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ABSTRACT

In this work we present a subset of M . ( M., isthe set of all nxn matrices )
which we called the set of special matrices and denoted it by S . We give some
important properties of S, .
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1. Introduction

Let M., be the set of all nxn matrices that is
M., :{[aij]:aij €t,i,j=12,---,n}. It is known that M, is a vector space over ¢
with respect to the vector addition and scalar multiplication defined by
[aijj+[bij = [aij +bijJ and c[aijJ= [caijj for every [aij J [bijje M., and c e¢. The matrix

A= [aijJe M., is called special matrix if it can be written as

a‘l aZ cee an ]
a‘n a‘l e a‘n—l
A = an—l a'n e a'n—2
L a2 a3 coe al ]
We denote S to the set of all nxn special matrices i.e

nxn

Snxnz{AzlaijJ:A is  special matrix}. It is clear that A+BeS,, and

aAeS,  , forevery A BeS, , and o isscalar, Then S, isasubspace of M .
In this paper we study the special matrices, and we give some properties of S .

2. Some Properties of Special Matrices

In this section we study some properties of special matrices. One can prove
easily the following remark.
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Remark (2.1):
1- The basisof S___is

nxn

01 - illo o " 10 .||
Do o) B R N

and the dimension of S __ is n.

2- The usual product of two matricesA,Be S, is also in S
every ABeS, .

ie ABeS, , for

nxn !

Recall that the complex number A is an eigenvalue of the matrix A, if there
exists a non-zero vector X such that AX = AX ,then the vector X is called eigenvector
for the matrix A with respect to the eigenvalue 1.

Definition (2.2) [1]:

Let A be an eigenvalue of the matrix A, the multiplicity of A is the number of
linearly independent eigenvectors corresponding to the eigenvalue 4.

Remark (2.3) [1]:

Let A be an nxn matrix then
1- The matrix A has exactly n eigenvalues.
2- If the eigenvalues of A are distinct ,then the eigenvectors corresponding to
these eigenvalues are linearly independent.

Lemma (2.4) [3]:

The equation Z" =1 has n distinct non-zero roots in the field of complex
numbers.

In the following theorem we find the eigenvalues and the eigenvectors for any
special matrix.

Theorem (2.5):
Let A be a special matrix, i.e.,

al a2 an

an a'l an 1

A= an—l an a'n—2
L a2 a3 al B

Then, the eigenvalues of A are A, :Zaipj‘l, r=12,---,n where p,p,,---,p, are
i=1

the roots of the equation Z" =1 also
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1

P,
Y. =| p;

P
Is the eigenvector corresponding to the eigenvalue 4,, r=12,---,n
Proof:

The eigenvalue A and the eigen vector

Y1
v =| %

Yn
for the matrix A satisfy the system AY = AY . This system can be written as follows

Za‘kyk+m + Zakyk,(n,m) =/1ym+1! m 20,1,2,---,I']—1 .
k=1

k=n-m+1
Put y, = p“*, k=12,,---,n where p is aroot of the equation Z" =1.

n-m

a, pk+m71 + Zak pki(nim)il = ﬂpm+171 , m=012,---,n-1

k=1 k=n-m+1
ap"pt+ > anpTptpt=2p", m=012,n-1
k=1 k=n-m+1
a, pk_l + p_n Zak pk_l =4, m=012,-,n-1
k=1 k=n-m+1
Since pis root of the equation Z" =1, then p™ :in:l and hence A :ZakPk’1
p k=1

and since the equation Z" =1 have n roots say p,,p,,-:-,p, then we have

n .
eigenvalues: 4, = Zai pt  r=12,--,n, and the eigenvector for 4, is
i=1

1

P,
Y. =| p? |, r=12,-,n

Corollary (2.6) :

Let A, B be special matrices. If A,,4,,---, 4, are eigenvalues of A with respect
to the eigenvectors X, :[], P, pf p?’l] , J=12,---,n, respectively and
BBy B, are eigenvalues of B with respect to the eigenvectors
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X, = [1 J pj”‘l], j=12,---,n respectively then the eigenvalues of the matrix
AB are ﬁlﬂ“l!ﬂZJZV'"ﬂn)“n'
Proof:

We have AX; =4;X; and BX; =X, where j=12,---,n. Therefore
(AB)X | = AB X =B AX | = B4 X, , J=12,-n.
Then, {ﬂj/lj } j=12,---,n are eigenvalues of the matrix AB .
Corollary (2.7):

The eigen vectors X :[1, F S p;‘*l], j=12,---,n in Theorem(2.5) are
linearly independent .
Proof:

Since the roots {pj}, j=12,---,n of the equation Z" =1 are distinct then the
determinant of the matrix

1 1 1 1
PP, - P,
e P, - Py
A A A

is non-zero [1] ( this determinant is called Vandermonde determinant), therefore the
vector X, j=12,---,n are linearly independent.

Recall that if A and B are two nxn matrices then A is similar to B if there exists
an invertible matrix P such that A=P'BP .
Definition (2.8) [1]:
The matrix A is diagonalizable if A is similar to a diagonal matrix.
Theorem (29)[11]:

The nxn matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors , in this case A is similar to a diagonal matrix D with the

elements of main diagonal are the eigenvalues of A and P'AP =D where the
columns of P are the n linearly independent eigenvectors of A.

The following results follows from Corollary(2.7) and Theorem(2.9).
Theorem (2.10):

If A is a special matrix then A is similar to the diagonal matrix D with the
elements of main diagonal are the eigenvalues of A.

Corollary (2.11):
If A and B are special matrices, then AB = BA.
Proof:
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Since A and B are special matrices, then A=PD,P* and B = PD,P™ where
the columns of the matrix P are the eigenvectors X, = [1 P Pi p?‘l],
j=12,---,n. Therefore,
AB = PD,P'PD,P* =PD,D,P" =PD,D,P" =PD,P'PD,P" = BA.
Corollary (2.12):

Let A be a special matrix, then a matrix A is invertible if and only if the zero
number is not eigenvalue of A.

Proof:

From Theorem (2.10) , A is diagonalizable, i.e A= PDP™ where
A 0

_ , {4,} are eigenvalues of A,
0 A

Now if A, =0 for eachithen D is invertible where

D*= %2

n

Therefore, A" =PD'P*.
Conversely, since A=PDPthen D =P AP, where
A 0

A

D= , {4,} are eigenvalues of A. Since A is invertible then D is also

0 A
invertible, where D' = P*A™'P and hence A, = 0 for each i.

n

Recall that the rank of the matrix A is the number of the linearly independent
rowsin A.

Theorem (2.13) [1]:

Let A be nxn matrix . Then A is invertible if and only if the rank of A is
equal to n.

The following results follows from Corollary(2.12) and Theorem(2.13)
Remark(2.14):

Let A be an nxn special matrix then the rank of A is equal to n if and only if
zero is not eigenvalue of A.

Lemma (2.15): If
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1 a2 a'n
an a‘l '” an—l
A = an—l n a'n—2
L a2 a3 vee al ]

is a special matrix, then A has at least one non-zero eigenvalue.
Proof:

The eigenvalues of A are A,=a +a,p; +a,p; +---+a,p; ", j=12,---,n
where p;, j=12,---,n are the roots of the equation Z" =1, by Theorem(2.6). If the

eigenvalues are all zero then the polynomial p(x)=a, +a,x+a,x* +---+a x"" has
ndistinct roots p,, p,,---, p, this contradicts the fact that every polynomial of degree
n—1 has exactly (n—1) roots. Thus, A has at least one non zero eigenvalue.

Recall that a matrix A is nilpotent if there exists apositive integer n such that
A" =0.

The following theorem shows that the set of all special matrices S, does not
contain a nilpotent element except the zero matrix.
Theorem (2.16):

If A is a non-zero special matrix, then A is not nilpotent.
Proof:

Suppose that A is nilpotent, then there exists a positive integer number n such
that A" =0. Since A is diagonalizable, then A= PDP, where

A 0
D= &
0 A
A is an eigenvalue of A for each i, therefore (PDP’l)”:O that is

PDP'PDP*---PDP* =0 this implies that PD"P " =0, that is the eigenvalues of A
are zero's, this is contradiction to Lemma (2.15).

Suppose that A is a special matrix , we define the center of A as follows:
Z(A)={X eM,_, : AX = XA}. Itis clear that if A=a| where | is the identity matrix

and « is a scalar, then Z(A)=M

nxn*

The following remark follows from Corollary (2.11).
Remark (2.17) :

The set of all special matrices S, is asubset of Z(A), if A isa special matrix.

Lemma (2.18) [1,4] :
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If A is an invertible nxn matrix, then the system AX =b has a unique
solution.

We prove the following theorem.
Theorem (2.19):
Let Abe a special matrix, if the eigenvalues of A are distinct, then Z(A)=S

nxn *
Proof:

From Remark (2.17), we obtain S, < Z(A). Now ,we prove that Z(A)c S
Let X € Z(A), where

nxn*

X X o Xy

X X e X
X = ?1 ?2 2n

X Xp2o 0 X

satisfy AX = XA therefore AX (x;) = XA(x;) for every eigenvector x;, i =1,2,---,n, that
is AX(X;)=X(Ax)=A4X(x]), this show that either X(x.)=0 or X(x;) is
eigenvector for the eigenvalue A4,. SinceA, are distinct, then X(%) =a;%;,
i=12,---,n, where ¢, is constant, thus we have nsystem

X X o Xqy 1 1
Xy Xp 00 X : |
a Jz 2n Pu —a Pu Ci=12,1 ..(D)
n-1 n-1
an Xn2 o Xnn pi pi

Stepl: Take the first equations of system (1) we have
Xpp X Py + X3 p12 ot X p1n4 =a

2 n-1
Xip T X Py £ X3Py +0- 1 X, P, " =0,

2 n-1
Xjg + Xpp Py + X3 Py +-+ X Py =
We can write this system as

n

1 p p12 e plnil X1 a,
1 p, p; e pznil Xio _ a, 2)
1 P, prf T p:_l Xin a,

Step(2): Take the second equations of system (1) we have
Xo1 + Xg P1 + X33 p12 ot X, plnil =a;p,

2 n-1
Xpn t X0 Py + X550 +--+ X500, =5,

2 n-1 _
Xyt X0 P + X3 Py -+ X0 Py - = P,

Multiply the first equation of this system by (p;)and the second equation by
(p5™) and so on and use the fact p =1, i =12,---,n we have,
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2 n-2 n-1
Xy + XpgPy+ X0 Py +-+ X500 + X0 =

2 n-2 n-1
Xy X3Py + X5 Py +--+ X500, ~ + X5 P, " =a,

2 n-2 n-1
X X3Py X0 Py +--+ X5, Py~ + X5 Py - =

That is

1 p p P || Xp o

1 :pz p§ p%]_l X:23 _ Oiz .03
1 p, Py - prr:fl_ Xx &,

We continue these process until we have the system

1 Py p12 pln—l Xnn a

o
_1 pn pr? p:_l__xnn—l o,

Since

1 p pf P

1 p, P Py

1p, pp o Py

is an invertible matrix, then by Lemma(2.18) , the systems 2,.---,n+1have
unique solution that is

X1 Xy Xon Xip =Xy ==X
X, _ Xa3 o X thus Xpp = Xpg =n =Xy
Xin X Xin-1 Xin = Xy == X

that is the matrix X €S, , sothat Z(A)< S, , and hence Z(A) =S, .

The following example shows that if the eigenvalues of the matrix Ae S, are
not distinct, then Z(A) =S, .

Example (2.20):

Let
111 1 0 -1 111
A=|1 1 1|andtake X ={0 O 1 |.Itisclearthat AX={1 1 1|and
111 0 0 1 111
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111

XA=|1 1 1| and hence XA = XA, this implies that X € Z(A), but X ¢S, , so
111

that Z(A) =S, .

Let D, be the set of all diagonal matrix and define T :S,, — D, as follows
T(A) =P AP where the columns of P is the eigenvectors of A. Then we give the
following result.
Theorem (2.21):

The mapping T is linear transformation which is one-to-one, onto and
T(AB)=T(A)T(B), VABeS, .
Proof :
T(A+A)=P (A +A)P=P(A)P+P(A)P=T(A)+T(A,)
T(cA) =P (aA)P=aP AP =aT(A), VAeS_ . and o is constant. Thus, T is
linear transformation

Now, let T(A)=T(A,), thatis P*AP=P"AP sothat A = A, this implies
that T is one-to-one

Now, we prove that T is onto
Let D=al, where « is scalar then take A=Dand T(A)=D, suppose D=al,

A 0
D= &
0 A
If p,p,,--,p, are the root of the equation Z" =1,then the system
Lopopo P x| A
1 P, p22 pgfl X, _ /12
1 p, pr o P %] LA
has only one solution say (c,,c,,C,,:--,C, ). Take,
Co G C - Cpy
A= Cn—l. Co C.l Cn.fz esnxn
Cl CO

it is clear from Theorem(2.6) that the eigenvalues of Aare A,,4,,---,4, therefore
T(A)=P*'AP=DeD,.Thus T isonto.
It is remained now to prove that T(AB) =T(A)T(B),VYABeS,,

T(AB) =P ABP = P'APP'BP = T(A)T(B) forevery ABeS__ .

n

Remark (2.22):
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We can prove easily that, the inverse mapping T*:D,,, — S, Which is
defined by T (D) = PDP*, for every D e D,_, is linear transformation .

We end this section by the following theorem
Theorem (2.23):

Let p(x) be a polynomial of degree nand AeS, . The eigenvalues of A are
roots of p(x) if and only if the matrix A is a roots of the polynomial matrix p(X).
Proof:

Suppose that the eigenvalues A,,4,,---, 4, of the matrix A are the roots of the
polynomial p(x) =c, +¢,Xx+C,X* +---+c X", i.e. p(4)=0,i=12,--,n sothat

p(4) 0
A
P(%) o
0 p(4,)
Then,
Co +C A +Co A2 +---+C 4] 0
Co +C, A, +Cy A2 +---+C A 0
0 Co +C, A, +CyA2 +--4C, Al
hence c,l +¢,D+c,D*+---+c,D" =0 where | is the identity matrix and
A 0
D= &
0 A

n

therefore P(c,l +¢,D+c,D*+---+c,D")P™ =0, where the column of p are the
eigenvalues of the 4,,4,,---, 4. This implies

c,PP*+c,PDP™* +¢,PD?P ™ +-.-+¢,PD"P™* =0, that is

Col +C,A+C,A% +---+c, A" =0 thus Ais a root of the polynomial matrix
P(X) =cyl +C, X +C, X2 +---+¢ X"

Conversely, if A is a root of the polynomial

P(X) =cyl +¢, X +C, X7 +---+¢ X"

Then p(A)=c,l +Cc,A+C,A’ +---+C, A" =0.

Therefore ¢,PP™ +c,PDP™* +¢,PD*P~* +---+¢c,PD"P ™ =0.

Hence, P(c,l +¢,D+c,D*+---+¢c D")P* =0

Thus c,l +¢,D+c,D?+---+¢,D" =0.
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Thus,
Co +C A +Co A+ C A 0
Co +C A, +Cy A5+ +C A

0 Co +CA, +Cy A2+ +C AN
this implies p(4)=c, + ¢4 +C, 4 +---+C A" =0, i=12,---,n that is A, 4,, -, 4
are roots of the polynomial p(x) =c, +C,X+C,X* +---+¢C, X",

n

3. Analytical Properties of Special Matrices

Recall that the vector space H is called Hilbert space if it is complete inner
product space, The spaces R"and C" are Hilbert spaces ;Since M, (R) equivalent
R" and M (C) equivalent C", then M (R) and M, _,(C) are Hilbert spaces.In
section two we see that S is a subspace of M, . also in this section we prove that
S,.. IsHilbertspace. Finally, we show that S, . is Banach algebra.

nxn

nxn nxn

Proposition (3.1):

The space M, . is inner product space where <[ainbij]>:Zaij5ij for all
I

[a;1.[b;1€ M., where b, is the complex conjugate of b .

For the completeness we give the proof of the following theorem .
Theorem (3.2):

The space M . is Hilbert space.

n

Proof:

We see in Proposition(3-1) that M is inner product space. It is remained to
prove that M_ . is complete, let {A”} be acauchy sequence in M that is for all

& > 0, there exist positive integer k such that ‘

2 n n
CHI ai’j“‘ < lel
i=1 j=

for all n,m >k and hence ialrj‘} is Cauchy sequence in the complex numbers ¢ for all

A" — A'"H < ¢ forall n,m >k, therefore

2
2
ai'j'_ai:."‘ :‘A”—AmH <&? for all n,m>k so that

n m
a; —a ‘<g

I, j, since the space of complex numbers is complete then iai'}} IS converge sequence
say to a; .We claim that the sequence {Am}z{[a{}‘]} is converge to A=[a;] as
m—oo, let £ >0, since {a{}‘} is converge to a; as m—> oo then there exist a positive
integer number  k;; such that ‘a{j“ —aij‘ <% for all m>k;, let

ij
k:max{k i=12,---,n,]j :1,2,---,n}.

ij?
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Now, HA'“—A”Z:ZZ‘ai?‘—aU‘Z<52 for all m>k, hence HA'”—A”<5 for all
T

m >k, thus {A’”} IS converge sequence, this implies that M
product space and hence M is Hilbert space .

is complete inner

nxn

nxn

Corollary (3.3):
The space S, ., is Hilbert space .

Proof:
If {A”}: i[a-nj} is a cauchy sequence in S, . then {A”} is a cauchy sequence in

M.,.., since M is complete then there exist A=[a;]e M, such that {A”}—> A

XN nxn

(Theorem(3.2)), that is {aij}—> ajj for all i, j. Since A" = laijJe Shxn forall n then

A= [aijje Snxn and hence Sy, is complete, this implies that S, is Hilbert space.

Theorem (3. 4):

The space S, is a Banach algebra.
Proof:

We must prove that |C| < |A||B|, for every A BeS,,, where C = AB
Since

||A||=,/n<;\au\2> , ||B||=,/n<;\bn\2>

ten |2l8]° n2<Z\au\2)[Z\b1 | J
=1 =1
2

> agkbyg "‘Zalkbkz +- +Zalkbkn

k=1

j=1

2
] = nZ\Cu\ = n[ ]
By Schwarz mequallty we have

off <n{2|a1k| e zmm}
k=1 k=1 k=1
2 2 2 2 2 2
Y e {zm e Slbeal? -+ 3 }w Bl
k=1 k=1 k=1 k=1

Thus C| <|Al||B]. so that S,,, is a Banach algebra
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