Q(QS)-algebras Defined by Fuzzy Points الجبريات QS) والمعرفة على النقاط الضبابية

Ahllam A. Aalfatlawi² Dr. Areej Tawfeeg Hameed¹ Department of Mathematics, College of Education for Girls, University of Kufa ²ahlaama.alfatlawi@student.uokufa.edu.iq areej.tawfeeg@uokufa.edu.iq

Abstract:

In this paper, recall the definitions of F-ideal and fuzzy F-ideal of QS-algebras, Q-ideal and fuzzy Q-ideal of Q-algebras. We discussed some of the relationships and characteristics associated and it is hiring some examples to illustrate unlike some theorems,

Also, we introduce a new ideas of fuzzy F-ideal of fuzzy point on QS-algebras and fuzzy Qideal of fuzzy point on Q-algebras and we give some properties and theorem of its.

The introduction of the concept of the normal fuzzy F-ideal of fuzzy point on QS-algebra and normal fuzzy Q-ideal of fuzzy point on Q-algebra and we study some of the properties related thereto,

ملخص:

في هذا البحث، قدمنا تعاريف -F المثالي والضبابي-F المثالي الأعلى لل-QS الجبر، -Q-المثالي والضبابي-Q المثالي الأعلى ل-Qالجبر. وناقشنا بعض العلاقات والخصائص المرتبطة بها، وذلك تم توظيف بعض الأمثلة لتوضيح عكس بعض

ريات، أيضا، قمنا بتقديم الأفكار الجديدة من ضبابي-F مثالية من نقطة ضبابية على-QS الجبر وضبابي-Q مثالية من نقطة بي على-Q الجبر ونعطي بعض الخصائص ونظرية من فيها. بي على-Q الجبر ونعطي بعض الخصائص ونظرية من فيها. قمنا بإدخال المفهوم العادي ضبابي-F مثالية من نقطة ضبابية على-QS الجبر وطبيعية ضبابي-Q مثالية من نقطة ضبابية ضبابي على-Q الجبر ونعطى بعض الخصائص ونظرية من فيها.

على- (الجير و در سنا بعض الخصائص المتعلقة بها،

Keywords:

QS-algebras, F-ideal, fuzzy F-ideal of fuzzy point, Q-algebras, Q-ideal, fuzzy Q-ideal, fuzzy Q-ideal of fuzzy point, homomorphism of Q(QS)-algebra on fuzzy Q(F)-ideal, Q(QS)-sub-algebra of fuzzy point on Q(QS)-algebra, fuzzy Q(F)-ideal of fuzzy point on Q(QS)-algebra, normal fuzzy Q(F)-ideal of fuzzy point on Q(QS)-algebra, homomorphism of fuzzy Q(QS)-algebra on normal fuzzy Q(F)-ideal.

2000 Mathematics Subject Classification: 06F35, 03G25, 08A72.

Introduction

In 1999, S.S. Ahn and Kim H.S. were introduced the class of QS-algebras and give some properties of QS-algebras [2] and described connections between such QS-sub-algebra and congruences, see [4]. In 2006, A.B. Saeid considered the fuzzification of QS-sub-algebra to QSalgebras [10]. In 2012, M.A. Al-Kadhi, was introduce the F-ideals and fuzzy F-ideals [1].

In 2001, J. Neggers, S.S. Ahn and H.S. Kim [8] introduced the class of Q-algebras which is a generalization of BCK(BCI)-algebras. In 2009, S.M. Mostafa, M. A.Abd-Elnaby and O.R. Elgendy [7] applied the concept of fuzzy subset to Q-algebras.

In this paper, we introduced a definition of the Q(F)-ideal, fuzzy Q(F)-ideal and fuzzy Q(F)ideal of fuzzy point. We study some of the related properties, homomorphism fuzzy Q(F)-ideal on fuzzy point, normal fuzzy Q(F)-ideal on fuzzy point, homomorphism normal fuzzy Q(F)-ideal of fuzzy point on Q(QS)-algebras.

1. Preliminaries

In this section, we study the definition of QS-algebra, QS-sub-algebra, F-ideals, fuzzy

QS-sub-algebra , fuzzy F-ideals of QS-algebras and we give some properties of it. We study the definition of Q-algebra , Q-sub-algebra , Q-ideals , fuzzy Q-sub-algebra , fuzzy Q-ideals of Q-algebras and we give some properties of it.

Definition 1.1([2],[4]):

Let (X*;, 0) be a set with a binary operation (*) and a constant (0). Then (X; *, 0) is called **a QS-algebra** if it satisfies the following axioms: for all $x, y, z \in X$,

- 1. x * x = 0,
- 2. x * 0 = x,
- 3. (x * y) * z = (x * z) * y,
- 4. (x * z) * (x * y) = (y * z).

For brevity we also call X a QS-algebra, we can define a binary relation (\leq) by putting $x \leq y$ if and only if x * y = 0, as [6].

Proposition 1.2 ([3],[4]):

Let (X; *, 0) be a QS-algebra, then the following hold: for any $x, y, z \in X$,

- (a) if x * y = z, then x * z = y,
- (b) x * y = 0 implies x = y,
- (c) 0 * (x * y) = y * x,
- (d) x * (0* y) = y * (0 * x).

Example 1.3 ([2]):

Let $X = \{0, a, b, c\}$ in which (*) be defined by the following table:

*	0	a	b	c
0	0	c	b	a
a	a	0	c	b
b	b	a	0	c
С	c	b	a	0

Then (X; *, 0) is a QS-algebra.

Definition 1.4 ([9],[10]):

Let (X; *, 0) be a QS-algebra X and S be a nonempty subset of X. Then S is called a **QS-sub-algebra** of X if , $x * y \in S$, for any $x, y \in S$.

Definition 1.5 ([9],[10]):

Let X be a QS-algebra. A fuzzy subset μ of X is said to be a fuzzy QS-sub-algebra of X if it satisfies: μ (x * y) $\geq \min\{ \mu(x), \mu(y) \}$, for all $x, y \in X$.

Definition 1.6 ([1]):

Let (X; *, 0) be a QS-algebra and I be a non empty subset of X. I is called **a F-ideal of X** if it satisfies:

- i. 0∈I
- ii. $(x * y) * z \in I$ and $y \in I$ imply $x * z \in I$, for all $x, y, z \in X$.

Definition 1.7 ([1]):

Let X be a QS-algebra. A fuzzy subset μ of X is said to be **a fuzzy F-ideal of X** if it satisfies:

- (1) $\mu(0) \ge \mu(x)$, for all $x \in X$,
- (2) $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\}$, for all $x, y, z \in X$.

Proposition 1.8 ([1]):

Let (X; *, 0) be a QS-algebra, then every fuzzy F-ideal of QS-algebra is a fuzzy QS-sub-algebra.

Definition 1.9([5],[11]):

If ζ is the family of all fuzzy subsets on a BCK-algebra X, $x_{\alpha} \in \zeta$ is called **a fuzzy point** if and only if, there exists $\alpha \in (0,1]$ such that for all $y \in X$,

$$\mathbf{x}_{\alpha}(\mathbf{y}) = \begin{cases} \alpha & \text{if } \mathbf{x} = \mathbf{y} \\ 0 & \text{otherwise} \end{cases}$$

Remark 1.10([3],[5]):

If (X; *,0) is a BCK-algebra and $FP_q(X)$ denote the set of all fuzzy points of X,then $(FP_q(X), \bigcirc, 0_q)$ is a BCK-algebra, which is called a fuzzy point BCK-algebra, where the value q, $(0 < q \le 1)$.

Definition 1.11([3],[5]):

For a fuzzy subset μ of a BCK-algebra X, we define the set $FP(\mu)$ of all fuzzy points of X covered by μ to be the set $FP(\mu) = \{x_{\alpha} \in FP(X) \mid \mu(x) \geq \alpha, 0 < \alpha \leq 1\}$, and

$$FP_q(\mu) = \{x_q \in FP_q(X) \mid \mu(x) \ge q\}$$
, for $q \in (0, 1]$, $x \in X$.

Definition 1.12:

Let (X; *, 0) be a QS-algebra, the set of all **fuzzy points on X** denote by

 $FP(X) = \{x_{\alpha} | x \in X, \alpha \in (0, 1]\}$. Define a binary operation (\bigcirc) on FP(X) by :

$$x_\alpha \bigodot y_\beta = (x*y)_{min\{\alpha,\beta\}}$$
 , for all $x_\alpha,\ y_\beta \in FP(X)$, then

$$(QS_{1'}): x_{\alpha} \odot x_{\alpha} = 0_{\alpha}$$
,

$$(QS_{2'}): x_{\alpha} \odot 0_{\alpha} = x_{\alpha} ,$$

$$(QS_{3'}): (x_{\alpha} \odot y_{\beta}) \odot z_{\gamma} = (x_{\alpha} \odot z_{\gamma}) \odot y_{\beta},$$

$$(QS_4): (x_\alpha \bigcirc z_\gamma) * (x_\alpha \bigcirc y_\beta) = (y_\beta \bigcirc z_\gamma).$$

In X we can define a binary relation (\leq) by : $x_{\alpha} \leq y_{\beta}$ if and only if, $x_{\alpha} \odot y_{\beta} = 0_{min\{\alpha,\beta\}}$.

Now, we give some properties and theorems of QS-algebras.

Theorem 1.13:

If (X; *, 0) is a QS-algebra, then the following hold: for all $x_{\alpha}, y_{\beta}, z_{\gamma} \in FP(X)$,

a)
$$x_{\alpha} \odot 0_{\beta} = x_{\min\{\alpha,\beta\}}$$
.

b)
$$(x_{\alpha} \odot y_{\beta}) \odot x_{\alpha} = 0_{\alpha} \odot y_{\beta}$$
,

c)
$$0_{\alpha} \odot (x_{\alpha} \odot y_{\beta}) = y_{\beta} \odot x_{\alpha}$$
,

d)
$$x_{\alpha} \odot 0_{\alpha} = 0_{\alpha}$$
 implies that $x_{\alpha} = 0_{\alpha}$,

$$e) \ x_{\alpha} = \ (x_{\alpha} \bigodot 0_{\alpha}) \bigodot 0_{\alpha},$$

f)
$$(x_{\alpha} \odot y_{\beta}) \odot 0_{\min\{\alpha,\beta\}} = (x_{\alpha} \odot 0_{\alpha}) \odot (y_{\beta} \odot 0_{\alpha}),$$

g)
$$z_{\gamma} \odot x_{\alpha} = z_{\gamma} \odot y_{\beta}$$
 implies that $0_{\gamma} \odot x_{\alpha} = 0_{\gamma} \odot y_{\beta}$.

Proof:

- a) It is clear by $(QS_{2'})$.
- b) $(x_{\alpha} \odot y_{\beta}) \odot x_{\alpha} = (x_{\alpha} \odot x_{\alpha}) \odot y_{\beta} = 0_{\alpha} \odot y_{\beta}$.
- $c) \ \ 0_{\alpha} \ \bigodot \ (x_{\alpha} \bigodot y_{\beta}) = \ (x_{\alpha} \bigodot x_{\alpha}) \ \bigodot \ (x_{\alpha} \bigodot y_{\beta}) \ = y_{\beta} \ \bigodot x_{\alpha}, \ \ by \ (QS_{1'}) \ and \ (QS_{4'})..$
- (d), (e) and (f) are clears by (QS_{2}) .

$$g) \ 0_{\gamma} \ \bigcirc \ x_{\alpha} = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ x_{\alpha} = (z_{\gamma} \ \bigcirc \ x_{\alpha}) \ \bigcirc \ z_{\gamma} = (z_{\gamma} \ \bigcirc \ y_{\beta}) \ \bigcirc \ z_{\gamma} = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ y_{\beta}) \ \bigcirc \ z_{\gamma} = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta}. \ \triangle = (z_{\gamma} \ \bigcirc \ z_{\gamma}) \ \bigcirc \ y_{\beta} = 0_{\gamma} \ \bigcirc \ y_{\beta} = 0_{\gamma}$$

Proposition 1.14:

Let (X; *,0) be a QS-algebra. Then the following holds: for any $x_{\alpha}, y_{\beta}, z_{\nu} \in FP(X)$,

- 1. $x_{\alpha} \odot y_{\beta} \le z_{\gamma}$ imply $x_{\alpha} \odot z_{\gamma} \le y_{\beta}$,
- 2. $x_{\alpha} \le y_{\beta}$ implies that $z_{\gamma} \odot x_{\alpha} \le z_{\gamma} \odot y_{\beta}$,
- 3. $x_{\alpha} \le y_{\beta}$ implies that $x_{\alpha} \odot z_{\gamma} \le y_{\beta} \odot z_{\gamma}$,
- 4. $(x_{\alpha} \odot z_{\gamma}) \odot (y_{\beta} \odot z_{\gamma}) \leq (y_{\beta} \odot x_{\alpha}).$

Proof:

- 1. It follows from $(QS_{4'})$.
- $\begin{array}{l} \text{2. By } (QS_{1'}) \text{, we obtain } [(z_{\gamma} \odot y_{\beta}) \odot (z_{\gamma} \odot x_{\alpha})] = (x_{\alpha} \odot y_{\beta}) \text{, but } x_{\alpha} \leq y_{\beta} \text{ implies} \\ x_{\alpha} \odot y_{\beta} = 0_{min\{\alpha,\beta\}} \text{, then we get } (z_{\gamma} \odot y_{\beta}) \odot (z_{\gamma} \odot x_{\alpha}) = 0_{min\{\alpha,\beta\}}. \\ \text{i.e., } z_{\gamma} \odot x_{\alpha} \leq z_{\gamma} \odot y_{\beta} \ . \end{array}$
- 3. It is clear.
- $\begin{array}{l} 4. \ \ By \ (QS_{3'}) \ , \ (QS_{4'}) \ and \ (QS_{1'}) \ , \ we \ have \ [\ (y_{\beta} \bigodot z_{\gamma}) \bigodot (x_{\alpha} \bigodot z_{\gamma})] \bigodot \ (y_{\beta} \bigodot x_{\alpha}) \\ = [(y_{\beta} \bigodot z_{\gamma}) \bigodot (y_{\beta} \bigodot x_{\alpha})] \bigodot (x_{\alpha} \bigodot z_{\gamma}) = (x_{\alpha} \bigodot z_{\gamma}) \bigodot (x_{\alpha} \bigodot z_{\gamma}) = 0_{min\{\alpha,\gamma\}}. \\ Thus \ (x_{\alpha} \bigodot z_{\gamma}) \bigodot (y_{\beta} \bigodot z_{\gamma}) \le (y_{\beta} \bigodot x_{\alpha}). \ \ \triangle \end{array}$

Definition 1.15 [8]:

Let (X;*,0) be an algebra with a single binary operation (*). Then (X;*,0) is called **a Q-algebra** if it satisfies the following axioms: for any x, y, $z \in X$,

- $(Q_1): x * x = 0,$
- $(Q_2): x * 0 = x,$
- $(Q_3): (x * y) * z = (x * z) * y.$

For brevity we also call X a Q-algebra, we can define a binary relation (\leq) by putting $x \leq y$ if and only if x * y = 0.

Proposition 1.16 [8]:

Let (X; *, 0) be a Q-algebra, then the following hold: for any $x, y, z \in X$,

$$(Q_1) (x * (x * y)) * y = 0.$$

$$(Q_2) ((x*z)*((x*z)*y))*y = 0.$$

Example 1. 17 [11]:

Let $X = \{0, 1, 2\}$ be a set with a binary operation(*) defined by the following table:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then (X;*,0) is a Q-algebra.

Definition 1.18 ([7]):

Let (X; *, 0) be a Q-algebra X and S be a nonempty subset of X. Then S is called **a** Q-sub-algebra of X if , $x * y \in S$, for any $x, y \in S$.

Definition 1.19 ([7]):

Let X be a Q-algebra. A fuzzy subset μ of X is said to be a **fuzzy Q-sub-algebra of X** if it satisfies: μ (x * y) $\geq \min$ { μ (x), μ (y) }, for all $x, y \in X$.

Definition 1.19 ([8]):

Let (X; *, 0) be a Q-algebra and I be a nonempty subset of X. I is called a Q-ideal of X if it satisfies:

- i. $0 \in I$
- ii. $(x * y) * z \in I$ and $y \in I$ imply $(x * z) \in I$, for all $x, y, z \in X$.

Definition 1.20 ([8]):

Let X be a Q-algebra. A fuzzy subset μ of X is said to be a **fuzzy Q-ideal of X** if it satisfies:

- i. $\mu(0) \ge \mu(x)$, for all $x \in X$,
- ii. $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\}$, for all x, y, z \in X.

Proposition 1.21 ([8]):

Let (X; *, 0) be a Q-algebra, then every fuzzy Q-ideal of Q-algebra is a fuzzy Q-sub-algebra.

Definition 1. 22:

Let (X; *, 0) be a Q-algebra, the set of all fuzzy points on X denote by

 $FP(X) = \{ x_{\alpha} \mid x \in X, \alpha \in (0, 1] \}$. Define a binary operation (\bigcirc) on FP(X) by :

 $x_{\alpha} \odot y_{\beta} = (x * y)_{\min\{\alpha,\beta\}}$, for all x_{α} , y_{β} , $z_{\gamma} \in FP(X)$, then

- $(Q_{1'}): x_{\alpha} \odot x_{\alpha} = 0_{\alpha},$
- $(Q_{2'}): \mathbf{x}_{\alpha} \odot \mathbf{0}_{\alpha} = \mathbf{x}_{\alpha},$
- $(Q_{3'}): (x_{\alpha} \odot y_{\beta}) \odot z_{\gamma} = (x_{\alpha} \odot z_{\gamma}) \odot y_{\beta}$

In X we can define a binary relation (\leq) by : $x_{\alpha} \leq y_{\beta}$ if and only if, x * y = 0

Remark 1.23:

If (X; *,0) is a Q-algebra and $FP_q(X)$ denote the set of all fuzzy points of X, then $(FP_q(X),\bigcirc,0_q)$ is a Q-algebra, which is called a fuzzy point Q-algebra, where the value q, $(0 < q \le 1)$.

Definition 1.24:

For a fuzzy subset μ of a Q-algebra X, we define the set $FP(\mu)$ of all fuzzy points of X covered by μ to be the set $FP(\mu) = \{x_{\alpha} \in FP(X) \mid \mu(x) \geq \alpha, \ 0 \leq \alpha \leq 1\}$, and

$$FP_q(\mu) = \{x_q \in FP_q(X) \mid \mu(x) \ge q\}, \text{ for } q \in (0, 1], x \in X.$$

Now, we give some properties and theorems of Q-algebras.

Theorem 1.25:

If (X; *, 0) is a Q-algebra, then the following hold: for all $x_{\alpha}, y_{\beta}, z_{\nu} \in FP(X)$,

- a) $x_{\beta} \odot 0_{\alpha} = x_{\min\{\alpha,\beta\}}$.
- b) $(x_{\alpha} \odot y_{\beta}) \odot x_{\alpha} = 0_{\alpha} \odot y_{\beta}$,
- c) $0_{\alpha} \odot x_{\alpha} = 0_{\alpha}$ implies that $x_{\alpha} = 0_{\alpha}$,
- d) $z_{\gamma} \odot x_{\alpha} = z_{\gamma} \odot y_{\beta}$ implies that $0_{\gamma} \odot x_{\alpha} = 0_{\gamma} \odot y_{\beta}$.

Proof:

- a) It is clear by $(Q_{2'})$.
- b) $(x_{\alpha} \odot y_{\beta}) \odot x_{\alpha} = (x_{\alpha} \odot x_{\alpha}) \odot y_{\beta} = 0_{\alpha} \odot y_{\beta}$,
- c) It is clear.
- $d) \quad 0_{\gamma} \ \odot \ x_{\alpha} = (z_{\gamma} \ \odot \ z_{\gamma}) \ \odot \ x_{\alpha} = (z_{\gamma} \ \odot \ x_{\alpha}) \ \odot \ z_{\gamma} = (z_{\gamma} \ \odot \ y_{\beta}) \ \odot \ z_{\gamma} = (z_{\gamma} \ \odot \ z_{\gamma}) \ \odot \ x_{\alpha} = 0_{\gamma} \ \odot \ y_{\beta}. \quad \triangle$

Proposition 1.26:

If (X; *, 0) is a Q-algebra, then $(x_{\alpha} \odot (x_{\alpha} \odot y_{\beta})) \odot y_{\beta} = 0_{\min\{\alpha,\beta\}}$, for all $x_{\alpha}, y_{\beta} \in FP(X)$, and $(\alpha, \beta) \in (0,1]$

Proof:

$$(x_{\alpha} \odot (x_{\alpha} \odot y_{\beta})) \odot y_{\beta} = (x_{\alpha} \odot y_{\beta}) \odot (x_{\alpha} \odot y_{\beta}) = 0_{\min\{\alpha,\beta\}}, \text{ by } (Q_{3'}) \text{ and } (Q_{1'}).$$

The following example shows that a fuzzy point Q-algebra may not satisfy the associative law.

Example 1.27:

Let $X := \{0,1,2\}$ with the table as follows:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then X is a fuzzy point Q-algebra, but associativity does not hold, since $(0_p \odot 1_q) \odot 2_p = 0_{\min\{p,q\}} \neq 1_{\min\{p,q\}} = (0_p \odot (1_p \odot 2_q))$, for all $\{p,q\} \in (0,1]$

Theorem 1.28:

Every fuzzy point Q-algebra X satisfying the associative law is a group under the operation " \bigcirc ".

Proof:

Putting x_{α} , y_{β} , $z_{\gamma} \in FP(X)$ and $x_{\alpha} = y_{\beta} = z_{\gamma}$ in the associative law $(x_{\alpha} \odot y_{\beta}) \odot z_{\gamma} = x_{\alpha} \odot (z_{\gamma} \odot y_{\beta})$ and using $(Q_{1'})$ and $(Q_{2'})$, we obtain $0_{\alpha} \odot x_{\alpha} = x_{\alpha} \odot 0_{\alpha} = x_{\alpha}$. This means that 0_{α} is the zero element of X. by $(Q_{1'})$, every element x of X has as its inverse the element x itself. Therefore $(X; ^*, 0)$ is a group. \triangle

2. Fuzzy point Q(QS)-sub-algebras of Q(QS)-algebra

In this section, we introduce the concept of fuzzy point Q(QS)-sub-algebra of $FP(\mu)$ and give some examples and properties of its .

Definition 2.1:

A subset S of X. FP(X) is called a fuzzy point QS-sub-algebra if $x_{\alpha} \odot y_{\beta} \in S$ whenever x_{α} , $y_{\beta} \in S$.

Example 2.2:

Let $X = \{0, 1, 2\}$ be a QS-algebra. In example (1.3), it is routine to check that $(FP_{0.3}(X), \bigcirc, 0_{0.3})$ is a fuzzy point QS-algebra, and that $S = \{0_{0.3}, b_{0.3}\}$ is a fuzzy point QS-subalgebra of $FP_{0.3}(X)$.

Definition 2.3:

A subset S of X or $FP_q(X)$. FP(X) is called a **fuzzy point Q-sub-algebra** if $x_{\alpha} \odot y_{\beta} \in S$ whenever x_{α} , $y_{\beta} \in S$.

Example 2.4:

Let $X = \{0, 1, 2\}$ be a QS-algebra. In example (1.17), it is routine to check that $(FP_{0.2}(X), \bigcirc, 0_{0.2})$ is a fuzzy point Q-algebra, and that $S = \{0_{0.2}, b_{0.2}\}$ is a fuzzy point Q-subalgebra of $FP_{0.2}(X)$.

Remark 2.5:

 $FP_q(X)$ is a fuzzy point Q(QS)-sub-algebra of FP(X), for every $q \in (0, 1]$.

Theorem 2.6:

Let μ be a fuzzy subset of a Q-algebra X. Then the following are equivalent:

- (i) μ is a fuzzy Q-sub-algebra of X.
- (ii) $FP_q(\mu)$ is a fuzzy point Q-sub-algebra of $FP_q(X)$, for every $q \in (0, 1]$.
- (iii) $U(\mu; t)$ is a Q-sub-algebra of X when it is nonempty, for every $t \in (0, 1]$.
- (iv) $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X).

Proof.

- (i) \Rightarrow (ii) Assume that μ is a fuzzy Q-sub-algebra of X and let \mathcal{X}_q , $\mathcal{Y}_q \in FP_q(\mu)$ where $q \in (0, 1]$. Then $\mu(x) \geq q$ and $\mu(y) \geq q$. It follows that $\mu(x * y) \geq \min\{\mu(x), \mu(y)\} \geq q$
- so that ($x_q \odot y_q$) = ($x*y)_q \in FP_q(\mu)$. Hence $FP_q(\mu)$ is a fuzzy point Q-sub-algebra of $FP_q(X)$.
- (ii) \Rightarrow (iii) Suppose that $FP_q(\mu)$ is a fuzzy point Q-sub-algebra of $FP_q(X)$, for every $q \in (0, 1]$. Let $x, y \in U(\mu; t)$, where $t \in (0, 1]$. Then $\mu(x) \ge t$ and $\mu(y) \ge t$, and so $x_t, y_t \in FP_t(\mu)$. It follows that $(x * y)_t = (x_t \bigcirc y_t) \in FP_t(\mu)$ so that $\mu(x * y) \ge t$, i.e. $(x * y) \in U(\mu; t)$. Therefore $U(\mu; t)$ is a Q-sub-algebra of X.
- (iii) \Rightarrow (iv) Suppose U(μ ; t) ($\neq \varnothing$) is a Q-sub-algebra of X, for every t \in (0, 1]. Let x_p , $y_q \in$ FP(μ) and let t = min{p, q}. Then μ (x) \geq p \geq t and μ (y) \geq q \geq t and thus x, y \in U(μ ; t). It follows that (x * y) \in U(μ ; t) because U(μ ; t) is a Q-sub-algebra of X. Thus μ (x*y) \geq t, which implies that
- $(x_p \odot y_q) = (x * y)_{\min\{p, q\}} = (x_t \odot y_t) = (x * y)_t \in FP(\mu)$. Hence $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X).
- (iv) \Rightarrow (i) Assume that FP(μ) is a fuzzy point Q-sub-algebra of FP(X). For any $x, y \in X$, we have $x_{t, y_t} \in FP(\mu)$ which imply
- that $(x * y)_t = (x_t \bigcirc y_t) \in FP(\mu)$, that is, $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$. Consequently, μ is a fuzzy Q-sub-algebra of X. \triangle

Corollary 2.7:

Let μ be a fuzzy subset of a QS-algebra X. Then the following are equivalent:

- (i) μ is a fuzzy QS-sub-algebra of X.
- (ii) $FP_q(\mu)$ is a fuzzy point QS-sub-algebra of $FP_q(X)$, for every $q \in (0, 1]$.
- (iii) $U(\mu; t)$ is a QS-sub-algebra of X when it is nonempty, for every $t \in (0, 1]$.
- (iv) $FP(\mu)$ is a fuzzy point QS-sub-algebra of FP(X).

Proof.

Similarly as theorem (2.6). \triangle

Proposition 2.8:

Let μ be a fuzzy subset of a Q-algebra X. If $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X), then $0_p \in FP(\mu)$, for all $p \in Im(\mu)$.

Proof. Let $p \in Im(\mu)$, then there exists $x \in X$ such that $\mu(x) = p$. Hence $x_p \in FP(\mu)$, and so $0_p = (x * x)_p = x_p \odot x_p \in FP(\mu)$. \triangle

Corollary 2.9:

1) Let μ be a fuzzy subset of a QS-algebra X. If FP(μ) is a fuzzy point QS-sub-algebra of FP(X), then $O_p \in FP(\mu)$, for all $p \in Im(\mu)$.

Corollary 2.10:

- 1) If μ is a fuzzy Q-sub-algebra of a Q-algebra X, then $0_p \in FP(\mu)$, for all $p \in Im(\mu)$.
- 2) If μ is a fuzzy QS-sub-algebra of a QS-algebra X, then $0_p \in FP(\mu)$, for all $p \in Im(\mu)$.
- 3) If μ is a fuzzy Q(QS)-sub-algebra of a Q(QS)-algebra X, then $0_q \in FP_q(\mu)$, for all $q \in (0, 1]$.
- 4) Let μ be a fuzzy subset of a Q(QS)-algebra X and let p, $q \in (0, 1]$ with $p \ge q$. If $x_p \in FP(\mu)$, then $x_q \in FP(\mu)$.

Proposition 2.11:

Let μ be a fuzzy subset of Q-algebra X. If $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X) if and only if , for every $t \in [0,1]$, μ is either empty fuzzy Q-sub-algebra of X.

Proof:

Assume that $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X). For any $x,y\in X$, we have x_p , $y_q\in FP(\mu)$, hence you get $(x*y)_{min\{p,\,q\}=\,t}=x_p\bigcirc y_q\in FP(\mu)$, that is $\mu(x*y)\geq min\{\mu(x),\,\mu(y)\}$. Consequently, μ is a fuzzy Q-sub-algebra of X.

Conversely, Assume that $\mu_t \neq \emptyset$ is a fuzzy Q-sub-algebra of X, for every $t \in (0, 1]$. Let x_p , $y_q \in FP(\mu)$ and let $t = \min\{p, q\}$. Then $\mu(x) \geq p \geq t$ and $\mu(y) \geq q \geq t$, and thus $x, y \in \mu$. It follows that $(x * y) \in \mu$ because μ is a fuzzy Q-sub-algebra of X, which implies that $\mu(x * y) \geq \min\{\mu(x), \mu(y)\}$, thus $\mu(x*y) \geq t$ which implies that $x_p \odot y_q = (x*y)_{\min\{p, q\}} = (x * y)_t \in FP(\mu)$.

Hence $FP(\mu)$ is a fuzzy point Q-sub-algebra of FP(X). \triangle

Corollary 2.12:

Let μ be a fuzzy subset of QS-algebra X. If $FP(\mu)$ is a fuzzy point QS-sub-algebra of FP(X) if and only if , for every $t \in [0,1]$, μ is either empty fuzzy QS-sub-algebra of X.

3. Fuzzy point Q(F)-ideal of Q(QS)-algebras

In this section, we introduce the concept of fuzzy point Q(F)-ideal of Q(QS)-algebra X and give some examples and properties of its .

Definition 3.1:

A subset $FP(\mu)$ of FP(X) is called a fuzzy point Q-ideal of FP(X) where X is Q-algebra, if QI_1) $0_{\lambda} \in FP(\mu)$, for all $\lambda \in Im(\mu)$ and

QI₂)
$$((x_{\alpha} \odot y_{\beta})_{\min\{\alpha,\beta\}} \odot z_{\gamma})$$
, $y_{\beta} \in FP(\mu)$ implies that $(x * z)_{\min\{\alpha,\beta,\gamma\}} \in FP(\mu)$, for all x_{α} , y_{β} , $z_{\gamma} \in X$ and $\alpha, \beta, \gamma \in (0, 1]$.

Definition 3.2:

A subset $FP(\mu)$ of FP(X) is called **a fuzzy point F-ideal of FP(X)** where X is QS-algebra, if FI_1) $0_{\lambda} \in FP(\mu)$, for all $\lambda \in Im(\mu)$ and

$$\text{FI}_2) \left(\left(x_\alpha \odot y_\beta \right)_{\min\{\alpha,\beta\}} \odot z_\gamma \right), y_\beta \in \text{FP}(\mu) \text{ implies that } (x*z)_{\min\{\alpha,\beta,\gamma\}} \in \text{FP}(\mu), \text{ for all } x_\alpha, y_\beta, z_\gamma \in X \text{ and } \alpha, \beta, \gamma \in (0,1].$$

Theorem 3.3:

If μ is a fuzzy Q-ideal of a Q-algebra X, then FP(μ) is a fuzzy point Q-ideal of FP(X).

Proof.

Since $\mu(0) \ge \mu(x)$, for all $x \in X$, we have $\mu(0) \ge \lambda$ for all $\lambda \in \text{Im}(\mu)$, hence $0_{\lambda} \in \text{FP}(\mu)$. Let x_{α} , y_{β} , $z_{\gamma} \in X$ and α , $\beta, \gamma \in (0, 1]$ such that $((x * y)_{\min\{\alpha, \beta\}} \odot z_{\gamma})$, $\in \text{FP}(\mu)$ and $y_{\beta} \in \text{FP}(\mu)$, then $((x * y)_{\min\{\alpha, \beta\}} \odot z_{\gamma}) \ge \min\{\alpha, \beta, \gamma\}$ and $\mu(y) \ge \beta$. Since μ is a fuzzy Q-ideal of X, it follows that $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\} \ge \min\{\alpha, \beta, \gamma\}$, so that $(x * z)_{\min\{\alpha, \beta, \gamma\}} \in \text{FP}(\mu)$. \triangle

Corollary 3.4:

If μ is a fuzzy F-ideal of a QS-algebra X, then FP(μ) is a fuzzy point F-ideal of FP(X).

Proposition 3.5:

 $FP_q(X)$ is a fuzzy point Q-ideal of FP(X) where X is Q-algebra, for every $q \in (0, 1]$.

Corollary 3.6:

 $FP_q(X)$ is a fuzzy point F-ideal of FP(X) where X is QS-algebra, for every $q \in (0, 1]$.

Theorem 3.7:

Let μ be a fuzzy subset of a Q-algebra X. Then the following are equivalent:

- (i) μ is a fuzzy Q-ideal of X.
- (ii) $FP_q(\mu)$ is a fuzzy point Q-ideal of $FP_q(X)$, for every $q \in (0, 1]$.
- (iii) $U(\mu; t)$ is a Q-ideal of X when it is nonempty, for every $t \in (0, 1]$.
- (iv) $FP(\mu)$ is a fuzzy point Q-ideal of FP(X).

Proof.

- (i) \Rightarrow (ii) Assume that μ is a fuzzy Q-ideal of X and let x, $y, z \in X$ and $q \in (0, 1]$, then $\mu((x * y) * z) \ge q$ and $\mu(y) \ge q$. It follows that $\mu(x * z) \ge \min\{\mu((x * y) * z)\}, \mu(y)\} \ge q$, so that $(x * z)_q \in FP_q(\mu)$. Hence $FP_q(\mu)$ is a fuzzy point Q-ideal of $FP_q(X)$.
- (ii) \Rightarrow (iii) Suppose that $\operatorname{FP}_q(\mu)$ is a fuzzy point Q-ideal of $\operatorname{FP}_q(X)$, for every $q \in (0, 1]$. Let x_α , y_β , $z_\gamma \in \operatorname{U}(\mu; t)$, where $\min\{\alpha, \beta, \gamma\} \in (0, 1]$. Let $t = \min\{\alpha, \beta, \gamma\}$. Then $\mu((x * y)_{\min\{\alpha, \beta\}} \odot z_\gamma) \geq t$ and $\mu(y) \geq t$. so $((x * y) * z)_t$ and $y_t \in \operatorname{FP}_t(\mu)$. It follows that $(x * z)_t \in \operatorname{FP}_t(\mu)$ so that $\mu(x * z) \geq t$, i.e. $(x * z) \in \operatorname{U}(\mu; t)$. Therefore $\operatorname{U}(\mu; t)$ is a Q-ideal of X.
- (iii) \Rightarrow (iv) Suppose U(μ ; t) ($\neq \emptyset$) is a Q-ideal of X for every t \in (0, 1]. Let x_{α} , y_{β} , $z_{\gamma} \in$ X and α , β , $\gamma \in$ (0, 1] and let t = min { α , β , γ }. Then $\mu((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \geq t$ and $\mu(y) \geq \beta \geq t$, and thus $((x * y) * z)_{,} y \in U(\mu; t)$. It follows that $(x * z) \in U(\mu; t)$ because U(μ ; t) is a Q-ideal of X. Thus
- $\mu(x*z) \ge t$, which implies that $(x*z)_{\min\{\alpha,\gamma\}} = (x*z)_t \in \mathrm{FP}(\mu)$. Hence $\mathrm{FP}(\mu)$ is a fuzzy point Q-ideal of $\mathrm{FP}(X)$.
- (iv) \Rightarrow (i) Assume that FP(μ) is a fuzzy point Q-ideal of FP(X). For any x, y, z \in X, we have x_{α} , y_{β} , $z_{\gamma} \in$ X and α , β , $\gamma \in$ (0, 1], which imply that($(x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}$) $\geq t \in$ FP(μ) and $y_{\alpha} \in$ FP(μ), It follows that $(x * z)_{\min\{\alpha, \gamma\}} \in$ FP(μ) so that $\mu(x * z) \geq \min\{\alpha, \gamma\}$, that is $\mu(x * z) \geq \min\{\mu(x * y) * z\}$, $\mu(y)$. Hence, μ is a fuzzy Q-ideal of X. \triangle

Corollary 3.8:

Let μ be a fuzzy subset of a QS-algebra X. Then the following are equivalent:

- (i) μ is a fuzzy F-ideal of X.
- (ii) $FP_{q}(\mu)$ is a fuzzy point F-ideal of $FP_{q}(X)$, for every $q \in (0, 1]$.
- (iii) $U(\mu; t)$ is a F-ideal of X when it is nonempty, for every $t \in (0, 1]$.
- (iv) $FP(\mu)$ is a fuzzy point F-ideal of FP(X).

Proposition 3.9:

Let $\{ FP(\mu_i) \mid i \in \Lambda \}$ be a family of fuzzy point Q-ideal of Q-algebra X, then $\cap_{i \in \Lambda} FP(\mu_i)$ is a fuzzy point Q-ideal of X.

Proof:

Since $\{ FP(\mu_i) \mid i \in \Lambda \}$ is a family of fuzzy point Q-ideal of Q-algebra X, we have

- (1) $0_{\lambda} \in \bigcap_{i \in \Lambda} FP(\mu_i)$, for all $i \in \Lambda$ and $\lambda \in Im(\mu_i)$, then $0_{\lambda} \in \bigcap_{i \in \Lambda} FP(\mu_i)$
- (2) For any x_{α} , y_{β} , $z_{\gamma} \in X$ suppose $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma})$, $\in \cap_{i \in \Lambda} FP(\mu_i)$ and $y_{\beta} \in \cap_{i \in \Lambda} FP(\mu_i)$, then $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in FP(\mu_i)$ and $y_{\beta} \in FP(\mu_i)$, for all $i \in \Lambda$, but $FP(\mu_i)$ is a fuzzy point Q-ideal of Q-algebra X, for all $i \in \Lambda$. Then $(x * z)_{\min\{\alpha,\gamma\}} \in FP(\mu_i)$, for all $i \in \Lambda$, therefore, $(x * z)_{\min\{\alpha,\gamma\}} \in \cap_{i \in \Lambda} FP(\mu_i)$. Hence $\cap_{i \in \Lambda} FP(\mu_i)$ is a fuzzy point Q-ideal of Q-algebra X. \cap

Corollary 3.10:

Let $\{ FP(\mu_i) \mid i \in \Lambda \}$ be a family of fuzzy point F-ideal of QS-algebra X, then $\bigcap_{i \in \Lambda} FP(\mu_i)$ is a fuzzy point F-ideal of X.

Proposition3.11:

Let $\{FP(\mu_i)| i \in \Lambda\}$ be a family of fuzzy point Q-ideal of Q-algebra X, then $\bigcup_{i \in \Lambda} FP(\mu_i)$ is a fuzzy point Q-ideal of Q-algebra X, where $FP(\mu_i) \subseteq FP(\mu_{i+1})$, for all $i \in \Lambda$.

Proof:

Since $\{ FP(\mu_i) | i \in \Lambda \}$ is a family of fuzzy point Q-ideal of Q-algebra X, we have

- (1) $0_{\lambda} \in FP(\mu_i)$, for some $i \in \Lambda$ and $\lambda \in Im(\mu_i)$, then $0_{\lambda} \in \bigcup_{i \in \Lambda} FP(\mu_i)$
- (2) For any x_{α} , y_{β} , $z_{\gamma} \in X$ suppose $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in \bigcup_{i \in \Lambda} FP(\mu_i)$,

and $y_{\beta} \in \bigcup_{i \in \Lambda} \operatorname{FP}(\mu_i) \Longrightarrow \exists i, j \in \Lambda$ such that $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in \operatorname{FP}(\mu_i)$ and $y_{\beta} \in \operatorname{FP}(\mu_j)$. By assumption $\operatorname{FP}(\mu_i) \subseteq \operatorname{FP}(\mu_k)$, and $\operatorname{FP}(\mu_j) \subseteq \operatorname{FP}(\mu_k)$, $k \in \Lambda$, hence $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in \operatorname{FP}(\mu_k)$, $y_{\beta} \in \operatorname{FP}(\mu_k)$, but $\operatorname{FP}(\mu_k)$ is a fuzzy point Q-ideal of Q-algebra X, then $(x * z)_{\min\{\alpha,\gamma\}} \in \operatorname{FP}(\mu_k)$. Therefore $(x * z)_{\min\{\alpha,\gamma\}} \in \operatorname{U}_{i \in \Lambda} \operatorname{FP}(\mu_i)$. Hence $\operatorname{U}_{i \in \Lambda} \operatorname{FP}(\mu_i)$ is a fuzzy point Q-ideal of Q-algebra X. \triangle

Corollary 3.12:

Let $\{ FP(\mu_i) | i \in \Lambda \}$ be a family of fuzzy point F-ideal of QS-algebra X, then $\bigcup_{i \in \Lambda} FP(\mu_i)$ is a fuzzy point F-ideal of QS-algebra X, where $FP(\mu_i) \subseteq FP(\mu_{i+1})$, for all $i \in \Lambda$.

Note that :

The converse of proposition (3.11) is not true as seen it the following example

Example 3.13:

Let $X = \{0,1,2,3\}$ be a set with a binary operation (*) defined by the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then (X; *, 0) is a Q(QS)-algebra. $I_1 = \{0,1\}$ and $I_2 = \{0,2\}$ are fuzzy Q(F)-ideal of Q(QS)-algebra X. But $I_1 \cup I_2 = \{0,1,2\}$ since $(1*0)_{\alpha} = (1)_{\alpha} \in I_1 \cup I_2$ and $(2*0)_{\beta} = (2)_{\beta} \in I_1 \cup I_2$ for all $\alpha, \beta \in (0,1]$, but $(1*2)_{\min\{\alpha,\beta\}} = (3)_{\min\{\alpha,\beta\}} \notin I_1 \cup I_2$.

Theorem 3.14:

Let μ be a fuzzy subset of Q-algebra X . If $FP(\mu)$ is a fuzzy point Q-ideal of FP(X) if and only if , for every $t \in [0,1]$, μ is either empty or a fuzzy Q-ideal of Q-algebra X

Proof:

Assume that FP (μ) is a fuzzy point Q-ideal of FP (X) $\Longrightarrow 0_{\lambda} \in FP(\mu)$, for all $\lambda \in Im(\mu)$ and $x \in X$, therefore $\mu(0) \ge \mu(x) \ge t$, for $x \in \mu$ and so $0 \in \mu$.

Let x, y, z ∈ X, where $\alpha, \beta, \gamma \in (0, 1]$, $((x * y) * z) \in \mu$, y ∈ μ and Let $t = \min\{\alpha, \beta, \gamma\}$. Then $\mu((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \ge t$ and $\mu(y) \ge t$, so $((x * y) * z)_{t}$ and $y_{t} \in FP_{t}(\mu)$. It follows that $(x * z)_{t} \in FP_{t}(\mu)$ such that $\mu(x * z) \ge \min\{\mu((x * y) * z), \mu(y)\} \Rightarrow \mu(x * z) \ge t$, then $(x * z) \in \mu$. Hence μ is fuzzy Q-ideal of X.

Conversely, Suppose $\mu \neq \emptyset$ is a fuzzy Q-ideal, let $x, y, z \in X$ and $q \in (0, 1]$. Then $\mu((x * y) * z) \geq q$ and $\mu(y) \geq q$. It follows that $\mu(x * z) \geq \min\{\mu((x * y) * z)\}, \mu(y)\} \geq q$, so that $(x * z)_q \in FP_q(\mu)$. Hence $FP_q(\mu)$ is a fuzzy point Q-ideal of $FP_q(X)$. \triangle

Corollary 3.15:

Let μ be a fuzzy subset of QS-algebra X. If $FP(\mu)$ is a fuzzy point F-ideal of FP(X) if and only if, for every $t \in [0,1]$, μ is either empty or a fuzzy F-ideal of QS-algebra X

Proposition 3.16:

Every fuzzy point Q-ideal of Q-algebra X is a fuzzy point Q-sub-algebra of X.

Proof:

Since $FP(\mu)$ is fuzzy point Q-ideal of a Q-algebra X, then by theorem (3.14), for every $t \in [0,1]$, μ is either empty or a fuzzy Q-ideal of X. By proposition (1.21), then Every fuzzy Q-ideal of Q-algebra X is a fuzzy Q-sub-algebra of X, for every $t \in [0,1]$, μ is either empty or a fuzzy Q-sub-algebra of X by Proposition (2.13). Hence $FP(\mu)$ is a fuzzy point Q-sub-algebra of Q-algebra X. \triangle

Corollary 3.17:

Every fuzzy point F-ideal of QS-algebra X is a fuzzy point QS-sub-algebra of X.

Note that:

The converse of proposition (3.16) is not true as seen it the following example.

Example 3.18:

Let $X = \{0,1,2,3\}$ be a set with a binary operation (*)define a by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	1
3	3	1	1	0

Then (X; *, 0) is a Q(QS)-algebra .Define a fuzzy subset $\mu: X \to [0,1]$ by:

X	0	1	2	3
μ	0.8	0.7	0.6	0.5

Then μ is fuzzy point Q(QS)-sub-algebra of X, but not fuzzy point Q(F)-ideal of X. since $I=\{0,1,2\}\in FP(\mu)$. Let($(3_{0.5}\odot 2_{0,6})\odot 0_{0.8})=(1_{0.7})\in FP(\mu)$ and $(2_{0.6})\in FP(\mu)$ but $(3_{0.5}\odot 0_{0.8})=(3_{0.5})\notin FP(\mu)$.

4- Homomorphism fuzzy point Q(F)-ideal of Q(QS)-algebras:

In this section ,we introduce the definition of homomorphism of Q(QS)-algebra and we study some properties of it.

Definition 4.1([2]):

Let (X; *, 0) and (Y; *, 0') be Q(QS)-algebras. A mapping $f: (X; *, 0) \to (Y; *, 0')$, is said to be a **homomorphism** if f(x * y) = f(x) * f(y), for all $x, y \in X$.

Definition 4.2([5]):

For any homomorphism $f: (X; *, 0) \to (Y; *, 0')$, the set $\{x \in X | f(x) = 0'\}$ is called the **kernel** of f, denoted by Ker(f).

Proposition 4.3:

Let (X; *, 0) and (Y; *, 0') be Q-algebras and $f: (X; *, 0) \to (Y; *, 0')$ be a homomorphism, then Ker(f) is fuzzy point Q-ideal of Q-algebra X.

Proof:

- (1) Since $f(0_{\lambda})$, then $0_{\lambda} \in Ker(f)$ and $\lambda \in Im(\mu)$
- (2) For any x, y, $z \in X$, let $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in Ker(f)$ and $y_{\beta} \in Ker(f)$

$$f((x_{\alpha} \odot y_{\beta}) \odot z_{\gamma}) \in Ker(f) \text{ and } f(y_{\beta}) \in Ker(f) \Rightarrow f((x_{\alpha} \odot y_{\beta}) \odot z_{\gamma}) = 0' \text{ and}$$

$$f(y_{\beta}) = 0' \Rightarrow f(x_{\alpha}) \odot f(z_{\gamma}) = f((x_{\alpha} \odot z_{\gamma})) \ge \min\{f((x_{\alpha} \odot y_{\beta}) \odot z_{\gamma}), f(y_{\beta})\} = 0'$$

$$\Rightarrow f((x_{\alpha} \odot z_{\gamma})) = 0'$$

That is $(x * z)_{\min\{\alpha,\gamma\}} \in Ker(f)$, then Ker(f) is a fuzzy point Q-ideal of $X.\triangle$

Corollary 4.4:

Let (X; *,0) and (Y; *,0') be QS-algebras and $f: (X; *,0) \to (Y; *,0')$ be a homomorphism, then Ker(f) is fuzzy point F-ideal of QS-algebra X.

Proposition 4.5:

Let (X; *,0) and (Y; *,0') be Q-algebras $f: (X; *,0) \rightarrow (Y; *,0')$ be a homomorphism ,onto and

- (i) I be a fuzzy point Q-ideal of X, then f (I) is fuzzy point Q-ideal of Q-algebra Y.
- (ii) S be a fuzzy point Q-sub-algebra of X, then f(S) is fuzzy point Q-sub-algebra of Y.

Proof

- (i) Since I is a fuzzy point Q-ideal of $X \Rightarrow 0_{\lambda} \in I \Rightarrow f(0_{\lambda}) \in f(I)$ for all $\lambda \in \text{Im}(\mu)$. Let $x, y, z \in X$ and $(\alpha, \beta, \gamma) \in (0,1], f((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in f(I), f(y_{\beta}) \in f(I)$
- \Rightarrow $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in I, (y_{\beta}) \in I$, Since I is a fuzzy point Q-ideal of X
- \Rightarrow $(x * z)_{\min\{\alpha,\gamma\}} \in I \Rightarrow f(x * z)_{\min\{\alpha,\gamma\}} \in f(I)$. Hence f(I) is fuzzy point Q-ideal of Q-algebra Y.
- (ii) Since S is a fuzzy point Q-sub-algebra of X, such that $x_p \odot y_q \in S$ whenever x_p , $y_q \in S$, let $(a*b) \in f(S)$ and $x_p = f(a)$, $y_q = f(b)$,

$$f(a*b) = f(a) *f(b) = x_p \bigcirc' y_q = f(x_p \bigcirc y_q) = f(x*y) \min_{\{p, q\}} \in f(S).$$

Hence f(S) is fuzzy point Q-sub-algebra of Y.

Proposition 4.6:

Let (X; *,0) and (Y; *,0') be QS-algebras $, f: (X; *,0) \rightarrow (Y; *,0')$ be a homomorphism ,onto and

- (i) I be a fuzzy point F-ideal of X, then f (I) is fuzzy point F-ideal of QS-algebra Y.
- (ii) S be a fuzzy point QS-sub-algebra of X, then f(S) is fuzzy point QS-sub-algebra of Y.

Proposition 4.7:

Let (X; *,0) and (Y; *,0') be Q-algebras $f: (X; *,0) \to (Y; *,0')$ be a homomorphism and B be a fuzzy point Q-ideal of Y, then $f^{-1}(B)$ is fuzzy point Q-ideal of Q-algebra X.

Proof:

- (1) Since B is a fuzzy point Q-ideal of $Y \Rightarrow (0'_{\lambda}) \in B \Rightarrow f^{-1}(0'_{\lambda}) \in f^{-1}(B)$ since $0_{\lambda} = f^{-1}(0'_{\lambda})$, then $0_{\lambda} \in f^{-1}(B)$ for all $\lambda \in \text{Im}(\mu)$.
- (2) Let $x, y, z \in X$ and $(\alpha, \beta, \gamma) \in (0,1]$, $((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in f^{-1}(B)$, $(y_{\beta}) \in f^{-1}(B) \Longrightarrow f((x * y)_{\min\{\alpha,\beta\}} \odot z_{\gamma}) \in B$, $f(y_{\beta}) \in B$, Since B is a fuzzy point Q-ideal of Y $\Longrightarrow f(x * z)_{\min\{\alpha,\gamma\}} \in B \Longrightarrow (x * z)_{\min\{\alpha,\gamma\}} \in f^{-1}(B)$. Hence $f^{-1}(B)$ is fuzzy point Q-ideal of Q-algebra $X. \triangle$

Proposition 4.8:

Let (X; *,0) and (Y; *,0') be QS-algebras $f: (X; *,0) \to (Y; *,0')$ be a homomorphism and B be a fuzzy point F-ideal of Y, then $f^{-1}(B)$ is fuzzy point F-ideal of QS-algebra X.

References

- [1] Al-Kadhi M. A. , Fuzzy F-ideals in QS-algebras , Life Science Journal, vol.9, no.3 (2012), 1127-1130.
- [2] Ahn S.S. and Kim H.S., On QS-algebras, J. Chungcheong Math. Soc., vol.12 (1999), 33-41.
- [3] Hameed A.T., *Fuzzy ideal of some algebras*, PH.D.SC. Thesis, Faculty of Science, Ain Shams University, Egypt ,2015.
- [4] Kondo M., On the class of QS-algebras, IJMMS, vol.49 (2004), PII S0161171204309154.
- [5] Meng J. and Jun Y.B., BCK-algebras, Kyung Moon Sa Co., Korea, 1994.
- [6] Mostafa S. M., Abdel Naby M. A. Abdel-Halim F. and Hameed A.T., *On KUS-algebra*, vol. 7, no. 3(2013), 131 144
- [7] Mostafa S.M. Abd-Elanaby M.A. and Elgendy O.R.M. , Fuzzy Q-ideals in Q-algbras , Journal of the Faculty of Education, Science Section, vol.33 (2009), 127-158.
- [8] Neggers J., Ahn S.S. and Kim H.S., *On Q-algebras*, International Journal of Mathematics and Mathematical Sciences, vol.27, no. 12(2001),749-757.
- [9] P. J. Allen, J. Neggers, and H. S. Kim, *L-up and mirror algebras*, Scientiae Mathematicae Japonicae, vol. 59, no. 3(2004), 605–612.
- [10] Saeid A.B., Fuzzy QS-algebras with interval-valued membership functions, Bull Malays Math. Sci. Soc. (2), vol.29, no.1 (2006), 169-177.
- [11] Zhan J. and Tan Z. , *Q-fuzzy dot sub-algebras of BCK/BCI-algebras* , Far East J. Math. Sci. (FJMS), vol.8 (2003),11-20.