [12] introduced the concept of fuzzy gsg-closed sets in FTS. The
purpose of this paper is to introduce the concept of fuzzy gag-closed sets and study their basic
properties in FTS. We also introduce fuzzy gag-continuous functions by using fuzzy gag-closed
sets and study some of their fundamental properties. Furthermore, the investigation will include
some of the properties of the fuzzy separation axioms such fuzzy gag-R;-space and fuzzy gag-T;-
space (here the indexes i and j are natural numbers of the spaces R and T are from 0 to 1 and from O
to 2 respectively).

2. Preliminaries

Throughout this paper, (X,7), (Y,y) and (Z,p) (or simply X,Y and Z) always mean FTS on
which no separation axioms are assumed unless otherwise mentioned. A fuzzy point [3] with
support x € X and value 1 (0 < A1 < 1) at x € X will be denoted by x;, and for F-set M, x; € M
iff A < M (x). Two fuzzy points x, and y, are said to be distinct iff their supports are distinct. That
is, by 04 and 1, we mean the constant F-sets taking the values 0 and 1 on X, respectively. For a F-
set M in a FTS (X, 1), cl(M), int(M)and M = 1y — M denote the fuzzy closure of M, the
fuzzy interior of M and the fuzzy complement of M respectively.
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Definition 2.1:[11] A fuzzy point in a set X with support x and membership value 1 is called crisp
point, denoted by x,. For any F-set M in X, we have x; € M iff M'(x) = 1.

Proposition 2.2:[10] Let M, V', O be F-sets in a FTS (X, t). Then Mq(WN Vv O) iff MgV or MqO.

Definition 2.3:[6] A fuzzy point x; € M is called quasi-coincident (briefly g-coincident) with the
F-set M is denoted by x,qM iff A+ M (x) > 1. A F-set M in aFTS (X, 7) is called g-coincident
with a F-set V' which is denoted by MqNV iff there exists x € X such that M (x) + N (x) > 1. If
the F-sets M and V' in aFTS (X, 7) are not g-coincident then we write M'gN'. Note that M <
N & MG(ly — N).

Definition 2.4:[6] A F-set M in a FTS (X, 1) is called g-neighbourhood(briefly g-nhd)of a fuzzy
point x; (resp. F-set IV)if there is a F-OS A in a FTS (X, t) such that x;qA < M (resp. NqA <
M).

Proposition 2.5:[4,7] Let M, V" be two F-sets in a FTS (X, t). Then the following properties hold:
(i) M is a F-0S iff M = int(M).

(i) M isa F-CS iff M = cl(M).

(iti) int(M) < M, int(int(M)) = int(M).

(iv) int (M) < int(V), whenever M < V.

(V) int(M AN) = int(M) Aint(N), int(M VIN) = int(M) V int(N).

(Vi) M < cl(M), cl(cl(M)) = cl(M).

(vii) cl(M) < cl(IV), whenever M < V.

(viil) cl(M AN) < cl(M) Acl(IV), cl(M VIN) = cl(M) V cl(IV).

Lemma 2.6:[7] Let M be any F-set in a FTS (X, 7). Then the following properties hold:
(i) int(1y — M) = 15 — cl(M).

Definition 2.7:[2] Let X and Y be two non-empty sets, and f: (X,7) — (Y, y) be a function. If M
is a F-set of X and V' is a F-set of Y, then:
(i) f(M) is a F-set of Y, where

sup M(x), if f71(y) #0,
f(M) = {xef~1()
0, otherwise

forevery y €Y.

(ii) f~1(V) is a F-set of X, where f~1(V)(x) = NV (f(x)) for each x € X.

@iil) f7H Ay = N) =1 — fTHV).

Theorem 2.8:[2] Let X and Y be two non-empty sets, and f: (X, 7) — (Y, ) be a function, then:
() fF7AVve) = (1)<, forany F-set M in'Y.

(i) F(fFH V) < Vv, forany F-set N inY.

(iii) M < F71(f(M)), for any F-set M in X.

Definition 2.9:[1] A F-set M of a FTS (X, 7) is said to be a fuzzy a-open set (briefly Fa-0S) if
M < int(cl(int(M))) and a fuzzy a-closed set (briefly Fa-CS) if cl(int(cl(M))) < M. The
fuzzy a-closure of a F-set M of a FTS (X, t) is the intersection of all Fa-CS that contain M and is
denoted by acl(M).

Definition 2.10:[4] A F-set M of a FTS (X, t) is said to be a fuzzy g-closed set (briefly Fg-CS) if
cl(M) < U whenever M < U and U is a F-0S in X. The complement of a Fg-CS in X is a Fg-0S in
X.
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Definition 2.11:[9] A F-set M of a FTS (X, 7) is said to be a fuzzy ag-closed set (briefly Fag-CS) if
acl(M) < U whenever M < U and U is a Fa-0S in X. The complement of a Fag-CS in X is a
Fag-0Sin X.

Definition 2.12:[8] A F-set M of a FTS (X, 7) is said to be a fuzzy ga-closed set (briefly Fga-CS) if
acl(M) < U whenever M < U and U is a F-0S in X. The complement of a Fga-CS in X is a Fga-
0SinX.

Theorem 2.13:[1,4] In a FTS (X, t), then the following statements hold and the converse of each
statements are not true:

(1) Every F-0S (resp. F-CS) is a Fa-0S (resp. Fa-CS).

(i) Every F-0S (resp. F-CS) is a Fg-0S (resp. Fg-CS).

Theorem 2.14:[8,9] In a FTS (X, t), then the following statements hold and the converse of each
statements are not true:

(i) Every F-0S (resp. F-CS) is a Fag-0S (resp. Fag-CS).

(i) Every Fg-0S (resp. Fg-CS) is a Fga-0S (resp. Fga-CS).

(iii) Every Fa-0S (resp. Fa-CS) is a Fag-0S (resp. Fag-CS).

(iv) Every Fag-0S (resp. Fag-CS) is a Fga-0S (resp. Fga-CS).

Definition 2.15:[4] A FTS (X, ) is said to be a fuzzy T1-space (briefly FT1-space) if every Fg-CS in
2 2
itis a F-CS.

Definition 2.16: Let (X, 7) and (Y, ) be FTS. Then the function f: (X,t) — (Y, ) is called:

(i) F-continuous [2] if f~1(V) is a F-OS (resp. F-CS) set in X, for each F-0S (resp. F-CS) Vin Y.

(ii) Fa-continuous [1] if f~1(V) is a Fa-0S (resp. Fa-CS) in X, for each F-0S (resp. F-CS) VinY.
(iii) Fg-continuous [4] if f~1(V) is a Fg-0S (resp. Fg-CS) in X, for each F-OS (resp. F-CS) Vin Y.
(iv) Fag-continuous [9] if f~1(V) is a Fag-0S (resp. Fag-CS) in X, for each F-0S (resp. F-CS) V in
Y.

(v) Fga-continuous [8] if f~1(V) is a Fga-0S (resp. Fga-CS) in X, for each F-0S (resp. F-CS) V in
Y.

Theorem 2.17:[1,4] Let f: (X,t) — (Y, ) be a function. Then the following statements hold and
the converse of each statements are not true:

(i) Every F-continuous function is a Fa-continuous.

(i) Every F-continuous function is a Fg-continuous.

Theorem 2.18:[8,9] Let f: (X,7) — (Y, ) be a function. Then the following statements hold and
the converse of each statements are not true:

(i) Every Fg-continuous function is a Fga-continuous.

(i) Every Fa-continuous function is a Fag-continuous.

(iii) Every Fag-continuous function is a Fga-continuous.

3. Fuzzy gag-Closed Sets

Definition 3.1: A F-set M of a FTS (X, 7) is said to be a fuzzy generalized ag-closed set (briefly
Fgag-CS) if cl(M) < U whenever M < U and U is a Fag-0S in X. The family of all Fgag-CS of a
FTS (X, t) is denoted by Fgag-C(X).

Example 3.2: Let X = {a, b} and the F-set M in X defined as follows: M (a) = 0.5, M'(b) = 0.5.
Let t = {0y, M, 14} be a FTS. Then the F-sets Oy, M and 1y are Fgag-CS in X.

Definition 3.3: The intersection of all Fgag-CS in a FTS (X, 7) containing M is called fuzzy gag-
closure of M and is denoted by gag-cl(M), gag-cl(M) = A{N:M < N, N is a Fgag-CS}.
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Theorem 3.4: In a FTS (X, 1), then the following statements are true:
(i) Every F-CS is a Fgag-CS.

(ii) Every Fgag-CS is a Fg-CS.

(iii) Every Fgag-CS is a Fag-CS.

(iv) Every Fgag-CS is a Fga-CS.

Proof: (i) Let M be a F-CS ina FTS (X, t) and let U be any Fag-0S containing M. Then cl(M) =
M < U.Hence M is a Fgag-CS.

(ii) Let M be a Fgag-CS in a FTS (X, t) and let U be any F-OS containing M. By theorem (2.14)
part (i), U is a Fag-0S in X. Since M is a Fgag-CS, we have cl(M) < U. Hence M is a Fg-CS.

(iii) Let M be a Fgag-CS in a FTS (X, 1) and let U be any Fa-0S containing M. By theorem (2.14)
part (iii), U is a Fag-0S in X. Since M is a Fgag-CS, we have acl(M) < cl(M) < U. Hence M is
a Fag-CS.

(iv) Let M be a Fgag-CS in a FTS (X, 7) and let U be any F-OS containing M. By theorem (2.14)
part (i), U is a Fag-0S in X. Since M is a Fgag-CS, we have acl(M) < cl(M) < U.Hence M is a
Fga-CS.

The converse of the above theorem need not be true as shown in the following examples.

Example 3.5: Let X = {x, y, z} and the F-sets M, V" and O from X to [0,1] be defined as:

M(x) =0.0, M(y) =0.0, M(z) =04 ; N(x) =09, N(y) =0.6, N(z) =0.0 ; O(x) = 1.0,
0(y)=0.7,0(z) =1.0. Let T = {0y, M, N', M VIV, 14} be a FTS. Then the F-set O is a Fgag-CS
but not F-CS in X.

Example 3.6: Let X = {x,y,z} and the F-sets M,V',0 and P from X to [0,1] be defined as:
M(x)=0.7, M(y) =03, M(z) =10 ; N(x) =0.7, N(y) = 0.0, N(z) =0.0 ; O(x) = 0.9,
0(¥)=02,0(z)=01;Px) =02 Py) =07, P(z) =0.2. Let T = {0y, M, N, 15} be a FTS.
Then the F-set O is a Fg-CS and hence Fga-CS, but not Fgag-CS in X. And the F-set 2 is a Fag-CS
but not Fgag-CS in X.

Definition 3.7: A F-set M of a FTS (X, 1) is said to be a fuzzy generalized ag-open set (briefly
Fgag-open set) iff 1y — M is a Fgag-CS. The family of all Fgag-open sets of a FTS (X, 1) is
denoted by Fgag-0(X).

Example 3.8: By example (3.2). Then the F-sets 0y, M and 1y are Fgag-0S in X.

Definition 3.9: The union of all Fgag-0S in a FTS (X,7) contained in M is called fuzzy gag-
interior of M and is denoted by gag-int(M), gag-int(M) =V {N:M = N, N is a Fgag-0S}.

Proposition 3.10: Let M be any F-set in a FTS (X, 7). Then the following properties hold:
(i) gag-int(M) = M iff M is a Fgag-0S.
(i) gag-cl(M) = M iff M is a Fgag-CS.
(iii) gag-int (M) is the largest Fgag-0S contained in M.
(iv) gag-cl(M) is the smallest Fgag-CS containing M .
Proof: (i), (ii), (iii) and (iv) are obvious.
Proposition 3.11: Let M be any F-set in a FTS (X, 7). Then the following properties hold:
(i) gag-int(1y — M) = 1y — (gag-cl(M)),
(ii) gag-cl(1x — M) = 1y — (gag-int(M)).
Proof: (i) By definition, gag-cl(M) = A{N: M < N, N is a Fgag-CS}
1y — (gag-cl(M)) =1y —A{N:M < N, N is a Fgag-CS}
=V{ly —N:M < N,N isaFgag-CS}
=Vv{U:1ly —M = U, Uis a Fgag-0S}
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= gag-int(1ly — M)
(i) The proof is similar to (i).

Theorem 3.12: Let (X, 7) be a FTS. If M is a F-0S, then it is a Fgag-0S in X.

Proof: Let M be a F-OS in a FTS (X, 1), then 1y — M is a F-CS in X. By theorem (3.4) part (i),
1y — M is a Fgag-CS. Hence M is a Fgag-0S in X.

Theorem 3.13: Let (X, 7) be a FTS. If M is a Fgag-0S, then it is a Fg-0S in X.

Proof: Let M be a Fgag-0S in a FTS (X, 1), then 1, — M is a Fgag-CS in X. By theorem (3.4) part
(i), 1y — M is a Fg-CS. Hence M isa Fg-0OS in X.

Lemma 3.14: Let (X, 7) be a FTS. If M is a Fgag-0S, then it is a Fag-0S (resp. Fga-0S) in X.
Proof: Similar to above theorem.

Proposition 3.15: If M and V" are Fgag-CS in a FTS (X, 1), then M v V' is a Fgag-CS.

Proof: Let M and IV be Fgag-CS in a FTS (X, 1) and let U be any Fag-OS containing M and V.
Then M v N <U. Then M <U and V' <U. Since M and NV are Fgag-CS, cl(M) <U and
cl(W) <U. Now, cl (M VIN) =cl(M)Vel(NV) <Uand so cl(M VIN) <U. Hence MV IV is
a Fgag-CS.

Proposition 3.16: If M and V" are Fgag-OS in a FTS (X, 1), then M A IV is a Fgag-0S.

Proof: Let M and V' be Fgag-0S in aFTS (X, 7). Then 14y — M and 1y — V' are Fgag-CS. By
proposition (3.15), (1xy — M)V (1x —N) is a Fgag-CS. Since (1xy — M)V 1y —N) =1y —
(M AN). Hence M A IV is a Fgag-0S.

Proposition 3.17: If a F-set M is Fgag-CS in a FTS (X, 1), then cl(M) — M contains no non-
empty F-CS in X.

Proof: Let M be a Fgag-CS in a FTS (X, 7) and let F be any F-CS in X such that ¥ < cl(M) — M.
Since M is a Fgag-CS, we have cl(M) < 1y — F. This implies F < 1y — cl(M). Then F <
cl(M) A (1x — cl(M)) = 0x. Thus, F = 0x. Hence cl(M) — M contains no non-empty F-CS in
X.

Proposition 3.18: If a F-set M is Fgag-CS in a FTS (X, 1), then cl(MM) — M contains no non-
empty Fag-CS in X.

Proof: Let M be a Fgag-CS ina FTS (X, 1) and let D be any Fag-CS in X such that D < cl(M) —
M. Since M is a Fgag-CS, we have cl(M) < 1y —D. This implies D < 1y — cl(M). Then
D <cl(M)A(1x —cl(M)) = 0x. Thus, D = 0x. Hence cl(M)— M contains no non-empty
Fag-CSin X.

Theorem 3.19: If M is a Fag-0S and a Fgag-CS in a FTS (X, 1), then M is a F-CS in X.

Proof: Suppose that M is a Fag-OS and a Fgag-CS in a FTS (X, 1), then cl(M) <M and
since M < cl(M). Thus, cl(M) = M. Hence M is a F-CS.

Theorem 3.20: If M is a Fgag-CS in aFTS (X,7) and M < IV < cl(M), then IV is a Fgag-CS in
X.

Proof: Suppose that M is a Fgag-CS in a FTS (X, 7). Let U be a Fag-0S in X such that v < U.
Then M < U. Since M is a Fgag-CS, it follows that cI(M) <U. Now, NV < cl(M) implies
cl(WV) < cl(cl(M)) = cl(M). Thus, cl (V) < U. Hence IV is a Fgag-CS.

Theorem 3.21: If M is a Fgag-0S ina FTS (X, 1) and int(M) < N < M, then IV is a Fgag-0S in
X.
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Proof: Suppose that M is a Fgag-0S in a FTS (X,7) and int(M) < N <M. Then 1y — M is a
Fgag-CSand 1y — M <14y — N <cl(1xy —M). Then 1x — N is a Fgag-CS by theorem (3.20).
Hence, V' is a Fgag-0S.

Theorem 3.22: A F-set M is Fgag-OS iff C < int(M) where C is a Fgag-CS and C < M.

Proof: Suppose that C < int(M) where C is a Fgag-CSand C < M. Then 1y — M < 14 — C and
1y — Cis a Fag-0S by lemma (3.14). Now, cl(1y — M) = 1y —int(M) < 15y —C. Then 1y — M
is a Fgag-CS. Hence M is a Fgag-0S.

Conversely, let M be a Fgag-0S and C be a Fgag-CS and C < M. Then 1y, — M < 15 — C. Since
1y — M is a Fgag-CS and 1x —C is a Fag-OS, we havecl(ly —M) <1y —C. Then C <
int(M).

Definition 3.23: A F-set M ina FTS (X, 7) is said to be a fuzzy gag-neighbourhood (briefly Fgag-
nhd) of a fuzzy point x;, if there exists a Fgag-0S V' such that x; € ¥ < M. A Fgag-nhd M is
said to be a Fgag-open-nhd (resp. Fgag-closed-nhd) iff M is a Fgag-0S (resp. Fgag-CS). A F-set
M inaFTS (X, 7) is said to be a fuzzy gag-g-neighbourhood (briefly Fgag-q-nhd) of a fuzzy point
x, (resp. F-set V') if there exists a Fgag-0S A in a FTS (X, 7) such that x;qA < M (resp. NgA <
M).

Theorem 3.24: A F-set M of a FTS (X, 7) is Fgag-CS iff MqC = cl(M)qC, for every Fag-CS C
of X.

Proof: Necessity. Let C be a Fag-CS and M'gC. Then M < 14y —C and 1y — C is a Fag-0S in X
which implies that c/(M) < 1y — C as M is a Fgag-CS. Hence, cl(M)gC.

Sufficiency. Let U be a Fag-0S of a FTS (X, ) such that M < U. Then Mgq(1y —U) and 14y —U
is a Fag-CS in X. By hypothesis, cI/(M)g(1x — W) implies c/(M) < U. Hence, M is a Fgag-CS in
X.

Theorem 3.25: Let x; and M be a fuzzy point and a F-set respectively in a FTS (X, t). Then
X, € gag-cl(M) iff every Fgag-q-nhd of x; is g-coincident with M.

Proof: We prove by contradiction. Let x; € gag-cl(M). Suppose there exists a Fgag-q-nhd A of
x, such that AgM. Since A is a Fgag-q-nhd of x;, there exists a Fgag-0OS B in X such that
x,qB < A whish gives that BgM and hence M < 1y —B. Then gag-cl(M) <15 — B, as
1y — B is a Fgag-CS. Since x; € 1y — B, we have x; & gag-cl(M), a contradiction. Thus every
Fgag-q-nhd of x; is g-coincident with M.

Conversely, suppose x; & gag-cl(M). Then there exists a Fgag-CS V' such that M < N and
x; € V. Then we have x;q(1xy — V) and M'gq(1x — V), a contradiction. Hence x; € gag-cl(M).

Proposition 3.26: Let M and V" be two F-sets in a FTS (X, ). Then the following properties hold:
(i) gag-cl(0x) = Oy, gag-cl(1yx) = 1x.

(i) gag-cl(M) is a Fgag-CS in X.

(iii) gag-cl(M) < gag-cl(V) when M < V.

(iv) AgM iff Aqgag-cl(M), when A is a Fgag-0S in X.

(V) gag-cl(M) = gag-cl(gag-cl(M)).

(vi) gag-cl(M AN) < gag-cl(M) A gag-cl(IV).

(vii) gag-cl(M v ) = gag-cl(M) vV gag-cl(INV).

Proof: (i) and (ii) are obvious.

(iii) Suppose that x; & gag-cl(V'). By theorem (3.25), there is a Fgag-q-nhd B of a fuzzy point x;
such that BqJV, sothere is a Fgag-OS A such that x;qA < B and AgN'. Since M < IV, then
AGM . Hence x; & gag-cl(M) by theorem (3.25). This shows that gag-cl(M) < gag-cl(N).

(iv) Let A be a Fgag-0S in X. Suppose that AgM, then M’ < 15 — A. Since 1y — A is a Fgag-CS
and by a part (iii), gag-cl(M) < gag-cl(1x — A) = 1x — A. Hence, Aggag-cl(M).
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Conversely, suppose that Aggag-cl(M). Then gag-cl(M) < 13y — A. Since M < gag-cl(M),
we have M < 1y — A. Hence AGM . Thus AqM if and only if Aggag-cl(M).

(v) Since gag-cl(M) < gag-cl(gag-cl(M)). We prove that gag-cl(gag-cl(M)) < gag-cl(M).
Suppose that x; € gag-cl(M). Then by theorem (3.25), there exists a Fgag-q-nhd B of a fuzzy
point x; such that BgM and so there is a Fgag-0S A in X such that x;qA < B and AgM . By a
part (iv), Aggag-cl(M). Then by theorem (3.25), x; € gag-cl(gag-cl(M)). Thus gag-cl(gag-
cl(M)) < gag-cl(M). Hence gag-cl(M) = gag-cl(gag-cl(M)).

(vi) Since MAN <M and M AN <N. Then gag-cl(M AN) < gag-cl(M) and gag-
cl(M AN) < gag-cl(IV) by a part (iii). Hence, gag-cl(M AN) < gag-cl(M) A gag-cl(INV).
(vii) Since M < M VN and NV < M Vv V. By a part (iii), we have gag-cl(M) < gag-cl(M v
N) and gag-cl(WV) < gag-cl(M vV V). Then gag-cl(M) vV gag-cl(NV') < gag-cl(M vV ).
Conversely, let x; € gag-cl(M v V). Then by theorem (3.25), there exists a Fgag-q-nhd A of a
fuzzy point x; such that Aq(M v V). By proposition (2.2), either AqM or AgN'. Then by
theorem (3.25), x, € gag-cl(M) or x; € gag-cl(IV'). That is x; € gag-cl(M) V gag-cl(IV'). Then
gag-cl(M v N) < gag-cl(M) V gag-cl(NV)). Hence, gag-cl(M v XN') = gag-cl(M) V gag-
cl(NV).

Proposition 3.27: Let M and V" be two F-sets in a FTS (X, t). Then the following properties hold:
(i) gag-int(0x) = Oy, gag-int(1y) = 1x.

(ii) gag-int(M) is a Fgag-0S in X.

(iii) gag-int(M) < gag-int(N') when M < V.

(iv) gag-int(M) = gag-int(gag-int(M)).

(V) gag-int(M AN) = gag-int(M) A gag-int(V).

(vi) gag-int(M v V) = gag-int(M) V gag-int(IV).

Proof: Obvious.

Remark 3.28: The following diagram shows the relations among the different types of weakly F-CS
that were studied in this section:

Fa-CS “T| FagCsS [ Fga-CS

__Ar __A __A

A 4 | \ 4 |

F-CS T FgagCS [ Fg-CS
Fag-0S

4. Fuzzy gag-Continuous Functions
Definition 4.1: A function f: (X,7) — (Y, ) is said to be a fuzzy gag-continuous (briefly Fgag-
continuous) if f~1(V) is a Fgag-CS in X for every F-CSV in Y.

Proposition 4.2: Let (X,7) and (Y,y) be FTS, and f: (X,t) — (Y,v) be a function. Then f is a
Fgag-continuous function iff f~1(V) is a Fgag-0S in X, for every F-0SV inY.

Proof: Let Vbe a F-OSinY. Then 1, —Visa F-CSinY,so f71(1, - V) =1,—f (V) isa
Fgag-CS in X. Thus, f~1(V) is a Fgag-0S in X. The proof of the converse is obvious.
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Theorem 4.3: Every Fgag-continuous function is a Fag-continuous.

Proof: Let f: (X,7) — (Y, ) be a Fgag-continuous function and let V be a F-CS in Y. Since f is a
Fgag-continuous, f~1(V) is a Fgag-CS in X. By theorem (3.4) part (iii), f~*(V) is a Fag-CS in X.
Thus, f is a Fag-continuous.

Theorem 4.4: Every Fgag-continuous function is a Fga-continuous.

Proof: Let f: (X,7) — (Y, ) be a Fgag-continuous function and let V be a F-CS in Y. Since f is a
Fgag-continuous, f~1(V) is a Fgag-CS in X. By theorem (3.4) part (iv), f~1(V) is a Fga-CS in X.
Thus, f is a Fga-continuous.

The converse of the above theorems need not be true as shown in the following example.

Example 4.5: Let X = {x,y}, Y = {u, v}. F-set M is defined as: M'(x) = 0.4, M (y) = 0.6.
Let T = {0y, M, 1x} and ¥ = {0y, 1,} be FTS. Then the function f: (X,t) — (Y,y) defined by
f(x) =u, f(y) = visaFag-continuous and hence Fga-continuous but not Fgag-continuous.

Theorem 4.6: If f: (X,t) — (Y, y) is a Fgag-continuous function then for each fuzzy point x; of
X and V € ¢ such that f(x;) € IV, there exists a Fgag-0S M of X such that x; € M and f(M) <
N,

Proof: Let x; be a fuzzy point of X and V" € i such that f(x;) € V. Take M = f~1(N"). Since
1, — N is a F-CS in Y and f is a Fgag-continuous function, we have f~1(1, —N) =1, —
fY(V) is a Fgag-CS in X. This gives M = f~1(V) is a Fgag-0S in X and x; € M and f(M) =
fUETTV) =WV,

Theorem 4.7: If f: (X, ) — (Y, ) is a Fgag-continuous function then for each fuzzy point x; of

X and V' € i such that f(x;)qV, there exists a Fgag-0S M of X such that x;qM and f(M) <
N.

Proof: Let x; be a fuzzy point of X and I € i such that f(x;)gN. Take M = f~1(V). By above
theorem (4.6), M is a Fgag-0S in X and x;qM and f (M) = f(f~1(V)) < V.

Definition 4.8: A function f: (X,t) — (Y, ) is said to be a fuzzy gag-irresolute (briefly Fgag-
irresolute) if f~1(V) is a Fgag-CS in X for every Fgag-CSVinY.

Proposition 4.9: Let (X,7) and (Y,y) be FTS, and f: (X,t) — (Y,4y) be a function. Then f is
a Fgag-irresolute function iff f~1(V) is a Fgag-0S in X, for every Fgag-OSVinY.

Proof: Let V be a Fgag-0SinY. Then 1, — Visa Fgag-CSinY,so f~1(1, —V) =15 — f~}(V)
isa Fgag-CS in X. Thus, f~1(V) is a Fgag-0S in X. The proof of the converse is obvious.

Theorem 4.10: Every Fgag-irresolute function is a Fgag-continuous.

Proof: Let f: (X,t) — (Y,y) be a Fgag-irresolute function and let V be a F-CS in Y, by theorem
(3.4) part (i), then V is a Fgag-CS in Y. Since f is a Fgag-irresolute, then f~1(V) is a Fgag-CS in
X. Thus, f is a Fgag-continuous.

The following example shows that the converse of the above theorem not be true.

Example 4.11: Let X = {x,y,z}, Y = {u, v, w}. F-sets M and V" are defined as follows:
Mx)=07, M(y) =02, M(2) =01;Nw) =01,Nw) =07 NWw) =0.2.

Let 7 = {0y, M, 15} and ¢ = {0y, V', 1y} be FTS. Then the function f: (X,t) — (Y, ) defined by
f(x)=v, f(y) =w, f(z) = uisaFgag-continuous and it is not a Fgag-irresolute.
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Definition 4.12: A FTS (X, 7) is said to be a fuzzy T,,e-space (briefly FT,,,-space) if every Fgag-
CSinitisaF-CS.

Proposition 4.13: Every FT1-space is a FTg,q-space.
2

Proof: Let (X, ) be a FT1-space and let M be a Fgag-CS in X. Then M is a Fg-CS, by theorem
2
(3.4) part (ii). Since (X, 1) is a FT1-space, then M is a F-CS in X. Hence (X, 7) is a FTgqq-space.
2

The following example shows that the converse of the above proposition not be true.

Example 4.14: Let X = {x,y, z} and the F-sets M and V' from X to [0,1] be defined as:
M) =07, M) =03, M(2) =1.0; N(x) =07, N(y) = 0.0, N(z) = 0.0.
Let T = {Ox, M, V', 1x} be a FTS. Then (X, 1) is a FTg,4-space but not FT1-space.

2

Theorem 4.15: If f;: (X, t) — (Y, 9) is a Fgag-continuous function and f,: (Y,y) — (Z,p) is a
Fg-continuous function and (Y,y)is a FTi-space. Then f, o fi:(X,7) — (Z,p) is a Fgag-
2

continuous function.

Proof: Let W be a F-CS in Z. Since f, is a Fg-continuous function and (Y,y)is a FT:-space,
2

£, (W) isaF-CSin Y. Since f; is a Fgag-continuous function, f, "' (f,~*(W)) is a Fgag-CS in X.
Thus, f, o f; is a Fgag-continuous.

Theorem 4.16: Let (X, 7) and (Y, ) be FTS, and f: (X,7) — (Y, ) be a function:
(i) If (X, 7) is a FT1-space then f is a Fg-continuous iff it is a Fgag-continuous.
2

(ii) If (X, 7) is a FTgqg-space then f is a F-continuous iff it is a Fgag-continuous.

Proof: (i) Let V be any F-CS in Y. Since f is a Fg-continuous, f~1(V) is a Fg-CS in X. By (X, 1) is
a FT1-space, which implies, f~1(V) is a F-CS. By theorem (3.4) part (i), f~1(V) is a Fgag-CS in X.
2

Hence f is a Fgag-continuous.

Conversely, suppose that f is a Fgag-continuous. Let V be any F-CS in Y. Then f~1(V) is a Fgag-
CS in X. By theorem (3.4) part (ii), f~1(V) is a Fg-CS in X. Hence f is a Fg-continuous.

(ii) Let V be any F-CS in Y. Since f is a F-continuous, f~(V) is a F-CS in X. By theorem (3.4) part
(i), f~1(V) is a Fgag-CS in X. Hence f is a Fgag-continuous.

Conversely, suppose that f is a Fgag-continuous. Let V be any F-CS in Y. Then f~1(V) is a Fgag-
CS in X. By (X,7) is a FTy,-space, which implies f~'(V) is a F-CS in X. Hence f is a F-
continuous.

Remark 4.17: The following diagram shows the relations among the different types of weakly F-
continuous functions that were studied in this section:

H d I - . I -
Fa-continuous [¢ Fag-continuous | Fga-continuous
—_— —_— ‘ P
A 4 \ 4 A 4
. < | . | .
F-continuous [ 1| Fgag-continuous | Fg-continuous
. A .
X is FTgqg-Space X is FT1-space
2
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5. Fuzzy gag-R;-Spaces, i = 0,1

Definition 5.1: The intersection of all Fgag-open subset of a FTS (X, t) containing A is called the
fuzzy gag-kernel of A (briefly gag-ker(A)), this means gag-ker(A) = A{M: M € Fgag-0(X)
and A < M}.

Definition 5.2: Let x; be a fuzzy point of a FTS (X, t). The fuzzy gag-kernel of x;, denoted by
gag-ker({x;}) is defined to be the F-set gag-ker({x;}) = A {M: M € Fgag-0(X) and x; € M}.

Definition 5.3: In a FTS (X, 1), a F-set A is said to be weakly ultra fuzzy gag-separated from B if
there exists a Fgag-0S M such that M' A B = 0y or A A gag-cl(B) = 0y.

By definition (5.3), we have the following: For every two distinct fuzzy points x; and y, of a FTS
(Xr T),

(i) gag-cl({x;}) = {y, : {y,} is not weakly ultra fuzzy gag-separated from {x;}}.

(ii) gag-ker ({x4}) = {y, : {xa} is not weakly ultra fuzzy gag-separated from {y,}}.

Lemma 5.4: Let (X,7) be a FTS, then y, € gag-ker({x,}) iff x, € gag-cl({y,}) foreach x # y €
X.

Proof: Suppose that y, & gag-ker({x;}). Then there exists a Fgag-OS U containing x; such
that y, & U. Therefore, we have x; & gag-cl({y,}). The converse part can be proved in a similar
way.

Definition 5.5: A FTS (X, 7) is said to be fuzzy gag-R,-space (Fgag-R,-space, for short) if for each
Fgag-0S U and x; € U, then gag-cl({x;}) < U.

Definition 5.6: A FTS (X, ) is said to be fuzzy gag-R,-space (Fgag-R,-space, for short) if for each
two distinct fuzzy points x; andy, of X with gag-cl({x,}) # gag-cl({y,}), there exist disjoint
Fgag-0S U,V such that gag-cl({x;}) < U and gag-cl({y,}) < V.

Theorem 5.7: Let (X,7)be a FTS. Then (X,7)is a Fgag-R,-space iff gag-cl({x;}) = gag-
ker({x;}), for each x € X.

Proof: Let (X, ) be a Fgag-R,-space. If gag-cl({x;}) # gag-ker({x;}), for each x € X, then there
exist another fuzzy point y # x such that y, € gag-cl({x;}) and y, & gag-ker({x;}) this means
there exist an U,, Fgag-0S, y, & U,, implies gag-cl({x;}) £ U,, this contradiction. Thus gag-
cl({xa}) = gag-ker ({x;}).

Conversely, let gag-cl({x;}) = gag-ker({x;}), for each Fgag-0S U,x; € U, then gag-
ker({x;}) = gag-cl({x;}) < U [by definition (5.1)]. Hence by definition (5.5), (X, 1) is a Fgag-
R,-space.

Theorem 5.8: A FTS (X, 1) is an Fgag-R,-space iff for each M Fgag-CS and x; € M, then gag-
ker({x;}) < M.

Proof: Let for each M Fgag-CS and x, € M, then gag-ker({x;}) < M and let U be a Fgag-0S,
x, € U then for each y, & U implies y, € U° is a Fgag-CS implies gag-ker({y,}) < U°[by
assumption]. Therefore x; & gag-ker({y,}) implies y, & gag-cl({x;}) [by lemma (5.4)]. So gag-
cl({x3}) < U. Thus (X, 7) is a Fgag-R,-space.

Conversely, let (X,7) be a Fgag-R,-space and M be a Fgag-CS and x; € M. Then for each
Y, & M implies y, € M€ is a Fgag-0S, then gag-cl({y,}) < M[since (X, 1) is a Fgag-R,-space],
so gag-ker({x;}) = gag-cl({x;}). Thus gag-ker({x;}) < M.
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Corollary 5.9: A FTS (X, 1) is Fgag-R,-space iff for each U Fgag-0S and x; € U, then gag-
cl(gag-ker({x;})) < U.

Proof: Clearly.

Theorem 5.10: Every Fgag-R,-space is a Fgag-R-space.

Proof: Let (X,7) be a Fgag-R,-space and let U be a Fgag-0S, x; € U, then for each y, € U
implies y, € U°is a Fgag-CS and gag-cl({y,}) < U implies gag-cl({x;}) # gag-cl({y,}). Hence
by definition (5.6), gag-cl({x;}) < U. Thus (X, 1) is a Fgag-R,-space.

Theorem 5.11: A FTS (X, t) is Fgag-R,-space iff for each x # y € X with gag-ker({x;}) # gag-
ker({y,}), then there exist Fgag-CS M;, M, such that gag-ker({x;}) < My, gag-ker({x;}) A
M, = 0y and gag-ker({y,}) < M3, gag-ker({y,}) A M; = 0x and M; VM, = 1y.

Proof: Let (X,t) be a Fgag-R,-space. Then for each x # y € X with gag-ker({x;}) # gag-
ker({y,}). Since every Fgag-R;-space is a Fgag-R,-space [by theorem (5.10)], and by theorem
(5.7), gag-cl({x;}) # gag-cl({y,}), then there exist Fgag-0S U,,U, such that gag-cl({x;}) < U,
and gag-cl({y,}) < U, and U; AU, = Oy [since (X, 1) is a Fgag-R;-space], then UT and U3 are
Fgag-CS such that UT Vv U5 = 1y. Put My = Uf and M, = U3. Thus x; € Uy <M, andy, €
U, < M so that gag-ker({x;}) < U; < M, and gag-ker({y,}) < U, < M;.

Conversely, let for each x # y € X with gag-ker({x;}) # gag-ker({y,}), there exist Fgag-CS M,
M, such that gag-ker({x;}) < My, gag-ker({x;}) A M, = 0y and gag-ker({y,}) < M,, gag-
ker({y,}) A M; = 0y and My vV M, = 1y, then My and My are Fgag-0S such that My A My =
Ox. Put Mf =U, and My =U;. Thus, gag-ker({x;}) <U; and gag-ker({y,}) < U,and
Uy AUy = Oy, so that x; € U; and y, € U, implies x, & gag-cl({y,}) andy, & gag-cl({x;}),
then gag-cl({x,}) < U, and gag-cl({y,}) < U,. Thus, (X, 7) is a Fgag-R,-space.

Corollary 5.12: A FTS (X, 1) is Fgag-R,-space iff for each x # y € X with gag-cl({x;}) # gag-
cl({y,}) there exist disjoint Fgag-0S U,V such that gag-cl(gag-ker({x,})) < U and gag-cl(gag-

ker({y.})) = V.

Proof: Let (X,7) be a Fgag-R;-space and let x # y € X with gag-cl({x;}) # gag-cl({y,}), then
there exist disjoint Fgag-0S U, V such that gag-cl({x;}) < U and gag-cl({y,}) < V. Also (X, 1) is
a Fgag-R,-space [by theorem (5.10)] implies for each x € X, then gag-cl({x;}) = gag-ker({x;})
[oy theorem (5.7)], but gag-cl({x;}) = gag-cl(gag-cl({x;})) = gag-cl(gag-ker({x;})). Thus
gag-cl(gag-ker({x,})) < U and gag-cl(gag-ker({y,})) < V.

Conversely, let for each x # y € X with gag-cl({x,}) # gag-cl({y,}) there exist disjoint Fgag-0S
U,V such that gag-cl(gag-ker({x,})) < U and gag-cl(gag-ker({y,})) < V. Since {x;} < gag-
ker({x;}), then gag-cl({x;}) < gag-cl(gag-ker({x;})) for each x € X. So we get gag-cl({x;}) <
U and gag-cl({y,}) < V. Thus, (X, 1) is a Fgag-R;-space.

6. Fuzzy gag-T;-Spaces, j = 0,1,2

Definition 6.1: Let (X, 7) be a FTS. Then X is said to be:

(i) fuzzy gag-T,-space (Fgag-T,-space, for short) iff for each pair of distinct fuzzy points in X,
there exists a Fgag-0S in X containing one and not the other.

(it) fuzzy gag-T,-space (Fgag-T;-space, for short) iff for each pair of distinct fuzzy points x;
andy, of X, there exist Fgag-OS M, N containing x, and y, respectively such that y, & M
and x; € V.

(iii) fuzzy gag-T,-space (Fgag-T,-space, for short) iff for each pair of distinct fuzzy points x;
and y, of X, there exist disjoint Fgag-0S M, V' in X such that x; € M and y, € V.
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Example 6.2: Let X = {x,y}and 7 = {0y, x;, 15} be a FTS on X. Then x; is a crisp point in X and
(X, 1) is a Fgag-T,-space.

Example 6.3: Let X = {a, b} and t = {0y, a;, by, 1x} be a FTS on X. Then a4, b, are crisp points in
X and (X, 1) is a Fgag-T,-space and Fgag-T,-space.

Remark 6.4: Every Fgag-T;-space is a Fgag-T,_-space, k = 1,2.
Proof: Clearly.

Theorem 6.5: A FTS (X,7) is Fgag-Ty-space iff either y, & gag-ker({x;}) or x; & gag-
ker({y,}), foreachx # y € X.

Proof: Let (X, t) be a Fgag-T,-space then for each x # y € X, there exists a Fgag-0S M such that
x) €EM,y, € M or x; € M,y, €M. Thus either x; € M, y, & M implies y, & gag-ker({x,})
orxy € M,y, € M implies x, & gag-ker({y,}).

Conversely, let either y, & gag-ker({x;}) or x; & gag-ker({y,}), for each x # y € X. Then there
exists a Fgag-0S M such that x, € M, y, & M or x; € M,y, € M. Thus (X,7) is a Fgag-Ty-
space.

Theorem 6.6: A FTS (X, 1) is Fgag-T,y-space iff either gag-ker({x,}) is weakly ultra fuzzy gag-
separated from {y,} or gag-ker({y,}) is weakly ultra fuzzy gag-separated from {x;} for each
x#*y€X.

Proof: Let (X,7) be a Fgag-T,-space then for each x # y € X, there exists a Fgag-0OS M such
thatx, € M, y, ¢ M or x; & M,y, € M. Now if x € M, y, ¢ M implies gag-ker({x;}) is
weakly ultra fuzzy gag-separated from {y,}. Or if x, € M, y, € M implies gag-ker({y,}) is
weakly ultra fuzzy gag-separated from {x;}.

Conversely, let either gag-ker({x;}) be weakly ultra fuzzy gag-separated from {y,} or gag-
ker({y,}) be weakly ultra fuzzy gag-separated from {x,}. Then there exists a Fgag-OS M such
that gag-ker({x;}) < M andy, & M or gag-ker({y,}) < M, x; € M implies x, € M, y, & M
orxy € M,y, € M.Thus, (X,1) is a Fgag-T,-space.

Theorem 6.7: A FTS (X, t) is Fgag-T,-space iff for each x # y € X, gag-ker({x;}) is weakly ultra
fuzzy gag-separated from {y,} and gag-ker({y,}) is weakly ultra fuzzy gag-separated from {x;}.

Proof: Let (X, 1) be a Fgag-T,-space, then for each x # y € X, there exist Fgag-0S U,V such that
x) €Uy, €Uand x; €V,y, €V. Implies gag-ker({x;}) is weakly ultra fuzzy gag-separated
from {y,} and gag-ker({y,}) is weakly ultra fuzzy gag-separated from {x;}.

Conversely, let gag-ker({x;}) be weakly ultra fuzzy gag-separated from {y,} and gag-ker({y,})
be weakly ultra fuzzy gag-separated from {x;}. Then there exist Fgag-OS U,V such that gag-
ker({x2}) <U,y, € U and gag-ker({y,}) <V,x; € V implies x; €U, y, €U andx; €V,
Y, € V. Thus, (X, 1) is a Fgag-T,-space.

Theorem 6.8: A FTS (X, 7) is Fgag-T,-space iff for each x € X, gag-ker({x;}) = {x;}.

Proof: Let (X,7) be a Fgag-T;-space and let gag-ker({x;}) # {x;}. Then gag-ker({x;}) contains
another fuzzy point distinct from x; say y,. So y, € gag-ker({x;}) implies gag-ker({x;}) is not
weakly ultra fuzzy gag-separated from {y,}. Hence by theorem (6.7), (X, 1) is not a Fgag-T;-space
this is contradiction. Thus gag-ker({x;}) = {x;}.

Conversely, let gag-ker({x;}) = {x;}, for each x € X and let (X, t) be not a Fgag-T;-space. Then
by theorem (6.7), gag-ker({x,}) is not weakly ultra fuzzy gag-separated from {y,} for some
x # y € X, this means that for every Fgag-0S M contains gag-ker({x,}) then y, € M implies
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Yu E AN{M € Fgag-0(X): x; € M} implies y, € gag-ker({x,}), this is contradiction. Thus,
(X, 1) is a Fgag-T;-space.

Theorem 6.9: A FTS (X, 7) is Fgag-T;-space iff for each x # y € X, y, € gag-ker({x;}) and
Xy & gag-ker ({y,.}).

Proof: Let (X, 1) be a Fgag-T;-space then for each x # y € X, there exist Fgag-0S U,V such that
x, €Uy, €Uandy, €V, x3 € V. Implies y, & gag-ker({x;}) and x; & gag-ker({y,}).
Conversely, let y, & gag-ker({x,}) and x; & gag-ker({y,}), for each x # y € X. Then there exist
Fgag-0S U,V suchthatx; € U,y, € Uandy, €V, x; ¢ V. Thus, (X, 1) is a Fgag-T;-space.

Theorem 6.10: A FTS (X,7) is Fgag-T,-space iff for each x # y € X implies gag-ker({x;}) A
gag-ker({y,}) = Ox.

Proof: Let (X, 1) be a Fgag-T;-space. Then gag-ker({x;}) = {x;} and gag-ker({y,}) = {y.} [by
theorem (6.8)]. Thus, gag-ker({x,}) A gag-ker({y,}) = Ox.

Conversely, let for each x # y € X implies gag-ker({x,}) A gag-ker({y,}) = Ox and let (X, 1) be
not Fgag-T;-space, then for each x # y € X implies y, € gag-ker({x;}) or x, € gag-ker({y,})
[by theorem (6.9)], then gag-ker({x;}) A gag-ker({y,}) # Oy this is contradiction. Thus, (X, 1) is
a Fgag-T;-space.

Theorem 6.11: A FTS (X, 7) is Fgag-T,-space iff (X, t) is Fgag-T,-space and Fgag-R,-space.

Proof: Let (X, t) be a Fgag-T;-space and let x, € U be a Fgag-0S, then for each x # y € X, gag-
ker ({x,}) A gag-ker({y,}) = Ox [by theorem (6.10)] implies x; ¢ gag-ker({y,}) and y, & gag-
ker({x;}), this means gag-cl({x;}) = {x;}, hence gag-cl({x;}) < U. Thus, (X, ) is a Fgag-R,-
space.

Conversely, let (X, ) be a Fgag-T,-space and Fgag-R,-space, then for each x # y € X there exists
a Fgag-OS U such that x; € U, y, ¢ U or x; € U, y, € U. Say x; € U, y, & U since (X,7) is a
Fgag-Ry-space, then gag-cl({x,}) < U, this means there exists a Fgag-OS V such that y, €V,
x; € V. Thus, (X, 1) is a Fgag-T;-space.

Theorem 6.12: A FTS (X, 7) is Fgag-T,-space iff
(i) (X, 7) is a Fgag-T,-space and Fgag-R,-space.
(if) (X, 7) is a Fgag-T,-space and Fgag-R,-space.

Proof: (i) Let (X, 1) be a Fgag-T,-space, then it is a Fgag-T,-space. Now since (X, 1) is a Fgag-T,-
space, then for each x # y € X, there exist disjoint Fgag-OS U,V such that x, € U and y, €V
implies x; & gag-cl({y,}) and y, & gag-cl({x;}), therefore gag-cl({x;}) = {x;} <U and gag-
cl({y.) = {yu} < V. Thus, (X, 1) is a Fgag-R,-space.

Conversely, let (X, t) be a Fgag-T,-space and Fgag-R,-space, then for each x # y € X, there exists
a Fgag-0OS U such that x; € U, y, € U or y, € U, x; & U, implies gag-cl({x,}) # gag-cl({y.}),
since (X, 1) is a Fgag-R,-space [by assumption], then there exist disjoint Fgag-0S M, V" such that
x, € M andy, € \V'. Thus, (X, 1) is a Fgag-T,-space.

(ii) By the same way of part (i) a Fgag-T,-space is Fgag-T,-space and Fgag-R-space.

Conversely, let (X, 1) be a Fgag-T;-space and Fgag-R;-space, then for each x # y € X, there exist
Fgag-0S U,V suchthat x; € U, y, € Uand y, €V, x; € V implies gag-cl({x,}) # gag-cl({y,}),
since (X,7) is a Fgag-R;-space, then there exist disjoint Fgag-0S M,N such that x; € M
and y, € V. Thus, (X, 7) is a Fgag-T,-space.
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Corollary 6.13: A Fgag-T,-space is Fgag-T,-space iff for each x # y € X with gag-ker({x;}) #
gag-ker({y,}), then there exist Fgag-CS M;, M, such that gag-ker ({x;}) < M, gag-ker({x;}) A
M, = 0y and gag-ker({y,}) < M, gag-ker({y,}) A M; = Oy and M; v M, = 1y.

Proof: By theorem (5.11) and theorem (6.12).

Corollary 6.14: A Fgag-T,-space is Fgag-T,-space iff one of the following conditions holds:

(i) for each x # y € X with gag-cl({x,}) # gag-cl({y,}), then there exist Fgag-0S U,V such that
gag-cl(gag-ker({x;})) < U and gag-cl(gag-ker({y,})) < V.

(ii) for each x # y € X with gag-ker({x;}) # gag-ker({y,}), then there exist Fgag-CS M;,M,
such that gag-ker({x;}) < M;, gag-ker({x;}) AM, =0x and gag-ker({y,}) < M;, gag-
ker({y,}) AM; = 0x and M; VM, = 1y.

Proof: (i) By corollary (5.12) and theorem (6.12).
(ii) By theorem (5.11) and theorem (6.12).

Theorem 6.15: A Fgag-R;-space is Fgag-T,-space iff one of the following conditions holds:

(i) for each x € X, gag-ker({x;}) = {x3}.

(i) for each x #y€X, gagker({xy}) # gag-ker({y,}) implies gag-ker({x;}) Agag-
ker({yu}) = Ox.

(iii) for each x # y € X, either x, € gag-ker({y,}) ory, & gag-ker({x;}).

(iv) foreach x # y € X then x; & gag-ker({y,}) and y, & gag-ker({x;}).

Proof: (i) Let (X,7) be a Fgag-T,-space. Then (X, 1) is a Fgag-T,-space and Fgag-R;-space [by
theorem (6.12)]. Hence by theorem (6.8), gag-ker ({x;}) = {x;} for each x € X.

Conversely, let for each x € X, gag-ker({x;}) = {x;}, then by theorem (6.8), (X, 1) is a Fgag-T;-
space. Also (X, 1) is a Fgag-R,-space by assumption. Hence by theorem (6.12), (X, 7) is a Fgag-T,-
space.

(ii) Let (X,7) be a Fgag-T,-space. Then (X,7) is a Fgag-T;-space [by remark (6.4)]. Hence by
theorem (6.10), gag-ker({x;}) A gag-ker({y,}) = Oy foreachx # y € X.

Conversely, assume that for each x #y € X, gag-ker({x;}) # gag-ker({y,}) implies gag-
ker({x;}) A gag-ker({y,}) = 0x. So by theorem (6.10), (X, 7) is a Fgag-T;-space, also (X,7) is a
Fgag-R;-space by assumption. Hence by theorem (6.12), (X, 7) is a Fgag-T,-space.

(iii) Let (X,t) be a Fgag-T,-space. Then (X, ) is a Fgag-T,-space [by remark (6.4)]. Hence by
theorem (6.5), either x; & gag-ker({y,}) or y, & gag-ker({x;}) foreachx # y € X.

Conversely, assume that for each x # y € X, either x, & gag-ker({y,}) or y, & gag-ker({x,}) for
each x # y € X. So by theorem (6.5), (X, 7) is a Fgag-T,-space, also (X, ) is a Fgag-R,-space by
assumption. Thus (X, 1) is a Fgag-T,-space [by theorem (6.12)].

(iv) Let (X, 1) be a Fgag-T,-space. Then (X, 1) is a Fgag-T;-space and Fgag-R,-space [by theorem
(6.12)]. Hence by theorem (6.9), x; & gag-ker({y,}) and y, & gag-ker({x,}).

Conversely, let for each x # y € X then x; € gag-ker({y,}) and y, & gag-ker({x;}). Then by
theorem (6.9), (X, 1) is a Fgag-T;-space. Also (X, 1) is a Fgag-R,-space by assumption. Hence by
theorem (6.12), (X, 1) is a Fgag-T,-space.

Remark 6.16: Each fuzzy gag-separation axiom is defined as the conjunction of two weaker fuzzy
axioms: Fgag-T\-space = Fgag-R;_,-space and Fgag-T,_;-space = Fgag-R,_,-space and Fgag-
T,-space, k = 1,2.

Remark 6.17: The relation between fuzzy gag-separation axioms can be representing as a matrix.
Therefore, the element a;; refers to this relation. As the following matrix representation shows:
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and Fgag-T, Fgag-T; Fgag-T, Fgag-R, Fgag-R,

Fgag-T, Fgag-T, Fgag-T; Fgag-T, Fgag-T; Fgag-T,

Fgag-T, Fgag-T; Fgag-T, Fgag-T, Fgag-T, Fgag-T,

Fgag-T, Fgag-T, Fgag-T, Fgag-T, Fgag-T, Fgag-T,

Fgag-R, Fgag-T; Fgag-T; Fgag-T, Fgag-R, Fgag-R,

Fgag-R, | Fgag-T, Fgag-T, Fgag-T, Fgag-R, | Fgag-R,

Matrix Representation
The relation between fuzzy gag-separation axioms
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