On IFI_{S*} g_Continuous Functions in Intuitionistic Fuzzy Ideal Topological Spaces

 I_{s^*} عول الدوال الحدسية الضبابية المستمرة من النمط في الفضاءات التبولوجية المثالية الحدسية الضبابية

Dr .Mohammed J .Mohammed
University of Thi – Qar
Faculty of Education for Pure Sciences
Department of Mathematics

Alaa Saleh Abed University of Kufa Faculty of Education for Girls, Department of Mathematics

Email: alaas.abed @uokufa.edu.iq

Abstract

By using IFI_{S^*} g_- closed sets we introduce the notion of IFI_{S^*} g_- continuous functions in intuitionistic fuzzy ideal Topological spaces . we obtain several properties of IFI_{S^*} g_- continuity and the relationship between this function and other related functions. set, **key words and phrases**: Intuitionistic fuzzy local — function , IFI_{S^*} g_- closed IFI_{S^*} g_- continuous , $IFST_{S^*}$ g_- continuous , IFI_{S^*} g_-

لملخص:

باستخدام المجاميع الحدسية الضبابية والضبابية g_- closed sets الضبابية الضبابية ذات IFI_{s^*} وحصلنا على خواص المثالي الحدسي الضبابي عرفنا مفهوم الدوال المستمرة الحدسية الضبابية g_- continuous وحصلنا على خواص هذه الدوال وار تباطها بالدوال الاخرى ذات العلاقة .

1. Introduction

After the introduction of fuzzy sets by Zadeh in 1965[1] and fuzzy topology by Chang in 1967 [2], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanssov in 1983 [3] is one among them.

Using the notion of intuitionistic fuzzy sets Coker [4] introduced the notion of intuitionistic fuzzy topological spaces .

Coker and Demirci [5] introduced the basic definitions and properties of intuitionistic fuzzy topological spaces in Sostak's sense, which is generalized form of "fuzzy topological space" developed by Sostak [6,7].

In 2006 the concepts of fuzzy g – closed sets and fuzzy g – continuous mappings due to Thakur and Malviya [8] was been extended in intuitionistic fuzzy topology space by Thakur and Rekha chaturvedi [9].

In 2011 Khan and Hamza [10] introduced and investigated the *notion of* I_{S^*} g-closed set in ideal topological spaces as a generalization of I g – closed sets .

In this paper, we introduce the intuitionistic fuzzy I_{S^*} g-closed sets and use it to introduce the intuitionistic fuzzy I_{S^*} g- continuous functions, intuitionistic fuzzy strongly I_{S^*} g- continuous functions and intuitionistic fuzzy weakly I_{S^*} g- continuous functions, weaker than intuitionistic It turns out that intuitionistic fuzzy weak I_{S^*} g- continuity is

continuity . we obtain several properties of intuitionistic fuzzy fuzzy weak I —and other related functions . I_{ς^*} g—continuity and the relationship between this function

2 – preliminaries:

Definition 2.1. [1]:

Let X be a non – empty set and $I=[0\,,1]$ be the closed interval of the real numbers . A fuzzy subset μ of X is defined to be membership function $\mu:X\longrightarrow I$, such that $\mu(X)\in I$ for every $x\in X$. The set of all fuzzy subsets of X denoted by I^X .

Definition 2.2. [3]:-

An intuitionistic fuzzy set (IFs, for short) A is an object have the form:

 $A = \left\{ < x \,, \mu_{A(x)} \,, \nu_{A(x)} > ; x \in X \right\} \,, \text{ where the functions } \mu_A : X \to I \,, \nu_A : X \to I \,\, \text{denote the degree of membership and the degree of non – membership of each element } x \in X \,\, \text{to the set } A \,\, \text{respectively} \,\,, \,\, \text{and} \,\, 0 \le \mu_A(x) + \nu_A(x) \le 1 \,\,, \,\, \text{for each } x \in X \,\,. \,\, \text{The set of all intuitionistic fuzzy sets in } X \,\, \text{denoted by IFs } (X) \,\,.$

Definition 2.3. [4]:-

 $0_{\sim}=<$ x , 0 , 1 > , $1_{\sim}=<$ x , 1 , 0 > are the intuitionistic sets corresponding to empty set and the entire universe respectively .

Definition 2.4. [11]:-

Let X be a non – empty set . An intuitionistic fuzzy point (IFP , for short) denoted by x (α , β) is an intuitionistic fuzzy set have the form

 $x \ (\alpha,\beta)(y) = \begin{cases} < x,\alpha,\ \beta> \ ; \quad x=y \\ < x,0,1> \ ; \quad x\neq y \end{cases}, \text{ where } x\in X \text{ is a fixed point }, \text{ and } \alpha,\beta\in[0,1]$ satisfy $\alpha+\beta\leq 1$. The set of all IFPs denoted by IFP (x). If $A\in IFs\ (x)$. We say the $x(\alpha,\beta)\in A$ if and only if $\alpha\leq \mu_A(x)$ and $\beta\geq \nu_A(x)$, for each $x\in X$.

Definition 2.5. [11]:-

Let $A = \{ < x , \mu_A(x) , \nu_A(x) >: x \in X \}$ and $B = \{ < x , \mu_B(x) , \nu_A(x) >: x \in X \}$ be two intuitionistic fuzzy sets in X. A is said to be quasi – coincident with B (written AqB) if and only if , there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$, otherwise A is not quasi – coincident with B and denoted by $A\tilde{q}B$.

Definition 2.6. [11]:-

Let $x(\alpha, \beta) \in IFP(x)$ and $A \in IFs(x)$. We say that $x(\alpha, \beta)$ quasi-coincident with A denoted $x(\alpha, \beta)q$ A if and only if , $\alpha > \nu_A(x)$ or $\beta < \mu_A(x)$, other wise $x(\alpha, \beta)$ is not quasi – coincident with A and denoted by $x(\alpha, \beta)\tilde{q}$ A.

Definition 2.7. [4]:-

An intuitionistic fuzzy topology (IFT , for short) on a nonempty set X is a family τ of an intuitionistic fuzzy set in X such that

- $(i) 0_{\sim}, 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$, for any G_1 , $G_2 \in \tau$,
- (iii) \cup $G_i \in \tau$, for any arbitrary family $\{G_i : i \in J\} \subseteq \tau$.

Definition 2.8. [4]:-

Let (X, τ) be an intuitionistic fuzzy topological space and

 $A = \{ < x , \mu_A(x) , \nu_A(x) > , \ x \in X \}$ be an intuitionistic fuzzy set in X then , an intuitionistic fuzzy interior and intuitionistic fuzzy closure of A are respectively defined by

int (A) = \cup {G : G is an IFos in X and G \subseteq A}

 $cl(A) = \cap \{K : K \text{ is an IFcs in } X \text{ and } A \subseteq K \}.$

Proposition 2.9. [4]:-

Let A be an intuitionistic fuzzy set in X, then we have:

- (1) A is an intuitionistic fuzzy open set in X if and only if, A = int(A).
- (2) A is an intuitionistic fuzzy closed set in X if and only if, A = cl(A).

Proposition 2.10. [4]:-

 $let(X,\tau) be \ an \ intuitionistic \ fuzzy \ topological \ space \ and \ A\ , B\ be \ an \ intuitionistic \ fuzzy \ sets \ in \ X\ , \\ then \ the \ following \ properties \ hold:$

- (a) int $(A) \subseteq A$.
- (b) $A \subseteq cl(A)$.
- (c) If $A \subseteq B \Rightarrow \operatorname{int}(A) \subseteq \operatorname{int}(B)$.
- (d) If $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$.
- (e) int(int(A))=int(A).
- (f) cl(cl(A)) = cl(A).
- (g) int $(A \cap B) = int(A) \cap int(B)$.
- (h) $cl(A \cup B) = cl(A) \cup cl(B)$.
- (i) int $(1_{\sim}) = 1_{\sim}$.
- $(j) cl(0_{\sim}) = 0_{\sim}$.

Definition 2.11. [12]:-

A non – empty collection of intuitionistic fuzzy sets $\ L$ of a set X is called intuitionistic fuzzy ideal on X (IFI , for short) such that :

- (i) If $A \in L$ and $B \le A \Longrightarrow B \in L$ (heredity)
- (ii) If $A \in L$ and $B \in L \Longrightarrow A \vee B \in L$ (finite additivity). If (X, τ) be an IFTS, then the triple (X, τ, L) is called an intuitionistic fuzzy ideal topological (IFITS, for short).

Definition 2.12. [12]:-

Let (X , τ , L) be an IFITS . If A \in IFs (X) . Then the intuitionistic fuzzy local function A*(L , τ) (A* , for short) of A in (X , τ , L) is the union of all intuitionistic fuzzy points x(α , β) such that :

 $A^*(L,\tau) = V\{x(\alpha, \beta) : A \land U \notin L \text{ , for every } U \in N(x(\alpha, \beta),\tau)\}$, where

 $N\left(x(\alpha,\,\beta),\tau\right)$ is the set of all quasi – neighborhoods of an IFP $x(\alpha,\,\beta)$ in τ . The intuitionistic fuzzy closure operator of an IFs A is defined by

 $cl^*(A)=A \vee A^*$, and $\tau^*(L)$ is an IFT finer than τ generated by $cl^*(\cdot)$ and defined as $\tau^*(L)=\{A:\ cl^*(A^C)=A^C\}$

Theorem 2.13. [12] :-

Let (X,τ) be an IFTS and L_1 , L_2 be two intuitionistic fuzzy ideals on X. Then for any intuitionistic fuzzy sets A, B of X. Then the following statements are verified

- $(i) A \subseteq B \Longrightarrow A^*(L,\tau) \subseteq B^*(L,\tau)$,
- (ii) $L_1 \subseteq L_2 \Longrightarrow A^*(L_2, \tau) \subseteq A^*(L_1, \tau)$.
- $(iii) A^* = cl(A^*) \subseteq cl(A)$.
- (iv) $A^{**} = A^*$.

```
(v) (A \lor B)^* = A^* \lor B^*.

(vi) (A \land B)^*(L) \le A^*(L) \land B^*(L).

(vii) \ell \in L \Longrightarrow (A \lor \ell)^* = A^*.

(viii) A^*(L,\tau) is intuitionistic fuzzy closed set.
```

Theorem 2.14. [12] :-

Let τ_1 , τ_2 be two intuitionistic fuzzy topologies on X. Then for any intuitionistic fuzzy ideal L on X, $\tau_1 \le \tau_2$ implies

(i) $A^*(L, \tau_2) \subseteq A^*(L, \tau_1)$, for every $A \in L$. (ii) $\tau_1^* \subseteq \tau_2^*$.

Definition 2.15. [12]:-

For an IFTS (X, τ) , $A \in IFss$. Then A is called

- i) Intuitionistic fuzzy dense if $cl(A) = 1_{\sim}$.
- ii) Intuitionistic fuzzy nowhere dense subset if $Int(cl(A)) = 0_{\sim}$.
- iii) Intuitionistic fuzzy codense subset if $Int(A) = 0_{\sim}$.
- v) Intuitionistic fuzzy countable subset if it is a finite or has the some cardinal number .
- iv) Intuitionistic fuzzy meager set if it is an Intuitionistic fuzzy countable union of Intuitionistic fuzzy nowhere dense sets .

Definition 2.16 [13]:-

An IFs A = < x , μ_A , ν_A > in an IFTS (X , τ) is said to be an

- (i) Intuitionistic fuzzy semi cloed set (IFScs in short) if $int(cl(A)) \subseteq A$. The complement of Intuitionistic fuzzy semi closed set is said to be Intuitionistic fuzzy semi open set (IFSos for short) if $A \subseteq cl(int(A))$.
- (ii) Intuitionistic fuzzy pre closed set (IFPcs for short) if $cl(int(A)) \subseteq A$. The complement of Intuitionistic fuzzy pre closed set is said to be Intuitionistic fuzzy pre open set (IFPos for short) if $A \subseteq int(cl(A))$.
- (iii) Intuitionistic fuzzy α closed set (IF α cs in short) if $cl\Big(int\big(cl(A)\big)\Big)\subseteq A$. The complement of intuitionistic fuzzy α closed is said to be intuitionistic fuzzy α open (IF α os for short) if $A\subseteq int\Big(cl\big(int(A)\big)\Big)$.

Definition 2.17 [13]:-

An IFs A is an

- (i) intuitionistic fuzzy regular closed set (IFRcs for short) if A = cl(int(A)). The complement of intuitionistic fuzzy regular closed set is intuitionistic fuzzy regular open set (IFRos for short) if int(cl(A)) = A.
- (ii) intuitionistic fuzzy generalized closed set (IFg –closed for short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFos . The complement of an IF g –closed set is said to be intuitionistic fuzzy generalized open set (IF g –open for short) if (X A) is IF g –closed .

Remark 2.18. [9]:-

Every intuitionistic fuzzy closed set (intuitionistic fuzzy open set) is intuitionistic fuzzy g —closed set (intuitionistic fuzzy g —open set) .

Definition 2.19. [13]:-

An IFTS (X,τ) is said to be $IFT_{1/2}$ space if every IF g -closed set in (X,τ) is an IFcs in (X,τ) .

Since (X, τ, L) is an intuitionistic fuzzy ideal topological space and IFs A is subset of X, then (A, τ_A, L_A) is an intuitionistic fuzzy ideal topological space, where τ_A is the relative IF topology A and $L_A = \{A \cap \ell : \ell \in L\}$.

3 – Main Results

3 . 1 Intuitionistic fuzzy $I_{_{\,S^{\,*}}}$ g – closed sets ($\mathit{IFI}_{_{\,S^{\,*}}}$ g – closed)

In this section we will give the definition of intuitionistic fuzzy $I_{S^*}g$ - closed sets properties of $IFI_{S^*}g$ - closed sets in $(IFI_{S^*}g$ - closed for short) and we will view the intuitionistic fuzzy ideal topological spaces (X, τ , L).

Definition (3.1.1): -

An intuitionistic fuzzy A (IFs A) which is subset of an IFTS (X, τ, L) is said to be IFSos in X.

 $A \subset U$ and U is IFI_{S^*} g-closed if $A^* \subset U$, whenever The complement of

IF I_{S^*} g -closed set is said to be intuitionistic fuzzy

 I_{s^*} g-open (IFI_{s^*} g-open for short) if $F \subset \operatorname{int}^*(A)$, whenever, $F \subset A$

For every intuitionistic fuzzy semi – closed set (IFScs) F in X.

Lemma (3.1.2):-

Every intuitionistic fuzzy closed (intuitionistic fuzzy open set) is intuitionistic fuzzy I_{s^*} g – closed set (intuitionistic fuzzy I_{s^*} g – open set) .

Proof :- Let A be intuitionistic fuzzy closed set (IFcs) by remark (2.18)

 \Rightarrow A is IF g – closed set

i.e $cl(A) \subseteq U$ wherever $A \subseteq U$ and U is IFos

Since $A^* \subseteq cl(A)$ and $cl(A) \subseteq U$

Therefor $A^* \subseteq cl(A) \subseteq U \Longrightarrow A^* \subseteq U$

Now U is IFos . By proposition (2.10)

 $int(U) \subseteq U \Rightarrow cl(int(U)) \subseteq cl(U)$

- \Rightarrow U \subseteq cl(int(U)) \subseteq cl(U)
- \Rightarrow U \subseteq cl(int(U))
- ⇒ U is IFSos
- \Rightarrow A* \subseteq U, whenever A \subset U and U is IFSos
- \Rightarrow A is IFI_{s^*} g -closed set.

Lemma (3.1.3):-

Let (X, τ, L) be an intuitionistic fuzzy ideal topological space and $B \subset A \subset X$. Then, $B^*(I_A, \tau_A) = B^*(I, \tau) \cap A$.

Proof:-the proof is directly conclusion by the properties of the local function .

Lemma (3.1.4):

Intuitionistic fuzzy U is IFos and A is $\mathit{IFI}_{S^*} g-open$, then $U \cap A$ is $\mathit{IFI}_{S^*} g-open$.

proof:- we prove that $X - (U \cap A)$ is $IFI_{s^*}g$ -closed

Let $X - (U \cap A) \subset G$, where G is IFSo in X. This implies $(X - U) \cup (X - A) \subset G$

since $(X-A) \subset G$ and (X-A) is IFI_{S^*} g – closed in X, therefore $(X-A)^* \subset G$

Moreover X – U is IFcs and contained in G , therefore , $(X-U)^* \subseteq cl(X-U) \subset G$, Hence

$$(X - (U \cap A)^*) = ((X - U) \cup (X - A))^*$$
$$= (X - U)^* \cup (X - A)^* \subset G.$$

This prove that $U \cap A$ is $IFI_{S^*} g$ – open.

Theorem (3.1.5):-

Let (X, τ, L) be an intuitionistic fuzzy ideal topological space and A, B are two intuitionistic fuzzy subsets of X such that $B \subset A \subset X$. If B is an IFI_{S^*} g-closed set relative .to A, where A is IF open set and IFI_{S^*} g-closed set in X, then B is IFI_{S^*} g-closed set in X

proof: -Let $B \subset G$, where G is an intuitionistic fuzzy semi – open in X (IFSo).

Then , $B \subset A \cap G$ and $A \cap G$ is IFSo in X and hence in A . Therefore $B_A^* \subset A \cap G$.

It follows from lemma (3.1.3) that $A \cap B_X^* \subset A \cap G$. or $A \subset G \cup (X - B_X^*)$.

 B_X^* is IF closed set in X and $G \cup (X - B_X^*)$ is IFSo in X since A is IFI_{S^*}

g-closed set in X $A_X^* \subset G \cup (X - B_X^*)$ and hence

$$B^* = B^* \cap A^* \subset B^* \cap [G \cup (X - B_X^*)] \subset G$$
.

Therefore, we obtain $B_X^* \subset G$. This proves that B is $IFI_{S^*}g$ -closed in X.

Theorem (3.1.6):-

Let A be intuitionistic fuzzy semi – open set (IFSos) in an intuitionistic fuzzy ideal topological space (X, τ , L) and $B \subset A \subset X$. if B is $IFI_{S^*}g$ – closed in X, then B is $IFI_{S^*}g$ – closed relative to A.

proof: -Let $B \subset U$ where U is IFSo in A. Then, there exists an IFSo set V in X. such that $U = A \cap V$. Thus $B \subset A \cap V$. Now $B \subset V$ implies that $B_X^* \subset V$.

It follows that $A \cap B_X^* \subset A \cap V$. By Lemma (3.1.3) $B_A^* \subset A \cap V = U$

This proves that B is an IFI_{c^*} g-closed relative to A.

Corollary (3.1.7):-

g – closed in IFTS intuitionistic fuzzy open set (IFos) and IFI_{S^*} $B \subset A \subset X$ and A be (X, τ, L) . Then B is IFI_{S^*} g – closed relative to A if and only if B is IFI_{S^*} g – closed in X.

Theorem (3.1.8):-

If B is an IF subset of IFTS (X, τ , L) such that $A \subset B \subset A^*$ and A is IFI_{S^*} g-closed in X, then B is also IFI_{S^*} g-closed in X.

proof: Let G be IFSo set in X containing B, then $A \subset G$. since A is IFI_{S^*} g – closed, therefore $A^* \subset G$ and hence $B^* \subset (A^*)^* \subset A^* \subset G$. This implies that B is IFI_{S^*} g – closed in X.

Theorem (3.1.9):-

Let $B \subset A \subset X$ and suppose that B is $IFI_{S^*} g$ – open in X and A is an intuitionistic fuzzy semi – regular set in X (IFSR), then B is $IFI_{S^*} g$ – open relative to A.

proof: - we prove that A–B is $IFI_{c^*}g$ – closed relative to A. Let $U \in IFSo(A)$

such that $(A-B) \subset U$. Now $(A-B) \subset (X-B) \subset U \cup (X-A)$,

where $U \cup (X - A) \in IFSo(X)$ because $A \in IFSR(X)$. Since X-B is IFI_{S^*} g-closed in X,

therefor $(X-B)_X^* \subset U \cup (X-A)$ or $(X-B)_X^* \cap A \subset (U \cup (X-A)) \cap A \subset U$. By

lemma(3.1.3) $(A-B)_A^* = (A-B)_X^* \cap A \subset (X-B)_X^* \cap A \subset U$ and hence

 $(A-B)_A^* \subset U$. This proves that B is $IFI_{S^*} g$ -open relative to A.

Theorem(3.1.10):- Let $B \subset A \subset X$, B is an IFI_{S^*} g – open in A and A is IFos in X.

Then B is $IFI_{S^*}g$ – open in X.

proof: - Let F be an intuitionistic fuzzy semi – closed (IFSc) subset of B in X .

since A is IFo set, therefore $F \in IFSc(A)$. since B is $IFI_{S^*}g - open$ in A ,therefore, $F \subset \operatorname{int}_A^*(B) = A \cap \operatorname{int}_X^*(B) \subset \operatorname{int}_X^*(B)$. This proves that B is $IFI_{S^*}g - open$ in X.

3.2 Intuitionistic fuzzy $I_{S^*}g$ — continuous functions

(IFI_{S*} g – continuous functions)

In this section we will introduce the definition of intuitionistic fuzzy I_{S^*} g-continuous Function (IFI_{S^*} g-continuous for short) in intuitionistic fuzzy ideal topological space and its properties and the relationship between this function and other related functions.

Definition (3.2.1):-

Afunction $f:(X,\tau,L)\longrightarrow (y,\Omega,J)$, where (X,τ,L) is IFTS with IF ideal L on X and IFTS (y,Ω,J) is IFTS with IF ideal J on Y, is said to be intuitionistic fuzzy weakly I – continuous (IF weakly I – continuous for short) if for each $x\in X$ and each IFos V in Y containing f(x), there exists an IFos U containing x such that $f(U)\subset cl^*(V)$.

Definition (3.2.2):-

A function $f:(X,\tau,L)\longrightarrow (y,\Omega)$ is said to be intuitionistic fuzzy I_{S^*} g – continuous $(IFI_{S^*}$ g – continuous for short) if for every $U\in\Omega$, $f^{-1}(U)$ is IFI_{S^*} g – open in (x,τ_x,L) .

Definition (3.2.3):-

A function $f:(X,\tau)\longrightarrow (y,\Omega,J)$ is said to be intuitionistic fuzzy strongly I_{S^*} g – continuous (IF strongly $I_{S^*}g$ – continuous for short) if for every $IFI_{S^*}g$ – open set U in Y, $f^{-1}(U)$ is IF open in X.

Definition (3.2.4):-

intuitionistic fuzzy weakly A function $f:(X,\tau,L) \longrightarrow (y,\Omega,J)$ is said to be I_{S^*} g-continuous (IF weakly I_{S^*} g-continuous for short) if for each $x \in X$ and each intuitionistic fuzzy open set V in Y containing f(x), there exists an IFI_{S^*} g-open set U containing X such that X such that X function X such that X function X fu

Lemma (3.2.5):-

By the above definition s, for a function $f:(X,\tau,L)\longrightarrow (y,\Omega,L)$ We obtain following implications:

Remark (3.2.6):-

 $\mathit{IFI}_{S^*} g$ – continuity and IF weak I – continuity are independent of each other .

Theorem (3.2.7):-

An intuitionistic fuzzy ideal topological space (X, τ , L) is said to be intuitionistic fuzzy T – dense (IFT – dense for short) if every IF subset A of X is *– dense in itself (i.e $A \subset A^*$) Proof: it is clear

Definition (3.2.8):-

called an N be an IF subset of an IFTS (X, τ, L) and $x \in X$. Then, N is Let $IFI_{S^*} g$ – open neighborhood of X if there exists an $IFI_{S^*} g$ – open set U containing x such that $U \subset N$.

Theorem (3.2.9):-

Let (X, τ, L) be IFT – dense . Then, for a function $f:(X, \tau, L) \longrightarrow (y, \Omega)$ the following are equivalent :statement

1-f is $IFI_{s^*}g$ – continuous.

- 2-For each $x \in X$ and each IF open set V in Y with $f(x) \in V$, there exists an IFI $_{s^*}$ g-open set U containing x such that $f(U) \subset V$.
- $3-for\ each\ x\in X\ and\ each\ IF\ open\ set\ V\ in\ Y\ with\ f(x)\in V\ , f^{-1}(v)\ is\ an\ IFI_{s^*}$ $g-open\ neighborhood\ of\ X\ .$

proof: $(1) \Rightarrow (2)$

intuitionistic fuzzy open set (IFos) in Y such that $f(x) \in V$. Let $x \in X$ and Let V be an Since f is an $IFI_{S^*}g$ – continuous, $f^{-1}(V)$ is $IFI_{S^*}g$ – open in X. By putting $f(U) \subset V$. $U = f^{-1}(V)$, we have $x \in U$ and $(2) \Rightarrow (3)$

an $IFI_{S^*}g$ – open exists Let V be an IFo set in Y and let $f(x) \in V$. Then by (2), there set U containing x such that $f(U) \subset V$, so $x \in U \subset f^{-1}(v)$. Hence $f^{-1}(v)$ is an of X. $IFI_{S^*}g$ – open neighborhood (3) \Rightarrow (1)

Let V be an intuitionistic fuzzy open set in Y and let $f(x) \in V$. Then by (3), $f^{-1}(V)$ is an $IFI_{S^*}g$ – neighborhood of x thus for each $x \in f^{-1}(V)$, there exists an $IFI_{S^*}g$ – open set U_X containing x such that $x \in U_X \subset f^{-1}(V)$ Hence $f^{-1}(V) = U_{X \in f^{-1}(V)}U_X$ $IFI_{S^*}g$ – open in $X : \Rightarrow f^{-1}(V)$ is an

Theorem (3.2.10):-

A function $f:(X,\tau) \longrightarrow (y,\Omega,J)$ is IF strongly $I_{S^*}g$ – containuous if and only if the inverse image of every $IFI_{S^*}g$ – closed set in Y is IF closed in X. proof: by using the definition of $IFI_{S^*}g$ – closed set , we can proof it directly.

Theorem (3.2.11):-

Let $f:(X,\tau,L)\longrightarrow (y,\Omega)$ be $IFI_{S^*}g$ – continuous and $U\in IFRo(x)$. Then the restriction $f/U:(U,T_U,L_U)\longrightarrow (Y,\Omega) \text{ is } IFI_{S^*}g$ – continuous .

proof:- let V be any intuitionistic fuzzy open set of (Y, τ_Y) since f is IFI_{S^*} g - continuous, $f^{-1}(V)$ is $IFI_{S^*}g$ - open in X, $f^{-1}(V)\cap U$ is $IFI_{S^*}g$ - open in X. Thus by theorem(3.1.9) $(f/U)^{-1}(V)=f^{-1}(V)\cap U$ is $IFI_{S^*}g$ - open in U because U is IF regular - open in X.

This proves that $f/U:(U,\tau/U,I/U)\longrightarrow (Y,\tau_Y)$ is $IFI_{S^*}g$ - continuous

Theorem (3.2.12):-

Let $f:(X,\tau,L)\longrightarrow (y,\Omega,J)$ be function and $\{U_\alpha:\alpha\in\nabla\}$ be an intuitionistic fuzzy open cover of IFT – dense space X. If the restriction f/U_α is $IFI_{S^*}g$ – continuous for each $\alpha\in\nabla$, then f is $IFI_{S^*}g$ – continuous.

proof:- suppose F is an arbitrary IFos in (Y,Ω,J) . Then for each $\alpha\in \nabla$, we have $(f/U_\alpha)^{-1}(V)=f^{-1}(V)\cap U_\alpha. \quad \text{Because } f/U_\alpha \text{ is } IFI_{S^*}g-continuous \text{ , therefore } f^{-1}(V)\cap U_\alpha \text{ is } IFI_{S^*}g-open \text{ in } X \text{ for each } \alpha\in \nabla \text{ . Since for each } \alpha\in \nabla \text{ , } U_\alpha \text{ is IFo in } X \text{ , by theorem } (3.1.10), \ f^{-1}(V)\cap U_\alpha \text{ is } IFI_{S^*}g-open \text{ in } X \text{ .Now since } X \text{ is IFT-dense , } U_{\alpha\in \nabla}f^{-1}(V)\cap U_\alpha=f^{-1}(V) \text{ is } IFI_{S^*}g\text{-open in } X. \text{ This implies f is } IFI_{S^*}g-continuous \text{ .}$

Theorem (3.2.13):-

If (X, τ, L) is an IFT – dense and $f:(X, \tau, L) \longrightarrow (y, \Omega)$ is IFI_{S^*} g – continuous,

then graph function $g: X \longrightarrow X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$, is $IFI_{S^*} g$ -continuous.

proof :- let $x \in X$ and W any IFos in $X \times Y$ containing g(x) = (x, f(x)). Then there exists a basic IF open set $U \times V$ such that $g(x) \subset U \times V \subset W$. Since f is $IFI_{S^*}g$ – continuous, there exists an $IFI_{S^*}g$ – open set U_1 in X containing x. Such that $f(U_1) \subset V$. By Lemma (3.1.4) $U_1 \cap U$ is $IFI_{S^*}g$ – open in X and we have $x \in U_1 \cap U \subset U$ and $g(U_1 \cap U) \subset U \times V \subset W$. Since X is IFT – dense, therefor by theorem (3.2.9), g is $IFI_{S^*}g$ – continuous.

Theorem (3.2.14):-

A function $f:(X,\tau,L)\longrightarrow (y,\Omega)$ is $IFI_{S^*}g$ – continuous if the graph function $g:X\longrightarrow X\times Y$ is $IFI_{S^*}g$ – continuous .

proof: let V be an IFos in Y containing f(x). then $X \times V$ is an IFos in $X \times Y$ and by the $IFI_{S^*}g$ – continuity of g, there exists an $IFI_{S^*}g$ -open set U in X containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. This shows that f is $IFI_{S^*}g$ – continuous.

Theorem (3.2.15):-

Let $\{X_\alpha:\alpha\in\nabla\}$ be any family of intuitionistic fuzzy topological spaces . If

 $f:(X,\tau,L) \longrightarrow \Pi_{\alpha \in \nabla} \ X_{\alpha} \ \ is \ \ an \ \ IFI_{S^*} \ g - continuous \ \ function \ , \ then \ \ p_{\alpha} \circ f:X \longrightarrow X_{\alpha}$ is $IFI_{S^*} \ g - continuous \ \ for \ each \ \alpha \in \nabla$, where $\ p_{\alpha}$ is the projection of $\ \Pi \ X_{\alpha}$ on to $\ X_{\alpha}$.

 proof : - we will consider a fixed $\alpha_0 \in \nabla$. let G_{α_0} be an IFos of X_{α_0} .

then $(P_{\alpha_0})^{-1}(G_{\alpha_0})$ is IFo in ΠX_α . Since f is $IFI_{g^*}g$ – continuous ,

 $f^{-1}((P_{\alpha_0})^{-1}(G_{\alpha_0})) = (P_{\alpha_0} \circ f)^{-1}(G_{\alpha_0})$ is $IFI_{S^*}g$ – open in X. Thus $P_{\alpha} \circ f$ is $IFI_{S^*}g$ – continuous.

Corollary (3.2.16):-

for any bijective function $f:(X,t)\longrightarrow (y,\Omega,J)$, the following are equivalent.

$$1-f^{-1}:(y,\Omega,J)\longrightarrow (X,\tau)$$
 is $IFI_{S^*}g$ - continuous.

2-f(U) is $IFI_{S^*}g$ – open in Y for every IFo set U in X.

3-f(U) is $IFI_{S^*}g$ -closed in Y for every IFc set U in X.

proof:- It is clear.

Definition (3.2.17):

An intuitionistic fuzzy ideal topological space (X , τ , L) is an IFRI space , if for each $x \in X$ and each intuitionistic fuzzy open neighborhood V of x, there exists an intuitionistic fuzzy open neighborhood U of x such that $x \in U \subset cl^*(U) \subset V$.

Theorem (3.2.18):-

let (Y,Ω,J) be an IFRI – space and (X,l,τ) be an IFT – dense . Then $f:(X,\tau,L)\longrightarrow (y,\Omega,J)$ is IF weak $I_{S^*}g$ – continuous , if and only if f is $IFI_{S^*}g$ – continuous .

proof:- The sufficiency is clear.

Necessity . Let $x \in X$ and V be an IFo set of Y containing f(x). Since Y is an IFRI-space ,there $f(x) \in W \subset cl^*(w) \subset V$, Since f is IF weakly $I_{S^*}g$ — exist an IFo set W of Y such that Continuous, there exists an $IFI_{S^*}g$ —open set U such that $x \in U$ and $f(U) \subset cl^*(W)$. Hence we obtain that $f(U) \subset cl^*(w) \subset V$. By theorem (3,2,10) f is $IFI_{S^*}g$ —continuous.

References

- [1] Zadeh, L.A., Fuzzy sets, Information and control, 338 353,1965.
- [2] C.L. chang, Fuzzy Topological spaces, J.Math. Anal. Appl. 24, 182 190,1968.
- [3] Atanassov, K., Intuitionistic Fuzzy Sets, Fuzzy sets and Systems, 87 96,1986.
- [4] D.Coker , D , An introduction to intuitionistic fuzzy topological space , fuzzy sets and . ,1997 Systems , 81-89
- [5] D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces.,1996 in Sostak's sense, BUSEFAL 67, 67 76
- [6] A . Sostak , On a Fuzzy Topological Structure , Rend . Circ . Mat Palermo (2) supp1. , no . 11 , 89-103 , 1958.
- [7] A . Sostak , On Compactness and Connectedness degrees of Fuzzy set in Fuzzy Topological spaces , General Topology and Its Relations to Modern Analysis and Algebra ,VI Cprague , 1986) . Res . Exp . Math . , Vo 1.16 , Heldermann , .,1988 Berlin , PP . 519 532
- [8] S.S Thakur and Malviya R. , Generalized closed sets In fuzzy Topology , Math . Notae $38\,$, $137-140{,}1995.$
- [9] S.S Thakur and Rekha chaturvedi , Generalized continuity in intuitionistic fuzzy topological spaces , NIFS 12, 1 , 38-44, 2006 .
- [10] Khan . M and M . Hamza , $I_{S^*}g$ closed sets in ideal topological spaces , Global. Journal of pure and Applied Mathematics , 7 (1) , 89 99 . 2011
- [11] D. Coker and M. Demirci; on Intuitionistic Fuzzy Points. NIFI. 2, 79 84. (1995).
- [12] A . A . Salama and S . A . Albowi ; Intuitionistic Fuzzy Ideals Topological Spaces , ISSN . $0973-533~\rm X$. Vol . 7 , No . 1 . 51 -60 . (2012) .
- [13] R . Santhi and D. Jayanthi , Intuitionistic Fuzzy Generalized Semi pre continuous Mappings , Int . J . Contemp . Math . Sciences , Vol . 30 , 1469 , 2010 .