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Embedded Schemes of the Runge-Kutta Type for
the Direct Solution of Fourth-Order Ordinary
Differential Equations

F. A. Fawzi a,*, Nizam G. Ghawadri b

a Department of Mathematics, Faculty of Computer Science and Mathematics, Tikrit University, Iraq
b Doctor of Mathematics, Ministry of Education, Jenin, Palestine

ABSTRACT

This paper introduces an innovative approach for solving fourth-order ordinary differential equations (ODEs) of the
form µ(iν)

= f (x, µ, µ′) and µ(iν)
= f (x, µ, µ′, µ′′). We present the embedded Runge-Kutta (RK) Direct Explicit (ERKDGF)

method, a family of embedded direct explicit RK type methods tailored specifically for this purpose. Through meticulous
application of Taylor expansion, we have derived algebraic equations with order conditions up to the sixth order,
ensuring the accuracy and reliability of our proposed integrator. We have developed two key variants within this method,
namely RKDF5(4) and ERKDGF5(4), with orders five and four, respectively. Our approach is strategically designed,
with the higher-order method ensuring exceptional accuracy, and the lower-order counterpart providing optimal error
estimates. To facilitate practical implementation, we have devised a variable step-size code based on these methods,
which was applied to solve a set of fourth-order problems. Our method’s performance was rigorously assessed through
numerical experiments, with comparisons to existing embedded RK pairs that necessitate problem reduction into a
system of first-order ODEs. The results unequivocally demonstrate the efficiency of our ERKDGF method, both in terms
of accuracy and the number of function evaluations required. This research marks a significant advancement in the field,
offering a robust and efficient solution for directly solving fourth-order ordinary differential equations.

Keywords: Runge-Kutta type method, General fourth-order, Ordinary differential equations, Embedded method, Order
conditions

1. Introduction

Differential equations (DEs) represent a fundamental tool in the field of mathematical modelling, with
numerous scientific applications. Fourth-order DEs perform an important role in a variety of practical sciences
such as mechanics [1], quantum chemistry [2], beam theory [3], and even the intricate workings of neural
networks [4].The prevalence of these equations emphasises their importance for comprehending intricate
physical and engineering systems.

The current methods for solving DEs are limited in their ability to directly solve all types. Therefore, we
are researching the development of more straightforward numerical approaches for this proposal. An ODE of
higher order must be converted into a system of first-order ODEs before using an indirect numerical method to
solve it. Numerous researchers created the family of Runge-Kutta methods for solving first-, second-, third-, and
fourth-order ODEs. Nevertheless, it would be more effective if the issue could be resolved by using numerical
techniques (see [5, 6]).
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Recent research has made significant strides in in solving third-order differential equations (ODEs). Several
scholars have focused on developing direct integration methods based on RK types, specifically tailored for
specialised third-order ODEs. This pioneering work is exemplified by studies in [7–9].

Then, Mechee et al. [10, 11] introduced a direct RK method designed explicitly for solving specific third-order
ODEs. Similarly, Senu et al. [12] delved into the realm of one-step embedded explicit methods, emphasising
RK-type techniques for the direct solution of third-order ODEs. Kasim et al. [13] made significant contributions
by constructing an improved RK method specifically tailored for solving specialised third-order ODEs directly.

Recent advancements in this area include the work of Fawzi et al. [14], who developed a one-step method
of fourth-order precision for direct solutions of third-order ODEs. Additionally, [15] proposed a one-step
technique of fifth-order precision, further simplifying the direct solution of third-order ODEs. [16] demonstrate
how to solve exceptional 3rd ODEs using a fitted exponential-diagonally implicit RK technique. Furthermore,
researchers have explored the incorporating variable step-size methodologies within one-step direct integrators
of RK type, as demonstrated in [17–19].

Nonetheless, there has also been significant advancements in the investigation of solving particular
fourth-order ordinary differential equations (ODEs). Researchers have successfully developed one-step di-
rect numerical integrators of the RK type with constant step size, designed specifically for solving unique
fourth-order ODEs (see [20–25]). Another substantial advancement was accomplished by [26] who built two
embedded pairs of RK-type procedures. These techniques represent a significant improvement in the disci-
pline because they were created expressly for the direct solution of special fourth-order ordinary differential
equations. This study emphasises the ongoing work to improve the effectiveness and precision of numerical
approaches, ensuring a complete toolkit for solving various classes of fourth-order ODEs.

To solve fourth-order ODEs, we introduce embedded pairs of RK type methods in this paper’s two-part
methodology. The techniques are separated into two groups, with the first group addressing equations of
the form µ(iν)

= f (x, µ, µ′) and the second group addressing equations of the type µ(iν)
= f (x, µ, µ′, µ′′). This

division allows us to comprehensively address and provide direct solutions for a wider range of fourth-order
ODEs. The main objective behind devising embedded pairs within explicit RK methods is to obtain a cost-
effective estimation of local errors, specifically intended for integration into the variable step-size algorithm.

2. Preliminary

This paper establishes the framework for a general quasi-linear fourth-order ordinary differential equation
(ODE) defined as:

µ(iν)(x) = f
(
x, µ(x), µ′(x), µ′′(x), µ′′′(x)

)
, x ≥ x0 (1)

Eq. (1) encompasses various special forms, and this study focuses on deriving numerical methods of Runge-Kutta
(RK) type specifically tailored for two of these special cases.

2.1. Category I: Quasi-linear fourth-order ordinary differential equations

In this part we focus on the numerical integration of fourth-order ordinary differential equations, specifically
those in the form:

µ(iν)(x) = f
(
x, µ(x), µ′(x)

)
, x ≥ x0 (2)

with initial conditions

µ(x0) = µ0, µ′(x0) = µ′0, µ′′(x0) = µ′′0, µ′′′(x0) = µ′′′0

where µ,µ′, µ′′ ∈ <d, f : <×<d → <d represents a continuously valued vector function. The RKDF method,
designed with a general form comprising s-stages for solving the initial value problems (IVPs) described in
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Eq. (2), can be expressed as follows:

µn+1 = µn + ~µ′n +
1
2
~2 µ′′n +

1
6
h3 µ′′′n + ~4

s∑
i=1

biki,

µ′n+1 = µ
′

n + ~µ′′n +
1
2
~2 µ′′′n + ~3

s∑
i=1

b′iki,

µ′′n+1 = µ
′′

n + ~µ′′′n + ~2
s∑
i=1

b′′i ki,

µ′′′n+1 = µ
′′′

n + ~
s∑
i=1

b′′′i ki. (3)

where

k1 = f
(
xn, µn, µ′n

)
,

ki = f
(
xn + ci~, µn + ci ~µ′n +

~2

2
c2
i µ
′′

n +
~3

6
c3
i µ
′′′

n + ~4
s∑
j=1

ai jk j, µ′n + ci hµ
′′

n +
~2

2
c2
i µ
′′′

n

+ ~3
s∑
j=1

āi jk j
)
, (4)

for i = 2,3, . . . , s.The variables bi, b′i, b
′′

i , b
′′′

i , ai j, āi j and ci in the new approach are considered to be real, where
i, j = 1,2, . . . , s. The method is explicit if ai j = 0 and āi j = 0 for i ≤ j, and implicit otherwise. The coefficients
for the Generalised RK Method (RKDF) can be represented using Butcher notation, as detailed in Table 1.

Table 1. Butcher representation of embedded RKDF method.

c A Ā

bT
b′T
b′′T
b′′′T

b̂T

b̂′T

b̂′′T

b̂′′′T

(5)

2.2. Category II: Quasi-linear fourth-order ordinary differential equations

In the subsequent section, our attention is directed towards the numerical integration of fourth-order ordinary
differential equations, specifically those presented in the following form:

µn+1 = µn + ~µ′n +
1
2
~2 µ′′n +

1
6
~3 µ′′′n + ~4

s∑
i=1

biki,

µ′n+1 = µ
′

n + ~µ′′n +
1
2
~2 µ′′′n + ~3

s∑
i=1

b′iki,
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µ′′n+1 = µ
′′

n + ~µ′′′n + ~2
s∑
i=1

b′′i ki,

µ′′′n+1 = µ
′′′

n + ~
s∑
i=1

b′′′i ki. (6)

where

k1 = f
(
xn, µn, µ′n, µ

′′

n
)
,

ki = f
(
xn + ci~, µn + ci ~µ′n +

~2

2
c2
i µ
′′

n +
~3

6
c3
i ~
′′′

n + ~4
s∑
j=1

ai jk j, µ′n + ci hµ
′′

n +
~2

2
c2
i µ
′′′

n

+ ~3
s∑
j=1

āi jk j, µ′′n + ci ~ y
′′′

n + ~2
s∑
j=1

¯̄ai jk j
)
, (7)

for i = 2,3, . . . , s. The variables bi, b′i, b
′′

i , b
′′′

i , ai j, āi j, ¯̄ai j and ci in the new approach are presumed to be real and
are utilised for i, j = 1,2, . . . , s. The method is explicit when ai j = 0, āi j = 0 and ¯̄ai j = 0 for i ≤ j and implicit
otherwise. The coefficients for the Generalized Runge-Kutta Method (ERKDF) can be expressed through
Butcher notation, outlined in Table 2.

Table 2. Butcher representation of embedded ERKDF method.

c A Ā ¯̄A

bT
b′T
b′′T
b′′′T

b̂T

b̂′T

b̂′′T

b̂′′′T

(8)

This study introduces the RKDF 5(4) and RKT5(4) methods designed for solving µ(iν)
= f (x, µ, µ′) and

µ(iν)
= f (x, µ, µ′, µ′′) respectively. These methods possess fifth and fourth orders of accuracy. The primary

motivation behind developing this embedded pair of explicit RKDF and RKT methods is to generate a small
local error estimation, crucial for the implementing variable step-size algorithms. The methods compute
µn+1, µ

′

n+1, µ
′′

n+1, and µ′′′n+1 to approximate µ(xn+1), µ′(xn+1), µ′′(xn+1), and µ′′′(xn+1), where µn+1 represents
the calculated solution, and µ(xn+1) represents the exact solution.

The following techniques are employed to enhance an optimised embedded RKDF and RKTF methods:

(a) The objective is to minimise the quantities ‖ τ (p+1)
g ‖2 and ‖ τ̂ (p+1)

g ‖2 for orders both higher and lower RKDF
and RKTF formulas, ensuring their values are as small as possible,

where

‖ τ (p+1)
g ‖2=

( n1∑
i=1

(
τ

(p+1)
i

)2
+

n2∑
i=1

(
τ ′i

(p+1)
)2
+

n3∑
i=1

(
τ ′′i

(p+1)
)2
+

n4∑
i=1

(
τ ′′′i

(p+1)
)2
) 1

2

,



86 IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2024;5:82–99

and

‖ τ̂ (q+1)
g ‖2=

( n1∑
i=1

(
τ̂

(q+1)
i

)2
+

n2∑
i=1

(
τ̂ ′i

(q+1)
)2
+

n3∑
i=1

(
τ̂ ′′i

(q+1)
)2
+

n4∑
i=1

(
τ̂ ′′′i

(q+1)
)2
) 1

2

(9)

and τ (p+1), τ ′(p+1), τ ′′(p+1) and τ ′′′(p+1) are the local truncation error norms for µ,µ′, µ′′ and µ′′′ respectively.

(b) The local error estimation at the point xn+1 is determined by the following formula:

LTE = max{‖ ξn+1 ‖∞, ‖ ξ
′

n+1 ‖∞, ‖ ξ
′′

n+1 ‖∞, ‖ ξ
′′′

n+1 ‖∞},

where

ξn+1 = µ̂n+1 − µn+1, ξ ′n+1 = µ̂
′

n+1 − µ
′

n+1, ξ ′′n+1 = µ̂
′′

n+1 − µ
′′

n+1,

ξ ′′′n+1 = µ̂
′′′

n+1 − µ
′′′

n+1,

Here, µn+1, µ
′

n+1 µ
′′

n+1 and µ′′′n+1 represent solutions obtained using the higher-order formula, while µ̂n+1, µ̂′n+1
µ̂′′n+1 and µ̂′′′n+1 denote solutions obtained using the lower-order formula. These local error estimations, LTE,
can be utilised to adjust the step size ~ based on the standard formula as outlined in [26].

~n+1 = 0.9 ~n
(
Tol
LTE

) 1
p+1

, (10)

Here, the value 0.9 acts as a safety factor and represents the local truncation error (LTE) at each step. Tol
signifies the desired efficiency, indicating the maximum permissible local error. If LTE ≤ Tol, the step is
considered acceptable, and the process proceeds with local extrapolation. This implies that a more efficient
approximation is applied to enhance the integration, and h is updated using the Eq. (10). However, if LTE > Tol,
the step is rejected. In this case, Eq. (10) provides a useful estimate for reducing the step size, making it smaller
than hn, for a repeated step.

3. Determination of order conditions and coefficients

To establish the order conditions and coefficients for the initial proposed numerical integrator outlined in
Eqs. (4) and (5), we employed Taylor’s series expansion technique on the RKDF formula. After performing
necessary algebraic adjustments, this expanded form was set equal to the solution obtained through Taylor
expansion. By directly expanding the error at each step, we determined the overall order conditions for the
RKDF method, building upon the order conditions derived for the RK method as presented in [7]. Similarly,
utilising Eqs. (6) and (7), we computed the specific order conditions (11)–(29) for the proposed direct
integrators of RKTF type, which were implemented employing Maple Software to ensure wide accessibility
and ease of replication.

The order terms for µ:

4th-order∑
bi =

1
24
. (11)

5th-order∑
bici =

1
120

. (12)

6th-order∑
bic2

i =
1

360
,

∑
bi ¯̄ai j =

1
720

. (13)
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The order terms for µ′:

3rd-order∑
b′i =

1
6
. (14)

4th-order∑
b′ici =

1
24
. (15)

5th-order∑
b′ic

2
i =

1
60
,

∑
b′i ¯̄ai j =

1
120

. (16)

6th-order∑
b′ic

3
i =

1
120

,
∑

b′iāi j =
1

720
,

∑
b′i ¯̄ai jc j =

1
720

,
∑

b′i ¯̄ai jci =
1

240
. (17)

The order terms for µ′′:

2nd-order∑
b′′i =

1
2
. (18)

3rd-order∑
b′′i ci =

1
6
. (19)

4th-order∑
b′′i c

2
i =

1
12
,

∑
b′i ¯̄ai j =

1
24
. (20)

5th-order∑
b′′i c

3
i =

1
20
,

∑
b′′i āi j =

1
120

,
∑

b′′i ¯̄ai jc j =
1

120
,

∑
b′′i ¯̄ai jci =

1
40
. (21)

6th-order∑
b′′i c

4
i =

1
30
,

∑
b′′i āi jc j =

1
720

,
∑

b′′i ¯̄ai j ¯̄a jk =
1

720
,

∑
b′′i ¯̄ai jc2

i =
1
60
, (22)

∑
b′′i āi jci =

1
180

,
∑

b′′i ai j =
1

720
∑

b′′i ¯̄ai jc2
j =

1
360

, (23)

∑
b′′i ci ¯̄ai jc j =

1
180

,
1
2
∑

b′′i ¯̄a2
i j +

∑
b′′i ¯̄aik ¯̄ai j =

1
240

. (24)

The order terms for µ′′′:

1st -order∑
b′′′i = 1. (25)
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2nd-order∑
b′′′i ci =

1
2
. (26)

3th-order∑
b′′′i c

2
i =

1
3
,

∑
b′′′i ¯̄ai j =

1
6
. (27)

4th-order∑
b′′′i c

3
i =

1
4
,

∑
b′′′i ¯̄ai jc j =

1
24
,

∑
b′′′i ¯̄ai jci =

1
8
,

∑
b′′′i āi j =

1
24
. (28)

5th-order∑
b′′′i c

4
i =

1
5
,

∑
b′′′i āi jc j =

1
120

,
∑

b′′′i ¯̄ai j ¯̄a jk =
1

120
,

∑
b′′′i c

2
i ¯̄ai j =

1
10
,∑

b′′′i āi jci =
1
30
,

∑
b′′′i ai j =

1
120

,
∑

b′′′i ¯̄aik ¯̄ai j +
1
2
∑

b′′′i ¯̄a2
i j =

1
40
,∑

b′′′i ci ¯̄ai jc j =
1
30
,
∑

b′′′i ¯̄ai jc2
j =

1
60
,

∑
b′′′i ¯̄ai jc2

j +
∑

b′′′i ci ¯̄ai jc j =
1
20
,

1
2
∑

b′′′i ¯̄ai jc2
j +

∑
b′′′i āi jc j =

1
60
,

1
2
∑

b′′′i c
2
i ¯̄ai j +

∑
b′′′i ciāi j =

1
12
,

1
2
∑

b′′′i ¯̄ai jc2
j +

∑
b′′′i ci ¯̄ai jc j =

1
24
. (29)

6th-order

1
2
∑

b′′′i ci ¯̄a
2
i j +

∑
b′′′i ci ¯̄aik ¯̄ai j =

1
48
,

∑
b′′′i c

5
i =

1
6
,

∑
b′′′i ¯̄ai jc3

j =
1

120
,∑

b′′′i ci ¯̄ai jc
2
j =

1
72
,

∑
b′′′i c

2
i ¯̄ai jc j =

1
36
,

∑
b′′′i c

2
i ¯̄ai jc j +

1
2
∑

b′′′i ¯̄ai jc3
j =

23
720

,

1
2
∑

b′′′i c
2
i ¯̄ai jc j +

1
6
∑

b′′′i ¯̄ai jc3
j =

11
720

,
∑

b′′′i ¯̄ai jc3
j +

∑
b′′′i c

2
i ¯̄ai jc j =

13
360

,∑
b′′′i ciāi jc j =

1
144

,
∑

b′′′i ciai j =
1

144
,

∑
b′′′i ciāi jc j +

∑
b′′′i āi jc

2
j =

7
720

,∑
b′′′i ¯̄ai j ¯̄a jkck =

1
720

,
1
2
∑

b′′′i ai jc
3
j +

∑
b′′′i ciāi jc j =

1
90
,

∑
b′′′i c

3
i ¯̄ai j =

1
12
,∑

b′′′i c
2
i āi j =

1
36
,

∑
b′′′i ¯̄aik ¯̄ai jc j +

∑
b′′′i ¯̄a2

i jc j +
∑

b′′′i ¯̄aik ¯̄ai jck =
1
72
,∑

b′′′i ciāi jc j +
1
2
∑

b′′′i c
2
i ¯̄ai jc j =

1
48
,

∑
b′′′i āi jc

2
j +

1
2
∑

b′′′i ci ¯̄ai jc
2
j =

7
720

,∑
b′′′i ¯̄ai j ¯̄a jkci +

∑
b′′′i ¯̄ai j ¯̄a jkc j =

1
90
,

∑
b′′′i ¯̄ai jāik +

∑
b′′′i ¯̄ai jā jk =

1
360

,∑
b′′′i c

2
i āi j +

1
2
∑

b′′′i c
3
i ¯̄ai j =

5
72
,

1
6
∑

b′′′i c
3
i ¯̄ai j +

∑
b′′′i ciai j =

1
48
,∑

b′′′i ciai j =
1

144
,

1
2
∑

b′′′i c
2
i āi j +

∑
b′′′i ciai j =

1
48
,

∑
b′′′i c

2
i āi j =

1
36
,

1
6
∑

b′′′i ¯̄ai jc3
j +

∑
b′′′i ai jc j =

1
360

,
1
2
∑

b′′′i āi jc
2
j +

∑
b′′′i ai jc j =

1
360

,
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∑
b′′′i ciāi jc j +

1
2
∑

b′′′i āi jc
2
j =

1
120

,
1
2
∑

b′′′i āi jc
2
j +

1
2
∑

b′′′i ci ¯̄ai jc
2
j =

1
120

,∑
b′′′i āi jc

2
j =

1
360

,
∑

b′′′i ciāi jc j +
1
2
∑

b′′′i c
2
i ¯̄ai jc j +

1
2
∑

b′′′i ¯̄ai jc3
j =

1
40
,∑

b′′′i c
2
i āi j +

∑
b′′′i c

3
i ¯̄ai j =

1
9
,

∑
b′′′i ai jc j =

1
720

,
∑

b′′′i ¯̄ai j ¯̄a jkck =
1

720
,∑

b′′′i ¯̄ai j ¯̄a jk +
∑

b′′′i ¯̄aikāi j +
∑

b′′′i ¯̄ai jāi j =
1
72
,

∑
b′′′i ciāi jc j =

1
144

,∑
b′′′i c

2
i ¯̄ai jc j +

∑
b′′′i ¯̄ai jc3

j =
13
360

,
∑

b′′′i āi jc
2
j +

1
2
∑

b′′′i ci ¯̄ai jc
2
j =

7
720

,∑
b′′′i c

2
i āi j +

1
2
∑

b′′′i c
3
i ¯̄ai j =

5
72
,

∑
b′′′i c

2
i ¯̄ai jc j +

1
2
∑

b′′′i ¯̄ai jc3
j =

23
720

,

1
2
∑

b′′′i c
2
i ¯̄ai jc j +

1
2
∑

b′′′i ci ¯̄ai jc
2
j +

∑
b′′′i ciāi jc j +

∑
b′′′i āi jc

2
j =

11
360

,∑
b′′′i ciāi jc j +

∑
b′′′i āi jc

2
j =

7
720

,
∑

b′′′i ¯̄ai jc3
j =

1
120

,∑
b′′′i ci ¯̄ai j ¯̄a jk +

∑
b′′′i ¯̄aik ¯̄ai jc j +

∑
b′′′i ¯̄aik ¯̄ai jck +

∑
b′′′i ¯̄ai j ¯̄a jkc j +

∑
b′′′i ¯̄a2

i j =
1
40
. (30)

4. Derivation of the proposed methods

4.1. Derivation of embedded 5(4) RKDF method

In this subsection, a fifth-order three-stage RKDF method is derived. Algebraic conditions up to the fifth-order
must be resolved, resulting in a system of 19 nonlinear equations. By solving this system simultaneously, a
family of solutions in terms of a21, a31 and b2 is obtained as follows:

a21 = a21, a31 = a31, a32 = −
131
125

a2,1 −
16
√

6
125

a2,1 +
12
625
+

3
√

6
2500

− a3,1, ā21 =
27
500
−

19
√

6
1000

,

ā31 =
33

2500
+

51
√

6
5000

, ā32 =
51

1250
+

11
√

6
1250

, b′1 =
1
18
, b′2 =

1
18
+

√
6

48
, b′3 =

1
18
−

√
6

48
,

c2 =
3
5
−

√
6

10
, c3 =

3
5
+

√
6

10
, b1 =

1
40
+

2
5
b2 +

√
6

360
−

2
√

6
5

b2, b2 = b2,

b3 =
1
60
−

√
6

360
−

7
5
b2 +

2
√

6
5

b2, b′′1 =
1
9
, b′′2 =

7
36
+

√
6

18
, b′′3 =

7
36
−

√
6

18
,

b′′′1 =
1
9
, b′′′2 =

4
9
+

√
6

36
, b′′′3 =

4
9
−

√
6

36
.

Using the minimise command in Maple, we obtained a21 = 0.000201150115696978, a31 =

0.0114730199865407, and b2 = 0.0245113423910039, resulting in a minimum local truncation error
of 0.00748935976364954044. To express these optimised values in fractional form, we choose a21 =

2
10000 ,

a31 =
1

100 , and b2 =
2

100 . Consequently, the coefficients for the three-stage 5th-order RKDF approach, represented
by RKDF5, can be expressed in the following manner:

c2 =
3
5
−

√
6

10
, c3 =

3
5
+

√
6

10
, a21 =

1
5000

, a31
1

100
, a32 =

5619
625000

+
367
√

6
312500

, ā21 =
27
500
−

19
√

6
1000

,

ā31 =
33

2500
+

51
√

6
5000

, ā32 =
51

1250
+

11
√

6
1250

, b1 =
33

1000
−

47
√

6
9000

, b2 =
1
50
, b3 = −

17
1500

+
47
√

6
9000

,

b′1 =
1
18
, b′2 =

1
18
+

√
6

48
, b′3 =

1
18
−

√
6

48
, b′′1 =

1
9
, b′′2 =

7
36
+

√
6

18
, b′′3 =

7
36
−

√
6

18
, b′′′1 =

1
9
,
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b′′′2 =
4
9
+

√
6

36
, b′′′3 =

4
9
−

√
6

36
.

Utilising the aforementioned solution for the values of A, Ā, and c, we derive and formulate a three-stage (s = 3)
fourth-order (q = 4) embedded formula. Solving the equations Eq. (11), Eqs. (14) and (15), Eqs. (18) to (20)
and Eqs. (25) to (28) simultaneously yields a solution for b′′1, b′′2, b′′3, b′′′1 , b′′′2 , and b′′′3 using the same as fifth-order
formula. Expressing the solution in terms of three free parameters, b2, b3, and b′3 are obtained as follows:

b′1 =
1
12
+

2
5
b′3 +

2
√

6
5

b′3 −
√

6
72
, b′2 =

1
12
−

7
5
b′3 −

2
√

6
5

b′3 +
√

6
72
, b′3 = b

′

3, b1 =
1
24
− b2 − b3, b2 = b2, b3 = b3,

b′′1 =
1
9
, b′′2 =

7
36
+

√
6

18
, b′′3 =

7
36
−

√
6

18
, b′′′1 =

1
9
, b′′′2 =

4
9
+

√
6

36
, b′′′3 =

4
9
−

√
6

36
.

Letting b′3 = 0, and employing the “minimize" command in Maple, we attain b2 = 0.496306580640579, b3 =

−0.198687532794505 and the minimum error is 0.001872873928. For the optimised value in fractional, then
we choose b2 =

49
100 and b3 = −

19
100 .

Ultimately, the coefficients of the three-stage fifth-order RKDF method, denoted as RKDF5(4), can be
expressed as follows in Table 3.

4.2. Derivation of embedded 5(4) ERKDGF method

In this subsection, a four-stage RKTF technique of fifth-order will be derived. The algebraic conditions up
to fifth-order need to be solved. The resulting system consists of 35 nonlinear equations solving the system
simultaneously and the family of solutions in terms of a21, a32, a42, a43, ā21, ā42, ā43, b′4, c2, b3 and b4 are given
as follows:

a21 = a21, a31 = −
1

10
(
16 c2

2 − 8 c2 + 1
) (

5 c2 − 4
) (

4 c2 − 1
)2 (12500 a42c5

2 + 12500 a43c5
2

− 220 c5
2 + 12800 a32c5

2 − 23040 a32c4
2 − 21250 a42c4

2 − 21250 a43c4
2 + 366 c4

2 − 192 c3
2

+ 15040 a32c3
2 + 11250 a42c3

2 + 11250 a43c3
2 − 1875 a42c2

2 − 1875 a43c2
2 + 32 c2

2

Table 3. The RKDF(5)4 method.

3
5
−

√
6

10
1

5000
27
500
−

19
√

6
1000

3
5
+

√
6

10
1

100
5619

625000
+

367
√

6
312500

33
2500

+
51
√

6
5000

51
1250

+
11
√

6
1250

33
1000

−
47
√

6
9000

1
50

−
17

1500
+

47
√

6
9000

1
18

1
18
+

√
6

48
1
18
−

√
6

48
1
9

7
36
+

√
6

18
7
36
−

√
6

18
1
9

4
9
+

√
6

36
4
9
−

√
6

36

−
31
120

49
100

−
19
100

1
12
−

√
6

72
1
12
+

√
6

72
0

1
9

7
36
+

√
6

18
7
36
−

√
6

18
1
9

4
9
+

√
6

36
4
9
−

√
6

36
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− 4640 a32c2
2 + 690 a32c2 + 110 a21c2 − 40 a32 − 40 a21

)
, a32 = a32, a41 = 0,

a42 = a42, a43 = a43, ā31 =
1

10
(
16 c2

2 − 8 c2 + 1
) (

5 c2 − 4
) (

4 c2 − 1
)3 (50000 c6

2ā42

− 880 c5
2 − 1040 c2

2ā21 − 18750 c3
2ā42 + 11250 c3

2ā43 + 800 c3
2ā21 + 66250 c4

2ā42

− 21250 c4
2ā43 − 97500 c5

2ā42 + 12500 c5
2ā43 − 40 ā2,1 + 320 c2

2 − 32 c2 − 1134 c3
2

+ 1684 c4
2 + 1875 c2

2ā42 − 1875 c2
2ā43 + 370 c2ā21

)
,

ā32 =
1

10
(
16 c2

2 − 8 c2 + 1
) (

5 c2 − 4
) (

4 c2 − 1
)3 ((2 c2 − 1)c2

(
− 440 c3

2 + 622 c2
2 − 256 c2

+ 32+ 25000 c4
2ā42 − 36250 c3

2ā42 + 15000 c2
2ā42 − 1875 ā42c2 + 6250 c3

2ā43

− 7500 c2
2ā43 + 1875 c2ā43

))
, ā41 = −

1
125 c2

(
10 c2

2 − 12 c2 + 3
) (1250 c3

2ā43 − 110 c3
2

+ 1250 c3
2ā42 − 1500 c2

2ā43 + 128 c2
2 − 1500 c2

2ā42 − 32 c2 + 375 c2ā43 + 375 ā42c2

+ 20 ā21
)
, ā42 = ā42, ā43 = ā43, ¯̄a21 =

1
2
c2

2, ¯̄a31 =
1
2

c2
2

(4 c2 − 1)2 ,
¯̄a32 = 0,

¯̄a41 = −
4 (50 c4

2 − 260 c2
3
+ 321 c2

2 − 128 c2 + 16)
625 c2

2
(
10 c2

2 − 12 c2 + 3
) , ¯̄a42 =

(5 c2 − 4)
(
33 c2

2 − 34 c2 + 8
)

625 (2 c2 − 1) c2
2
(
10 c2

2 − 12 c2 + 3
) ,

¯̄a43 =
(4 c2 − 1)2 (275 c3

2 − 430 c2
2 + 208 c2 − 32

)
625 (2 c2 − 1) c2

2
(
10 c22 − 12 c2 + 3

) , b′1 =
660 c2

2b4 + 20 c2 − 768 c2b4 − 5+ 192 b4

300 c2
2

,

b′2 = −
1

1200
−15 c2 + 1056 c2b4 − 384 b4 + 10

(2 c2 − 1) c2
2

, b′3 = −
(
−25 c2 + 480 c2b4 − 384 b4 + 10

)
(4 c2 − 1)2

1200 (2 c2 − 1) c2
2

,

b′4 = b
′

4, b1 = −
−20 c2

2 + 9 c2 − 240 b3c2 − 504 b4c2 + 96 b4 − 1+ 480 b3c2
2 + 480 b4c2

2
120 c2 (4 c2 − 1)

,

b2 = −
1

120
120 b3c2 + 384 b4c2 − 96 b4 − 4 c2 + 1

c2 (4 c2 − 1)
, b3 = b3, b4 = b4, b′′1 =

2 c2
2 + 4 c2 − 1

48 c2
2

,

b′′2 = −
c2 − 1

24 c2
2 (5 c2 − 4) (2 c2 − 1)

, , b′′3 =
192 c4

2 − 208 c3
2 + 84 c2

2 − 15 c2 + 1
24 (2 c2 − 1) c2

2 (11 c2 − 4)
,

b′′4 =
25
48

10 c2
2 − 12 c2 + 3

(11 c2 − 4) (5 c2 − 4)
, b′′′1 =

2 c2
2 + 4 c2 − 1

48 c2
2

, b′′′2 =
1

24 c2
2 (5 c2 − 4) (2 c2 − 1)

,

b′′′3 =
(4 c2 − 1)2 (16 c2

2 − 8 c2 + 1
)

24 (2 c2 − 1) c2
2 (11 c2 − 4)

, b′′′4 =
125
48

10 c2
2 − 12 c2 + 3

(11 c2 − 4) (5 c2 − 4)
, c4 =

4
5
, c2 = c2,

c3 =
c2

4 c2 − 1
.

By utilising the minimise command in Maple, we achieve a21 = 0.518475525248816,
a32 = −0.412217645489556, a41 = 0.000204911181723119, a42 = −.239252831207220, a43 =

0.527446393740536, ā21 = 0.00487550792349588, ā42 = 0.000550566902448232, ā43 =

0.0298499797533611, b′4 = 0.0322254023634992, c2 = 0.748893051614183, b3 = 0.438487023975308
and b4 = 1.17947883541692 and the minimum local truncation error is 0.009351286738. For the optimised
value in fractional form then we choose a21 =

5
10 , a32 = −

4
100 , a41 =

2
10000 ,a42 = −

24
100 , a43 =

52
100 , ā21 =

5
1000 ,

ā42 =
1

1000 , ā43 =
3

100 , b′4 =
3

100 , c2 =
74
100 , b3 =

4
10 and b4 =

11
10 . Ultimately we can express the coefficients of
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the fifth-order, four-stage RKTF method, which we will refer to as RKTF5.

c2 =
37
50
, c3 =

37
98
, c4 =

4
5
, a21 =

1
2
, a31 =

29560597
288240050

, a32 = −
1
25
,

a41 =
1

5000
, a42 = −

6
25
, a43 =

13
25
, ā21 =

1
200

, ā31 =
23408341

4519603984
, ā32 = −

20407091
4519603984

,

ā41 =
77969

3737000
, ā42 =

1
1000

, ā43 =
3

100
, ¯̄a21 =

1369
5000

, ¯̄a31 =
1369
19208

, ¯̄a32 = 0,

¯̄a41 =
3347324
17283625

, ¯̄a42 =
2277

553076
, ¯̄a43 =

8449119
69134500

, b1 = −
1107
14504

,

b2 = −
30067
21756

, b3 =
2
5
, b4 =

11
10
, b′1 =

116911
2053500

, b′2 = −
13529
394272

, b′3 =
5620741
49284000

,

b′4 =
3

100
, b′′1 =

1273
10952

, b′′2 = −
40625
295704

, b′′3 =
7176589
20403576

, b′′4 =
2525
14904

, b′′′1 =
1273
10952

,

b′′′2 = −
78125
147852

, b′′′3 =
5764801
10201788

b′′′4 =
12625
14904

.

Building upon the previously obtained values for A, Ā, ¯̄A and c, we derive and formulate a fourth-order (q = 4)
embedded formula with four stages (s = 4). Solving the equations Eq. (11), Eqs. (14) and (15), Eqs. (18) to (20)
and Eqs. (25) to (28) simultaneously yields a solution for b̂′′′1 , b̂′′′2 , b̂′′′3 and b̂′′′4 using the same as fifth-order formula.
The solution in six free parameters in terms of b̂2, b̂′2, b̂′4, b̂3, b̂′′4, and b̂4 is obtained as follows:

b̂′1 =
25
444
+

24
25

b̂′2 +
207
185

b̂′4, b̂
′

2 = b̂
′

2, b̂
′

3 = −
49
25

b̂′2 +
49
444
−

392
185

b̂′4, b̂
′

4 = b̂
′

4,

b̂1 =
1
24
− b̂2 − b̂3 − b̂4, b̂2 = b̂2, b̂3 = b̂3, b̂4 = b̂4, b̂′′1 =

1081
8214

−
621
6845

b̂′′4,

b̂′′2 =
625
8214

−
1725
1369

b̂′′4, b̂
′′

3 =
2401
8214

+
2401
6845

b̂′′4, b̂
′′

4 = b̂
′′

4, b̂
′′′

1 =
1273
10952

,

b̂′′′2 = −
78125
147852

, b̂′′′3 =
5764801
10201788

, b̂′′′4 =
12625
14904

.

By the minimise command in Maple we obtain b̂2 = −0.667785556227001, b̂3 = 0.490362563807150,
b̂4 = −.159234278111095, b̂′2 = 0.137906168938096, b̂′4 = −.106677825541037 and the minimum error is
0.005850684564. For the optimised value in fractional form we choose b2 = −

33
500 , b3 =

49
100 , b̂4 = −

4
25 , b̂′2 =

7
50

and b̂′4 = −
1
10 .

Finally, all the coefficients of four-stage fifth-order RKTF method denoted by RKTF5(4) can be written as
follows in Table 4.

5. Implementations

In this section, we evaluate two categories of problems. We compare the numerical findings with current
approaches by converting the identical problem set into a system of 1st -order equations and solving them with
established RK methods of the same order.

5.1. First Proposed Method

This section tests some problems involving µ(iν)
= f (x, µ, µ′). The results obtained numerically are compared

with those obtained when the same problem set is converted into a system of first-order equations and solved
with a well-known RK method of equal order.
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Table 4. The RKTF(5)4 method.

37
50

1
2

1
200

1369
5000

37
98

29560597
288240050

−
1
25

23408341
4519603984

−
20407091

4519603984
1369
19208

0

4
5

0 −
6
25

13
25

77969
3737000

1
1000

3
100

3347324
17283625

2277
553076

8449119
69134500

−
1107
14504

−
30067
21756

2
5

11
10

116911
2053500

−
13529
394272

5620741
49284000

3
100

1273
10952

−
40625
295704

7176589
20403576

2525
14904

1273
10952

−
78125
147852

5764801
10201788

12625
14904

−
667
3000

−
33

5000
49
100

−
4
25

21871
277500

7
50

13279
277500

−
1
10

12581
102675

−
205
4107

33614
102675

1
10

1273
10952

−
78125
147852

5764801
10201788

12625
14904

• RKDF5(4): This work derives a pair of RK type 5(4).
• RKF5(4): RK 5(4) pair as given in Fehlberg [27].
• DOPRI(5)4: RK 5(4) pair introduced in Butcher [5].

Problem 1: (Inhomogeneous Linear Problem)

µ(iν)(x) = µ′(x)− cos(x),

µ(0) = −
1
2
, µ′(0) =

1
2
, µ′′(0) =

1
2
, µ′′′(0) = −

1
2
,

The precise solution is expressed as µ(x) = 1
2 sin(x)− 1

2 cos(x).

Problem 2: (linear System Inhomogeneous)

µ
(iν)
1 (x) = µ′1(x)+ 1, µ1(0) = 1, µ′1(0) = 0, µ′′1(0) = −1, µ′′′1 (0) = 0,

µ
(iν)
2 (x) = −y′2(x)− cos(x), µ2(0) = −

1
2
, µ′2(0) = −

1
2
, µ′′2(0) =

1
2
, µ′′′2 (0) =

1
2
,

µ
(iν)
3 (x) = −y′3(x)− sin(x), µ3(0) = −

1
2
, µ′3(0) =

1
2
, µ′′3(0) =

1
2
, µ′′′3 (0) = −

1
2
,

µ
(iν)
4 (x) = −y′4(x) sin(x), µ4(0) = 1, µ′4(0) = −1, µ′′4(0) = −1, µ′′′4 (0) = 1,

The precise solution is expressed as

µ1(x) = 1−
2
√

3
3

e
1
2 x sin(

1
2
√

3x)+ x,

µ2(x) = −
1
2

sin(x)−
1
2

cos(x),

µ3(x) = −
1
2

cos(x)+
1
2

sin(x),

µ4(x) = cos(x)− sin(x),
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Problem 3: (linear System Homogeneous)

µ
(iν)
1 (x) = −µ′1(x), µ1(0) = 1, µ′1(0) = 2, µ′′1(0) = 3, µ′′′1 (0) = 0,

µ
(iν)
2 (x) = −µ′2(x), µ2(0) = 0, µ′2(0) = −1, µ′′2(0) = 1, µ′′′2 (0) = 2,

µ(iν)(x) = −µ′3(x), µ3(0) = 2, µ′3(0) = 4, µ′′3(0) = 4, µ′′′3 (0) = 5,

µ
(iν)
4 (x) = −µ′4(x), µ4(0) = 1, µ′4(0) = −1, µ′′4(0) = −1, µ′′′4 (0) = 1,

The exact solution is given by

µ1(x) = 1+
1
3
e−x +

5
√

3
3

e
1
2 x sin(

√
3

3
x)−

1
3
e

1
2 x cos(

√
3

2
x),

µ2(x) = 2− 2 e
1
2 x cos(

√
3

2
x),

µ3(x) = 7−
4
3
e−x +

7
√

3
3

e
1
2 x sin(

√
3

2
x)−

11
3
e

1
2 x cos(

√
3

2
x),

µ4(x) = 2−
1
3
e−x −

2
√

3
2

e
1
2 x sin(

√
3

2
x)−

2
3
e

1
2 x cos(

√
3

2
x).

Table 5. Comparison of RKDF5(4), RKF5(4) and DOPRI(5)4 methods when
solving Problem 1 with Xend = 2.

h Methods F.N MAXE

0.025 RKDF5(4) 243 9.816314(−13)
RKF5(4) 1944 6.970813(−12)
DOPRI(5)4 2268 2.853828(−12)

0.05 RKDF5(4) 120 3.160371(−11)
RKF5(4) 960 2.266052(−10)
DOPRI(5)4 1120 9.375184(−11)

0.075 RKDF5(4) 81 2.413710(−10)
RKF5(4) 648 1.748493(−9)
DOPRI(5)4 756 7.305133(−10)

0.1 RKDF5(4) 60 1.023045(−9)
RKF5(4) 480 7.480006(−9)
DOPRI(5)4 560 3.158440(−9)

Table 6. Comparison of RKDF5(4), RKF5(4) and DOPRI(5)4 methods when
solving Problem 2 with Xend = 2.

h Methods F.N MAXE

0.025 RKDF5(4) 120 2.495226(−12)
RKF5(4) 1944 2.384974(−2)
DOPRI(5)4 2268 3.203662(−2)

0.05 RKDF5(4) 60 8.005052(−11)
RKF5(4) 960 4.371991(−2)
DOPRI(5)4 1120 5.877136(−2)

0.075 RKDF5(4) 42 6.231417(−10)
RKF5(4) 648 6.377007(−2)
DOPRI(5)4 756 8.580196(−2)

0.1 RKDF5(4) 33 2.684844(−9)
RKF5(4) 480 7.759483(−2)
DOPRI(5)4 560 1.045625(−1)
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Table 7. Comparison of RKDF5(4), RKF5(4) and DOPRI(5)4 methods when
solving Problem 4 with Xend = 5.

h Methods F.N MAXE

0.025 RKDF5(4) 600 2.368878(−10)
RKF5(4) 4800 2.907342(−9)
DOPRI(5)4 5600 8.770940(−10)

0.05 RKDF5(4) 303 7.683447(−9)
RKF5(4) 2424 9.559413(−8)
DOPRI(5)4 2828 2.848230(−8)

0.075 RKDF5(4) 201 5.754256(−8)
RKF5(4) 1608 7.041820(−7)
DOPRI(5)4 1876 2.064936(−7)

0.1 RKDF5(4) 153 2.480497(−7)
RKF5(4) 1224 3.107898(−6)
DOPRI(5)4 1428 9.018576(−7)
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Fig. 1. Comparison for RKDF5(4), RKF5(4) and DOPRI(5)4 Problem 1 with Xend = 5.
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Fig. 2. Comparison for RKDF5(4), RKF5(4) and DOPRI(5)4 Problem 2 with Xend = 10.

5.2. Second proposed method

This subsection examines a few of the problems with µ(iν)
= f (x, µ, µ′, µ′′). The numerical outcomes are

compared to those obtained by reducing the same set of problems to a system of 1st -order equations and using
the current RK of the same order to solve it.

• ERKDGF5(4): RK type 5(4) pair developed in this manuscript.
• RKF5(4): RK 5(4) pair as given in Fehlberg [27].
• DOPRI(5)4: RK 5(4) pair presented in Butcher’s work [5].



96 IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2024;5:82–99

log
10

(Number of function evaluations)
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

lo
g 10

(M
ax

 g
lo

ba
l e

rro
r)

-12

-10

-8

-6

-4

-2

0

 RKDF5(4)
RKF5(4)
DOPRI5(4)

Fig. 3. Comparison for RKDF5(4), RKF5(4) and DOPRI(5)4 Problem 4 with Xend = 3.

Problem 1: (linear System Inhomogeneous)

µ
(iν)
1 (x) = −µ′′2(x), µ1(0) = 1, µ′1(0) = 1, µ′′1(0) = 1, µ′′′1 (0) = 1,

µ
(iν)
2 (x) = −µ′′1(x), µ2(0) = −1, µ′2(0) = −1, µ′′2(0) = −1, µ′′′2 (0) = −1,

µ
(iν)
3 (x) = −µ′′3(x)− µ3(x)− cos(x), µ3(0) = −1, µ′3(0) = 0, µ′′3(0) = 1, µ′′′3 (0) = 0,

µ
(iν)
4 (x) = −µ′′4(x)− 2 cos(x), µ4(0) = −2, µ′4(0) = 0, µ′′4(0) = 2, µ′′′4 (0) = 0,

The exact solution is given by

µ1(x) = ex

µ2(x) = −ex

µ3(x) = − cos(x),

µ4(x) = −2 cos(x),

Problem 2: (Inhomogeneous Linear Problem)

µ(iν)(x) = −µ′′(x),

µ(0) = 0, µ′(0) = 1, µ′′(0) = 2, µ′′′(0) = 3,

The exact solution is given by µ(x) = 2+ 4x− 3 sin(x)− 2 cos(x).

Problem 3: (Homogeneous linear Problem)

µ(iν)(x) = −µ′′(x)− 2 cos(x),

µ(0) = −1, µ′(0) = 0, µ′′(0) = 1, µ′′(0) = 0,

The exact solution is given by µ(x) = −2+ cos(x)+ sin(x)x.

6. Discussion and conclusions

This paper presents the introduction of RKDF5(4) and ERKDGF5(4) methods, which are embedded Runge-
Kutta schemes specifically developed for directly solving fourth-order ordinary differential equations (ODEs)
with variable step sizes. These methods were compared with single-step Runge-Kutta procedures, as other
direct methods employ multi-step approaches. We have created variable step-size codes using RKDF5(4)
and ERKDGF5(4) methods to solve fourth-order ordinary differential equations (ODEs) in the forms µ(iν)

=

f (x, µ, µ′) and µ(iν)
= f (x, µ, µ′, µ′′). In order to achieve equitable comparisons, approaches of equivalent

magnitude were examined in terms of numerical outcomes. The results of the comparison, displayed in
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Table 8. Comparison of ERKDGF5(4), RKF5(4) and DOPRI(5)4 methods when
solving Problem 1 with Xend = 10.

h Methods F.N MAXE

0.00625 ERKDGF5(4) 6404 6.002665(−9)
RKF5(4) 38424 4.878530(−9)
DOPRI5(4) 44828 7.250492(−9)

0.0125 ERKDGF5(4) 3204 1.786611(−8)
RKF5(4) 19224 6.053233(−8)
DOPRI5(4) 22428 1.931767(−8)

0.025 RKDF5(4) 1600 4.254471(−7)
RKF5(4) 9600 1.917218(−6)
DOPRI5(4) 11200 5.706643(−7)

0.1 ERKDGF5(4) 404 5.966861(−4)
RKF5(4) 2424 2.064967(−3)
DOPRI5(4) 2828 5.732670(−4)

Table 9. Comparison of ERKDGF5(4), RKF5(4) and DOPRI(5)4 methods when
solving Problem 2 with Xend = 15.

h Methods F.N MAXE

0.00625 ERKDGF5(4) 9604 4.156675(−12)
RKF5(4) 57624 1.926903(−12)
DOPRI5(4) 67228 1.822542(−12)

0.0125 ERKDGF5(4) 4804 1.675460(−11)
RKF5(4) 28824 1.501910(−11)
DOPRI5(4) 33628 4.469314(−12)

0.025 RKDF5(4) 2400 5.439915(−10)
RKF5(4) 14400 4.749152(−10)
DOPRI5(4) 16800 1.448619(−10)

0.1 ERKDGF5(4) 604 4.687449(−7)
RKF5(4) 3624 4.920205(−7)
DOPRI5(4) 4228 1.489875(−7)

Table 10. Comparison of ERKDGF5(4), RKF5(4) and DOPRI(5)4 methods when solv-
ing Problem 3 with Xend = 45.

h Methods F.N MAXE

0.00625 ERKDGF5(4) 28800 1.901710(−10)
RKF5(4) 172800 1.709926(−10)
DOPRI5(4) 201600 1.705764(−10)

0.0125 ERKDGF5(4) 14400 2.187335(−10)
RKF5(4) 86400 2.998135(−10)
DOPRI5(4) 100800 1.004494(−10)

0.025 RKDF5(4) 7204 6.196252(−9)
RKF5(4) 43224 8.779388(−9)
DOPRI5(4) 50428 2.690385(−9)

0.1 ERKDGF5(4) 1800 4.576414(−6)
RKF5(4) 10800 9.009718(−6)
DOPRI5(4) 12600 2.762210(−6)

Figs. 1–4 and Tables 5–10, clearly show that our new methods are superior to previous ones in terms of both
maximum global error and the number of function evaluations. This holds true across different tolerance levels
and evaluation situations. Figs. 1–4 and Tables 5–10 demonstrate that RKDF5(4) and ERKDGF5(4) have a
reduced computational cost as they necessitate fewer function evaluations each step. The reduced computa-
tional burden results from the approaches’ capacity to reach numerical convergence with fewer steps, enabling
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Fig. 4. Comparison for ERKDGF5(4), RKF5(4) and DOPRI(5)4 Problem 1,2 and 3 with Xend = 5, Xend = 10, and Xend = 15 respectively.

them to approximate exact solutions within set tolerances. In addition, due to the requirement of transforming
fourth-order ODEs into a first-order system of ODEs, resulting in a fourfold increase in dimensionality, our
new approaches are notably more efficient in solving fourth-order ODEs compared to the strategies currently
described in the literature. Future work could explore the application of these methods to partial differential
equations.
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