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Abstract

The main goal of this work is to create a general type of G — space , namely,
regular Cartan G — space and a new type of limit sets , namely, regular limit sets
A (x) ,J"(x)and, give some properties and some equivalent statement of these

concept also we explain the relationship among the definitions regular Cartan G —

space and A" (x), J" (x).

Introduction
One of the very important concepts in topological groups is the concept of group
actions and there are several types of these actions. This paper studies an important
class of actions namely, regular Cartan G — space.

Let B be a subset of a topological space (X,T). We denote the closure of B and the
interior of B by £ and g< , respectively .The subset B of (X, 7T) is called regular
open (r — open) if B = B . The complement of regular open set is defined to be a
regular closed (r — closed) if B = p° .The family of all r — open sets in (X,T) forms a
base of a smaller topology T' on X ,called the semi — regularization of T, [2],in section
one, we introduce some definitions, remarks, propositions, theorems which are needed

in the next sections. In section two, we define the sets A”(x),J"(x) and prove its

properties, also we give some equivalent statement of A”(x),J"(x) .In section three,

we defines regular thin sets and regular Cartan G — space and give some propositions

and theorems which related with this concepts and shown the relationship among the

regular Cartan G — space and the sets A" (x) and J (%),



1. Preliminaries

1.1 Definition [2]:A subset B of (X, T) is called regular open (r — open) if B=B".
The complement of regular open set is defined to be a regular closed (r — closed) if

B = B° .The family of all r — open sets in (X,7) forms a base of a smaller topology T"

on X ,called the semi — regularization of T

1.2 Definition|2]: A subset B of a space X is called regular neighborhood (r —
neighborhood) of xe X if there is an r - open subset O of X such that xeO < B.

1.3 Definition [2]:A subset 4 of space X is called r — compact if every r — open cover

of A4 has a finite sub cover. If /=X then X is called an r — compact space.

1.4 Definition [2]:

(1) A subset 4 of space X is called r- relative compact if A isr— compact.

(i) A space X is called r— locally r — compact if every point in X has anr —
relative compact r— neighborhood.

1.5 Definition [2]: Let X and Y be spaces and f: X—Y be a function. Then:
(i) f is called regular continuous (r— continuous) function if f"(4) is an r — open set in
X for every open set 4 in Y.

(ii) f is called regular irresolute (r — irresolute) function if f (4)isanr— open set in X
for every r- open set 4 in Y.

1.6 Definition [2]: Let (s)scp be a net in a space X, xeX. Then :

i) (a)aep is called r — converges to x (written yy——> x) if ()4)sep is eventually in
every r — neighborhood of x . The point x is called an r — limit point of (4)sep, and
the notation "y; -y 0" is mean that (y,)sep has no r — convergent subnet.

i) (Y4)aep is said to have x as an r — cluster point [written x,¢ x] if ()X4)acp 1S
frequently in every r - neighborhood of x .

1.7 Proposition [2]: A space (X, T) is an r — compact space if and only if every net in

X has r — cluster point in X.

1.8 Proposition [2]: Let X be a space and 4 < X, xeX. Then xe 4" if and only if

there exists a net ((4)4ep in A and g ——>x .



1.9 Proposition [ et X be a topological space .A point x,in X is a cluster point of a

net (q)qep if and only if there exists a subnet(y sm)imep Which converges to x, .

1.10 Remark [2]: For any space X :

(1) If (x@)dep 1s @ net in X, xeX such that y; — x then s ——>x .

(1) If (x¢)aep 1s a net in X, xe X such that y, ¢ x then x4 @ X.

(ii1) If (yg)aep 1s @ net in X, xeX. Then y; ——x in (X, T) if and only if y; —x in (X,
T"), and y4 @ x in (X, T) if and only if y; ax in (X, T").

1.11 Theorem: Let (y4)scp be a net in a space (X, T) and x, in X. Then ys ¢ x, if and

only if there exists a subnet (Ym)amep Of (Ya)aep such that yz, —— x,.
Proof: By Proposition (1.9) and Remark (1.10,.iii).

1.12 Remark :

(i)A function f:(X, T)— (Y,1) is r—continuous function if and only if f:(X, T")— (¥,t")
is continuous.

(ii)A function f: (X, T) — (¥,1) is r — irresolute function if and only if f:(X, T")—

(Y, 1) is continuous.

1.13 Proposition: Let f: X—Y be a function, xeX. Then:
(i) f is r — continuous at x if and only if whenever a net (y4)4ep in X and y;, —— x

then f(yx,) ——> f(x).
(ii) f is r — irresolute at x if and only if whenever a net (y4)4ep in X and y; —— x

then f(yqs) —— f(x).

Proof: (i) = Let xeX and (y4)sep be a net in X such that y,——>x [To prove that
f(ra)—— f(x)]. Let V be an open neighborhood of f(x). Since f is r — continuous,
then /' (V) is r — neighborhood of x, but x,—-— x, then there is SeD such that y, €
', ¥ d= B Then f(yy) € f(f'(V)) < V. Thus f(y.) is eventually in every open
neighborhood of f(x), then f(yq) —— f(x).
< Suppose that f is not r — continuous. Then there exists xe X such that f is not r —
continuous at x. Then there exists an open set B in Y such that f(x) €B and f(4) ¢ B

for each 4 is an r — open containing x in X . Thus there exists y4€4 and f(y4)¢B for



each 4 is r —open in X . Then y4——x . But f(y4)¢B for each Ae N,(x), then f(y4) is

not convergent to f(x) and this is a contradiction. Then f is r — continuous.

(i) = Let xeX and (Yq)sep be a net in X such that y;—>x .Then by
Remark(1.10,iii) y,——>x in (X, T"). Since f: (X,T)——>(Y,1) is r — irresolute then
by Remark(1.12,ii) f: (X, T)——>(Y, 1) is continuous. Thus f(x;)——> f(x) in
(Y,7"), so by Remark (1.10,iii) f(y,)—— f(x).

<By Remark (1.10,iii) and Remark (1.12,ii) we have f: (X, ©)——> (Y, T') is

continuous . Then f is r — irresolute.

1.14 Definition [3]: A topological transformation group is a triple (G,X,®) where G is
a To—topological group, X is a T, — topological space and ¢ :GxX — X is a continuous
function such that:

(1) @ (81,9 (82, X)) = ¢ (2182, x) for allg1,g2€G , xeX.

(i1) @ (e, x) = x for all xe X', where e is the identity element of G.

We shall often use the notation g.x for ¢ (g,x) g.(h,x)= (gh).x for ¢ (g, ¢ (h,x))= ¢
(gh,x). Similarly for H <= G and 4 < X weput HA={ga/g e H,a € A} for
@ (H, A). A set A4 is said to be invariant under G if G4 = 4.

1.15 Definition [3]: Let X be a G — space and xeX. Then:

(1) The function ¢ is called an action of G on X and the space X together with ¢ is

called a G — space ( or more precisely left G — space ).

(i1) The subspace {g.x / geG} is called the orbit (trajectory) of x under G, which
denoted by Gx [or y(x)], and for every xeX the stabilizer subgroup G, of G at x is
the set {geG/ gx = x}.

(111) Ag= 14 (A) ={ag:acA};Ag is called the left translate of 4 by g.

(ix) gAd= Lg (A) ={ga: acA}; gA is called the right translate of 4 by g.

1.16 Proposition:Let G be a topological group and (g4)s<p be a net in G. Then:

()If g; ——> e, where e is identity element of G, then gg; ——> g (orgsg ——>g
) for each geG.

(i) If gg4—-—> oo, then gg; ——> 0 (or gz g ——> o) for each geG.

(iii) If gg—_—> oo, theng,' —2—>00



Proof: i) Since r,:G —G is continuous and open , where r, is right translation by g.
then r, is r — irresolute. Thus by Proposition (1.12,ii) g g——> g for each geG.
ii) Let gs/——> oo and geG. suppose that g,g ——> g1, for some g;€G. Since ry is

r-irresolute, then by Proposition(1.12,i1) N (g.8)—>r'(g) Then g;——>

g1g”', a contradiction. Thus g; g —— .

iii) Let g1~ o Since the inversion map of a topological group G, v: G > Gisr

— irresolute, then g;—-—>g™'. Thus if g;—_—> oo, then g, — >

1.17 Proposition: If (G, X,¢) is a topological transformation group, then ¢ is r —
irresolute.

Proof: [ et AxB be an open set in GxX, then ¢ (4%B) = AB. Since AB = { xeX/x =

ab,aed,beB} = J aB= U @(B) - Since ¢,;: X -X is homeomorphism from X on
acA

acA

itself such that aeG. Then aB is an open set in X, so | JaB = AB is open. Since ¢ is

aeA

continuous and open function, then its clear that the action ¢ is an r — irresolute
2 — Regular limit sets of a point:
From now on, in this section by G — space is meant a topological T, — space X on

which an r — locally r — compact, non — compact, T, — topological group G acts

continuously on the left.

2.1 Definition: Let X be a G — space and xeX. Then:

(1) A" (x)={yeX: there is a net (ga)sep in G With gg—— oo such that gxx -3y} is
called regular limit set of x.

(i) J"(x)=tyeX: there is a net (gq)sep in G and there is a net (yg)sep in X with

gi——soand y;—-— x such that gzx—" 3y} is called regular first prolongation

limit set of x.



2.2 Proposition:I et X be a G — space and xeX. Then:
(1) A" (x) and J"(x) are invariant sets under G.
(ii) The orbit y(x) is r — closed if and only if A" (x) is a subset of y(x).
(ii1) If x& A" (x)» then the stabilizer subgroup G, of G is r — compact.
(iv) if A" (x)=¢, for each xeX. Then the orbit (x) is not r — compact.
My () =7®YUA(x)
(vi) y€ jr(x) if and only if xe ;7 (5.
(vil) If X'is discrete G — space, then A" (x) = s (x) for each xeX.
(viil) If xe j~ (), then for each yey(x), ye ;- (.
(ix) (viii) If ye s~ (x), then for each zey(x), ye ;- (.
(X) A" (0)= A (gn) = A" (x) and 8" (x)=J" (gx) =77 (x) foreach geG.
Proof: i) Let ye A" (x) and geG. Then there is a net (g4)acp in G with g;—- 500 and
gax —— . It is clear that (gg4)scp 1s @ net in G with gg;— - 5 .Since the action is r —
irresolute, thus (ggs).x——gy which implies that gye A"(x) and hence A"(x) is
invariant. The proof of ;- () is similar.
i))= Let ye A" (x), then there is a net (g4)sep in G such that gz 500 and gix 5 y.
Since gaxe (x) and (gaX)sep is a net in 1x), then by Proposition (1.8) ye ,(x)" . But
Ax)ist - closed theny e fx), s0 A" (x) < UX).

< Let ye y(x)" - Then there exists (ya)sep is @ net in y(x) such that y,—y, then
V' deD there is g;€G such that y; = gzx. Then (g4)qep 1s @ net in G and gox —— 5 .
Now either g;— yg or g;— - sy, If gg—- 5g then gax—~ 3y gx = y, which implies
that yey(x). If go— o0, then ye A”(x) < Y(x), then y(x) is r — closed.

(iii) Let x ¢ A”(x) and suppose that G, is not r — compact . Then there is a net
(g4)aep In Gy such that g;—~ y 0. Since gax = x, i.e. gox——» x then xe A" (%) which
is a contradiction, thus G, is r — compact.

(iv) Suppose that y(x) is r — compact. Since A" (x) =¢, then there is net (g4)aep in G

with g y00, (guX) 4ep 1S a net in Yx). Since Mx) is r — compact, then by



Proposition (1.7) gxx —— y for some yeX. Hence ye A" (x), which is a contradiction
with A" (x)=¢ for each xeX.

(v) The proof of (v) is obvious

(vi) let ye s (x), then there is a net (gs)acp in G with g;— 500 and there is a net
(Xa2)dep In X with yy,—- s x such that ggpuy—->y. Put y; = gyra—-->y. Then by
Proposition (1.16,ii1) g;l — > and g;,l Vi = g;l 8dfa = Ya—_— x thus Xe j~(y).
The converse is similar.

(vii) The proof of (vii) is obvious.

(vii) Let xe jr(x) and yepux). Since s~ (y) Is invariant, then for each yepx),
Y€ J” (x)» therefore xe - (4, (by vi) and since j(,,) is invariant, then ye s ().
(ix) Let ye y7(x), from (v), x€ y7 (3. Since s (y,) is invariant, then for each
ZENX), z€ J7(y) and by (v) ye jr(z) for each ze Ax).

(x) The proof of (x) is obvious.

2.3 Proposition: Let X be an r — locally r — compact G — space and xe€X, then
x¢ A’ (x) if there is an r — neighborhood U of x and an r — compact r — neighborhood

V of e, e is the identity in G, such that gxg U for each gg V.

Proof

Let the statement be true. We suppose that xe A”(x) then there is a net (g4)acp in G
such that g;— yoo and ggx—" 3x, by hypothesis there exists U be an r —
neighborhood of x and an r-compact r-nbd V' of e such that gx¢ U for each g¢ V. Since
g — s x then there is d,eD such that g;xe U, for each d > d, therefore that g eV,
which is an r — compact, thus the net (g4)s<p has an r — convergent sub net, say itself,
1.e., there is a point ge G such that g, 3 g which is contradiction, since (g;)sep has

no r — convergent sub net, thus xg¢ A" (x).

2.4 Notation: Let X be a G — space and 4 , B be two subset of X . We mean by
((4, B)) the set {geG / g4 N B=¢}.



2.5 corollary: Let X be an r — locally r — compact G — space and x, yeX, then
y¢ N (x) if there is an r — neighborhood U of y and an r — compact r — neighborhood
V of e, such that gx¢ U for each gg V.

Proof:

Let the statement be true. Suppose that ye A~ (), then there is a net (gg)aep in G with

ga—L— oo such that gzx—~ 3. Then by hypothesis there is an r— neighborhood U of y
and r — compact r — neighborhood V" of e, such that gaxe U for each gg V. Since
gix—" sy, then there is d,eD such that g,xe U for each d, > d, therefore g eV, which

is r — compact, then (gs)scp has an r — convergent subnet, which contradictions that

gi—Lo0. Hence yg A" (x)-

2.6 Theorem: Let X be r — locally r — compact G — space and xeX. Then x¢ ;- (y) if
and only if there is an r — neighborhood U of x and there is an r —compact r-
neighborhood ¥ of e, where e is the identity element of G, such that gUN U = ¢ for
each gg V.

Proof: =—We suppose that the above statement is not true, i.e., for each r —
neighborhood U of x and for each r — compact r — neighborhood V of e there is gg V'
such that gUNU #¢. We can choose {U,},z+ to be sequence of an r — open
neighborhood of x such that U,+1cU,...and (| U, = {x}. Since Gisr—locally r

nezZ*
— compact , then there is an r — compact r — neighborhood V of e , such that G, < V.

Thus for each n there is g, ¢V such that g,U,NU, # ¢ i.e., there is y,eU, and

2in€U,. Since () U, = {x}, then we have y,—~sx and g,x,——>x and by

nezZ*

hypothesis the sequence (g,) »env has an r — convergent sub sequence , say itself, thus
there is a point ge G such that g,—~ 3 g, and by Proposition (1.17) the action is an r
— irresolute . Then by Proposition (1.13,i1) g,x,—-—» gx = x and hence ge G, V.
Therefore g,V for n > n, , which is a contradiction. Thus the statement is true.

Conversely: < Let the statement be true, we suppose that xe - (). Then there

is a net (g4)sep in G with g;—- 3 oo and there is a net (y,)sep in X with x; — x such



that gzxs —— x. Then by hypothesis, there exists U be an r — neighborhood of x and
JV be an r — compact r — neighborhood such that gUNU = ¢ for each gg¢/V.
Since(yy)aep and (gax ) aep are r — convergent to x , thus there is d,€D such that y,e U
and ggyseU for each d > d, and hence g; € ((U,U)), therefore g; €V, which is r —
compact , this it must have an r — convergent sub net which is a contradiction
XE J"(x)-

2.7 corollary: Let X be an r — locally r — compact G — space and x, y be two points of
X. Then y¢ j~(x) if there is an r — neighborhood U of x, an r — neighborhood W of y
and an r — compact r — neighborhood V of e, where e is the identity element of G ,
such that gU N W = ¢ for each gg V.

Proof

Let the statement be true, suppose that ye y~(x) . Then there is a net (ga)sep in G
with g; —~ 3 o and a net (Yy)sep in X with y; —~ 3 x such that gzxs —~> v . By
hypothesis, there exist U be r — neighborhood of x , W be r — neighborhood of y and V'
be an r — compact r — neighborhood of e such that gU N W= ¢ for each g¢ V. Thus for
d,eD we have y;€U and gy, W for each d > d, , then gseV, which is r — compact .

Therefore the net (g4)sp has r — convergent subnet , which is contradiction. Thus

3 —Regular Cartan G - space
3.1 Definition: Let X be a G — space .A subset 4 of X is said to be regular thin (r —
thin) relative to a subset B of X if the set ((4, B)) = {geG / g4 N B#¢} has an r —

neighborhood whose closure is r — compact in G. If 4 is r — thin relative to itself, then

it is called r — thin.

3.2 Remark: The r — thin sets have the following properties:
(1) Since (g4 N B) = g(A N g'lB) it follows that if 4 is r — thin relative to B, then B is r

— thin relative to 4.
(11) Since ( ggi4 N gB) =g g, lg g14 N B) it follows that if 4 is r — thin relative to B,

then so are any translates g4 and gB.
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(ii1) If 4 and B are r — relative thin and K; — 4 and K, < B, then K; and K; are r —
relatively thin.

(iv) Let X'be a G — space and K, K, be r — compact subset of X, then ((Ki, K3))is 1r—
closed in G.

(v) If K; and K are r — compact subset of G — space X such that K| and K; are r —
relatively thin, then ((K), K3)) is an r — compact subset of G.

Proof: The prove of (1), (i1), (iii) and (v) are obvious.

(iv) Let ge mr . Then there is a net (g4)4<p in (K}, K3)) such that g;——>g.
Then we have net (kf, )aep in K1, such that g,k 611 ek, since K; is r — compact, then by
Theorem (1.11) there exists a subnet (g, kém) of (gak,) such that g kcl,m —L 5k,
where kf € K. But (k;m ) in K and K| is r — compact , thus there is a point k. € K,

and a subnet of kfll say itself such that k;m —" > k.. Then g4 k:, — > gk =k2,

which mean that ge((K}, K3)), therefore ((K;, K3)) is r — closed in G.

3.3 Theorem: Let X be r —locally r — compact G — space and xeX. Then xe j () if
x has no r — thin r — neighborhood.

Proof: = Let xe s (x) and suppose that x has r — thin r — neighborhood , there is an
r — neighborhood U of x such that the set ((U,U)) has r — compact closure .By
hypothesis xe j~ (x) , then there is a net (g4)aep in G With g;—— 0 and a net (Ya)sen
in X with y;,—— x such that gy —— x, since U is a r — neighborhood of x , thus
there is d,eD such that y, e U and gy, € U for each d > d,, . Thus gze (U, U)),V d >
d, , which is r — compact , and hence the net (gs)acp must have an r — convergent
subset , which is a contradiction . Therefore x has no r — thin r — neighborhood.

3.4 Proposition: Let X be an r — locally r — compact G — space . Then ;- (x) =¢ for

each xeX if every pair of point of X has r — relatively thin r — neighborhood.

Proof

Let x, yeX, then by hypothesis, there are r — relative thin r — neighborhood U of x and

W of y. Thus (U, W)) has r — compact closure. If V1=(({U,W)) and V, be an r —

compact r — neighborhood of G,, then V' = VUV, is an r — compact r — neighborhood

11



of e and each geV, then gUNW#¢ this means that y¢ j~(x). But x and y are
arbitrary, thus we have - (x)=¢ for each xeX

3.5 Definition: A G — space X is said to be an r — Cartan G — space if every point in X
has an r — thin r — neighborhood.

3.6 Propesition: If X is r — Cartan G — space, then each orbit of x is r — closed in X
and stabilizer group of G is r — compact.

Proof: Let ye Tx)’ . Then there is a net (y;)4ep in p(x)such that y;,—" 3 y. Since X is an
r — Cartan G — space, then y has r — thin r — neighborhood U. Since y,;ey(x), then there

exists a net (gz)4ep in G such that y;=gux for each deD. Fixed d, and (g4 g;j )&y X)=

giX SO gdg;: €((U,U)) , such that gdg;: — 5g, then gox g8, xand y = gg&, x,
so yeGx. Thus y(x) is r — closed in X. Now, let xeX, then there exists an r — thin r —
neighborhood V of x. Clearly G, is r — closed in G and since G, < ((V,}V)). Hence G; is
r — compact.

3.7 Theorem: Let X be a G — space. If X is r — Cartan G — space then x ¢ J"(x) for
each xeX.

Proof: =If X'is an r — Cartan G — space. Let x € J"(x), then there is a net (g4)acp In
G with g;—~ s 00 and there is a net (4)sep in X with x; —— x such that gz —~ x.
Since xeX and X is an r — Cartan G — space, then x has an r — open neighborhood U
such that (U, U)) is r — relative thin. Then ((U, U)) is r - relative compact. Thus there
is deD, y; and ggxs are in U. So that g; is in (U, U)).Then (g;)scp contains a
convergent subnet, this is contradiction.

.3.8 Proposition: Let X be an r — CartanG —space, then A (x)=¢ for each xeX.
Proof: Suppose that there is a point yeX such that ye A~(x). Then there is a net

(84)aep In G with gg—- 300 such that gxx—-5y. Let U, be an r — thin r —

neighborhood of y. Then there is d,eD such that gxeU, for each d > d,, we get

8.8 ,}llg o X = gaxeU, thus g,8 ;}1 e(( Uy, U,)), which has r — compact closure. Hence
the net gdg;]l has r — convergent subnet, say itself, i.e, there is g,eG such that

gy g;}l —L > g, then gs—" 5 g,&,, which is a contradiction, therefore y¢ A (x),

since y is arbitrary, thus A" (x)=¢.
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