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Abstract :

Viscoelastic contact problems are one of the most important problems in mechanical
and robot engineering. These problems become more tedious when one of the contacting
bodies carries a viscoelastic and soft material. In this study, the mathematical model of
contact interface and limit surface for viscoelastic contact which can be applied to robotic
and prosthetic hemicylindrical fingertips has been proposed. The new achievement of this
research comprises the integration of the time-dependent nature of viscoelastic contact into
the modeling of grasping and manipulation. Specifically, two conjugation equations to get
together the two significant parameters of contact modeling (the half width of rectangular
contact area and the profile of pressure distribution across the contact interface) have been
suggested. Additionally, two cases viable to prosthetic and robotic hands for grasping have
been studied: constant rectangular contact area and constant normal contact force. The
results show that the control of the grasp contact forces (case 2) when employing
viscoelastic contacts is most advantageous, because it promotes the stability of grasping
through the enlargement domain of limit surface as time terminates. Finally, the
viscoelastic limit surface results proved that the new mathematical model is more effective
(18-22%) than previous models.

Keywords: Viscoelastic contact, hemicylindrical fingertip, soft material, nonlinear
elagtic.
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1. Introduction

One of great significant mechanical characteristics of fingertips is soft material U Soft
material contact mechanics represents a paramount role in grasping stability as well as safe
object prehension and handling during manipulation 2 Hertz first presented the modeling of
contact mechanics, based on point contact between two linear elastic materials B f
Coulomb’s friction model is used, all the forces that lie within the friction cone can be applied
[ The employment of this contact model in the manipulation planning problem has led to
some interesting conclusions. There may be multiple solutions to a particular problem
(opacity), or there may be no solutions (discrepancy) . Friction “limit surface” is a fictional
surface within which slipping does not happen; that is, the limit surface is the boundary
between non-dliding vs. dliding motions in prosthetic and robotic hands for grasping and
manipulation ¥ However, robotic fingertips are manufactured from nonlinear elastic
materials. For that reason, the Hertzian contact model does not strictly represent this contact.
A power-law theory was deduced for modeling nonlinear e astic contacts present in robotic
hand fingers by ! for hemispherical and hemicylindrical soft fingertips, respectively.

Viscodlastic contact comprises, aside from linear or nonlinear elastic response, time-
dependent response due to relaxation or creep phenomena that dominated the contact behavior
[0 As the materials and geometric designs of fingertips varied, the viscoelastic action of
particular types of fingertips was noticed, in particular with the relaxation of fingertip contact
force or the creep of contact zone, and characteristics of viscoelastic contact == Applications
of such contact modeling of human and biomedical fingertips were studied 2 The
viscoelastic contact of hemispherical fingertips was investigated ™. The evolution of their
friction limit surfaces and of the pressure distributions at the contact interface was studied. A
quasistatic frictionless contact problem for viscoelastic bodies with long memory was
considered ¥ and modeled the contact with normal compliance in such a way that the
penetration is limited and restricted to unilateral constraints. The adhesion between contact
surfaces was taken into account, and the evolution of the bonding field was described by a
first order differential equation.
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It is noted that none of the above-cited references focused on the analysis of viscoelastic
contact and grasping stability problems of hemicylindrical fingertips for robotic and prosthetic
hands. Therefore, the aim of this research is to develop the pressure distribution and limit
surfaces of a hemicylindrical soft fingertip for viscoelastic contact interface, due to its time-
dependent nature, as well as the implication of such evolving limit surfaces on the stability of
grasping for robotic and prosthetic hands. This research introduces a proper modeling of
viscoelastic contact that can cover the analysis of contacts to satisfy the elastic and temporal
responses of contacts. Finally, an analytical study will be verified for nonlinear viscoelastic
characteristics of the proposed fingertip and compared with the previous model.

2. Modeling of Viscoelastic Hemicylindrical Fingertips

In genera, the modeling of finger for the human and robotic hand can be solid and
homogeneous, as discussed in ¥ and ¥, or its body can have a constant thick, soft layer
covering a rigid “core,” as studied in ¥ and 1*®, see Figure (1a-C) . A hemicylindrical
viscoelastic fingertip makes contact with a rigid flat surface by the application of a normal
force N, with corresponding normal moment and tangential force at the contact interface, as
shown in Figure (1d).
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Fig .(1) (a) Human fingertip. (b) Anthropomorphic fingers (c) Hemicylindrical
viscoelastic fingertip with or without rigid core (d) Geometry of contact
between a hemicylindrical fingertip and a rigid plane surfacel*® 6 8

For the sake of modeling, the contact is assumed to be hold without dlip; that is, the

resulting tangential force and norma moment at the contact area are within the friction limit
surface. From Figure (1), the following geometrical relationship can be written 27,

a?=R’-—(R — 6)2 (D
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Moreover, the following general equation of pressure distribution of hemicylindrical soft
fingertip is utilized

1
Py = Ck% [1 _ (g)k]k 2)

where Cy is a coefficient, a function of k, that regulates the profile of pressure
distribution to accept the equilibrium condition at the contact interface. Hertz 18 first
presented a pressure distribution, corresponding to k = 2 in equation (2), for linear elastic
contact with small deformation, which was adopted later for instance in *!, but the value for
is not necessarily 2 for ageneral contact pressure distribution. Indeed, in atypical viscoelastic
contact problems, after relaxation due to the time-dependent characteristics, the contact
pressure distribution will be more uniformly, corresponding to a higher value in equation (2).
Equation (2) is adopted and k is allowed to change to render different pressure distributions
over the contact surface, as illustrated in Figure (2). Furthermore, the parameters a and N in

equation (2) are not necessarily constants, due to the relaxation and creep of viscoelastic
contacts. Therefore, it is significant to observe the genera formulation of pressure
distribution, and to recognize that the pressure distribution for viscoelastic soft fingers is a
function of time.

3.5 1
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pressure, 3_.‘.‘-'_
P K
(N/naB) .35 A

D

-1 -0.8 -06 -04 -02 0 02 04 06 08 1
Normalized the half width of contact ,y/a

Fig .(2) Pressure distribution of Hemicylindrical viscoelastic fingertip contact
depends on equation (2)

Equation (2) can be integrated over total contact area A to get the coefficient C;, and the
equilibrium condition at the contact interface can be applied
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b ra
N:f P(y) dA :f fP(y)dydx (3)
A -bJ-a
from which it is deduce that 1

2
o kr(R)
Ce = n——K_ (4)

[ ®)

Where I' isgamma function and k is a positive real number. It is clear from equation (4)

that Cy is only a function of k (see the table 1). In this work, two different cases will be
studied due to the nature of the time-dependent functions for contact modeling of viscoelastic
hemicylindrical fingertips. At first case, a prescribed constant contact area (i.e. constant
normal displacement case) is used and the influence of relaxation is studied, as illustrated in
Figure (3a). The second case considers the creep phenomenon due to a constant normal load,
as shown in Figure (3b). To describe the viscoelastic behavior, a genera approach considers
the normal force and the displacement regarding functions as the form [20]

e

Xl

N = ¢ (5,1) ()

5() = v (N, (6)

Table .(1) Values of Ci for different values of k.

K Cr
1 3.142
2 2
3 1.778
4 1.694
6 1.630
10 1.594
100 15708
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Fig .(3) (a) Case I: contact with imposed displacement (b) Case II: contact with
imposed normal load: (1% 2%

that can be very complex to implementing. The function ¢ is relaxation function and the

function is the creep compliance. In the general case of nonlinear viscodasticity, the
relaxation function ¢ designates the force response to a step displacement & from the

undeformed shape, while the creep compliance W alows the displacement response to a step
force from the undeformed shape. Creep and relaxation are related because of the two

functions are two aspects of the same viscoelastic phenomenon (20 When the linear
hypothesis holds, the functions ¢ andy become only function of time and specify,

respectively. Equation (5) and equation (6) will become
N() = $(t) .6 (7

§(t) = Y(t).N (8)

where & is mandatory displacement at the contact, and N is the contact force. The

hypothesis of Fung (21 \will be used in this paper so as to overcome the complexity of the
formulation equation (5) and equation (6) in the genera case of nonlinear viscoelasticity.
Also, the reduced relaxation function g(t) and the reduced creep compliance h(t)will be
introduced in the following sections to characterize the time-dependent behavior of
viscoelastic contacts. Firstly, it should be noted that the hypothesis of Feng [21] separates the
elastic response from the time response. This approach enables to utilize elastic response
based on different models developed for soft fingertips, independent of the time response for
viscoelastic contacts. Particularly, the viscoelastic contact modeling of soft finger can be
thought of as the concatenation of the linear or nonlinear elastic response, a function of the
imposed & or N and the temporal response with creep or relaxation, afunction of time.
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3. Contact with imposed displacement of hemicylindrical fingertips

Figure 3(a) illustrated the first case, the hemicylindrical viscoelastic fingertip pushing
onto the rectangular contact surface is considered while maintaining a constant step
displacement §,. Relaxation phenomenon occurs and the contact force will reduce with time
(1920 due to the viscoelastic behavior, as explain in Figure (3a). Because the normal
displacement is held constant, the half width contact of rectangular contact area for

hemicylindrical fingertips also remains constant due to the contact geometry, as given by
equation (1). Due to the fact that the total normal contact force varies over time, the pressure
distribution over the entire rectangular contact area changes according to the following
equation by modifying from equation (2):

Poo = ¢, N [1—(2)16]"l 9)

naB a

where the normal force N(t) becomes time-dependent because the contact displacement
and half width contact of rectangular contact area do not change, while the parameters a, B, k,
and C, remain constant as in equation (2). Also, the shape of the pressure distribution is
assumed constant. To mode! the relaxation of normal force N after the contact is made, and in
order to overcome the difficulties of formulation in equation (5), the noticeable model
suggested by Fung Y for the tissues of human and used by % %! to model the human
fingertip behavior is adopted. The relaxation-function (¢) was assumed by Fung 22 as the
following equation

b (6,6) = N©O) . g(t)  withg(0) =1 (10)

where N(®)(8) is the eastic response, with superscript “(e)” denoting the elastic
response, and g(t) is the reduced relaxation function which characterizes the time-dependent
behavior of the material. A quasi-linear viscoelastic model has been improved by ?* %I, The
term N(©)(§) is the amplitude of the force generated promptly by a displacement from the
undeformed configuration. The nonlinear elastic response N()can be modeled through
severa  analytica expressions. Two important models of the elastic diffness

K®© () = dN/d5 used in the literature are

K@) =m.e"s (11)
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where (m,w) and (p,q) are parameters which depend on the geometry and materials.
The expression of can be found from equation (11) or equation (12) after the integration them

with respect to §, aswell astheinitia condition N®|s_, = 0

m

NE = —(ewd —1) (13)
w

Ne© = P sqn (14)
q+1

Equation (11) was utilized by Pawluk and Howe %3 and Barbagli et al. '* to model the
relationship between normal force and normal displacement in human finger indentation. The
human finger stiffness was compared with that of artificia fingers using both equations (11)
and (12) by Han and Kawamura '?”. Kao and Yang *" %, beginning from previous research
results'®, deduced an expression for nonlinear stiffness of soft contact that can be related with
equation (12). Tiezzi and Vassura @ utilized both equations (11) and (12) to inspect the
behavior of elastic skins covering arigid fingertip structure. The reduced relaxation function
g(t) is atime-decaying function. When normalized to1 at t = 0, it can be illustrated by the
following equation 1%

n n
g(t) = Z c; e Vit with Z ¢ =1andvy,=0 (15)
i=0 i=0
where the parameters c; and v; be depended on the material of the viscoelastic interface,
and the exponents match the rates of the relaxation phenomena. The relaxation function ¢ ,
explained in equation (10), knows the force response to a step displacement§ from the
undeformed configuration as time elapses. Thus, in the case of a single step
displacement & = §,, the force response will be

N(t) = N©@(50) . g(t) (16)

The pressure distribution at the contact interface of the viscoelastic fingertip is found by
substituting equations (15) and (16) into equation (9) to obtain the following equation

N©(8,) (17)

1 n
k k —_\: -
Pvo = S [1 — (X) ]k [Co +ZCi e~Vi (t-1)
maB a £

The first part in equation (17) depends only on y , while the second term expresses the
time dependence of the pressure distribution due to the variation normal forceN(t) . Figure
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(4) explains the calculated results of the pressure distribution of hemicylindrical fingertips due
to the relaxation of the normal force in the case of a constant normal displacement §,with a
second-order contact pressure distribution profile (k = 2). In order to display only the

relaxation state, Figure (4 A,B) plots the normalized force N/Noand pressure P/PO’

respectively. The parameters of the decreased relaxation function g(t), used to plot the

graphics, aale n=1,¢,=0.7,¢; =03 and v; =31 which are concluded from the
experimental results mention in [+,
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Fig .(4) (a) Relaxation of normal load when a constant normal displacement is
imposed. (b) Evolution of the pressure distribution due to the relaxation of
the normal load usingk =2,C;, =2,¢9 = 0.7, ¢4, =0.3,andv =3.1.

If the imposed displacement of hemicylindrical fingertip is changing, the contribution of
the whole past history should be taken into consideration. The normal force resulted by an
infinitesimal  displacement d6(7), superposed in a condition of displacement of
hemicylindrical fingertip at an instant of time z, witht > 1, is

dN© (s
dN(t) = g(t — 1) % ds(v) (18)
as deduced from equation (16). By using a modified superposition principle 2 **3Y the total

normal force at the time instant is the sum of contribution of all the past changes; that is

t

(e)
NCE) = J;) se-n W d(:(r)) diz(:) 4 (19)

Equation (19) will be rewritten as follows:
MO = [ 9= D.K@G@). @) aw) (20)
0
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where K@) s the elastic stiffness as indicted by equations (11) or (12), and 5(z) is the
rate of hemicylindrical fingertip displacement. The evolution of the pressure distribution is
found by substituting equations (15) and (20) into equation (9). That is

K@(5()). §(r)d(x) (21)

1 t n
k1% —v; (t—
Py = Lk [1—(2) ]k f [00+ E ¢; eV (t7D)
maB a 0 =

4. Contact with imposed normal load on the hemicylindrical soft
fingertip

For the case in which the normal load (N = N,) applied on the hemicylindrical soft
fingertip is maintained at constant, the normal displacement § will increase over time because
of the nature of viscoelastic creep phenomena (201 asillustrated in Figure (3b). Moreover, itis
well known that by conservation the normal force constant, the pressure distribution of
viscoelastic contact will gradually become more uniform because of relaxation * %2, Indeed,
as a result of the increasing normal displacement, the half width of contact area a aso
increases, while the depth 2b remaining nearly constant that proved by experimental by ! 7,
while, the equilibrium condition at the contact area imposes a constraint equation with the
normal force N being constant, as in equation (3). The shape of pressure distribution changes
because the rectangular contact area increases while the normal force is held constant,
implying the changes in the shape factor of pressure profile k in equation (2). The pressure
distributions for various typical values of N and a are plotted in Figure (2). In the following
modified pressure distribution equation (22) which a and k are functions of the time

1

OILZ0)

Poo= Cuny MO [1_ A l (22)
na(t)B ac)

where Cy indicates the coefficient Cy as a function of k(t). The maximum pressure become
a y =0, andisfound by

N
naB

Prax@) = P = Ck(o) (23)

From equation (23), the maximum pressure decreases while the contact area increases. In
Figure (2), the normalized maximum pressure a y = 0 coincides to the coefficient at each
value of k. The total area under each half-curve is unity, as denoted in (24). Note that
ask — oo, the pressure becomes uniformly distributed, as foreseeable. Substituting equation
(22) into (3), the integral constrain equation becomes
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1
k
G [ - (2) e =1 (2a)
T[a(t) —a(t) a(t)

A. Half width of contact area and pressure distribution

The constraint equation in equation (24), when integrated, will yield equation (4), which
does not include a(t) a any instantt. This is owing to the specific formula of contact
pressure distribution utilized in equation (2). This has deep implication on the anaysis of
contact and the behavior of viscoelastic fingertips. The following observations are recorded.

+ Theoreticaly, the shape factor of pressure profile k can be selected independent of the
constraint equation in equation (24). The choice of k is primarily determined by the shape
of the pressure distribution at the contact area. Larger value of k denotes more uniform
pressure distribution

» The constraint equation (24), when integrated, does not yield an equation which retains the
half width contact of rectangular contact area a. Therefore, the parameter a is independent
of the equilibrium condition clarified by equation (24).

» + Due to the specific form of the contact pressure distribution, the equilibrium condition
equation (24) imposes a value of Cy, clarified by equation (4), that relates the Py =

Py and the mean-pressure N , taking into account the pressure distribution due to
[(A9) 2aB

exponent k.

Although the two important parameters, half width contact of rectangular contact area a
and the shape factor of pressure profile k, are independent based on the theoretical modeling
as proposed here, it is postulated that the two parametersa and k are correlated, according to
the properties of the fingertip geometric configuration as well as the materia of the fingertip.
It is useful to deduce a coupling equation for the two important parameters, in order to
facilitate the analysis and formulation for the modeling of viscoelastic contact area. Such a
coupling equation needs to agreement the equation equilibrium and physical coherent
behavior. In the following parts, two such coupling equations are introduced and discussed.

B. Coupling equation based on pressure distribution

In this paragraph, a coupling equation based on the evolution of the profile of pressure
distribution at the rectangular contact interface is derived. The fact that as the relaxation is
happening, so as to set the parameters a and k . The pressure distribution becomes more
uniform with gradually increasing and the half width contact of rectangular contact area

enlarge too 32 asillustrate in Figure (2). In order to correlate the two parameters a and Kk,
the half width contact of rectangular contact area for hemicylindrical fingertips a in such a
way that is selection
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4 oo b (25)

N

As mentioned in Section 4-A, the coupling equation requires satisfying the equilibrium
equation and physical coherent behavior. It is significant to observe that the assumption of
relationship in equation (25) fulfills such criteria. Moreover, the assumptions in equation (25)
give a growing half width contact of rectangular contact area when the value of diminution

due to a more uniform pressure distribution. Thus, this relationship is convenient with the
well-known physical behavior. The curve of k with respect to a can be plot and fit it with a
weighted |east-squares (L S) best fit using Matlab program ¥ | based on the option of the half
width contact described in equation (25), to get the following equation

= ¢(1—0.52¢70:535) (26)

Qo

where a, is the half width contact of rectangular contact areaat t = O when k = 2, and

¢ =1.217, a constant. Equation (26) includes changes in contact pressure distribution
corresponding to 2 < k < 6.5 astime changesfromO0 < t < c. A few values of k between 2
and 6.5 with corresponding values of growing normalized half width contact are listed from
Table 2. Figure (5) explains the growth of contact pressures and areas as time elapses that is
obtained using equation (26), where the relaxation of the viscoelastic fingertip with constant
normal force outcomes in the flattening of the pressure distribution at the contact area, aso
the increase of half width contact of rectangular contact area. The results are in line with the

physical behavior of viscoelastic contacts 2.

Table .(2) Values of C; and '"“'/alo corresponding to different values of the
parameter k between 2 and 4.

k Cx 1/V¢, /a o

2 2 0.707107 | 0.99993
25 1.858 | 0.73363 | 1.050879

3 1.778 | 0.749953 | 1.089869
35 1.728 | 0.760726 | 1.119708

4 1.694 | 0.768322 | 1.142543
4.5 1.671 | 0.773592 | 1.160019

5 1.653 | 0.777792 | 1.173393
5.5 1.640 | 0.780869 | 1.183628

6 1.630 0.78326 | 1.191461
6.5 1.622 0.78519 | 1.197455
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Fig .(5) Evolution of pressure distribution for the viscoelastic soft finger when
the normal contact force is maintained at constant, resulting in the
relaxation and growth of the half width of rectangular contact.

C. Coupling equation based on creep compliance

An aternative approach is introduced in this section based on the creep compliance to get
a relationship between the parameters a and k. A constitutive equation is presented to relate
both parameters with the viscoel astic property of the fingertip material. The creep compliance
Y (N, t) is supposed to be in the form by using the same modeling approach as that in
Section3:

Y (N, t) = §@W). h(t) with h(0) =1 (27)

where the function h(t) is the reduced creep compliance that characterizes the time-
dependent behavior of the fingertip, and 6 (V) denotes the elastic response that is created
by the force from the undeformed configuration.

The elastic displacement equations are found by inverting equations (13) and (14)

5<e>(1v):% In (%N+1) (28)
L
5@ (N) = (% N)q+1 (29)

The reduced creep compliance can be explained, without loss of generality (201 by the
following form:
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h(t) =1+ Z c; (e™mit) (30)
i=1

where the parameters c; and n; are constants depending on the materias, and the
exponents n ; represent the rates of creep phenomena. The displacement response 6(t) is
obtained from the creep compliance y (N, t) in equation (27), which results from a single
step of normal load (N = N, ) that isusing at the initial instant t = O, that is

85(t) = 8@ (No) . h(t) (31)

The half width contact of rectangular contact area increases because of the increase of the
normal displacement. For simplicity, the relationship between the half width contact of

rectangular contact area a and the displacement § can be deduced from equation (1) as
a’ = 2RS (32)

by cancelling the second-order term in 82 ). The half width contact of rectangular

contact area found from the approximation in equation (32) is dightly larger than that from
equation (1). Nevertheless, the half width contact given by equation (32) is closer to the actua

half width contact that is impacted by the enlargement because of the conservation of the
volume of the pad at the contact interface. Substituting equation (31) into (32), to get

a?(t) = 2R6(t) = 2R5®(N,). h(t) (33)
Equation (33) can be rewritten as
a(t) = a, /h(t) (34)

where a, = 2R5©)(N,) is the half width of rectangular contact area at the initial instant.
A useful hypothesis, assumed in equation (25), isC; < % Combining equation (34) with
equation (34), to obtain

1
€ & = o — (35)
a

Subsequently, it can relate the coefficient €, and the reduced creep compliance h as
follows:
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2
kI (F) _ Cko (36)

where Cio = Cr(k|s=o)iSs used because h|,—, = 1. For example, when the initial
pressure profile is second-order, i.e., k|- = 2, the corresponding worth for Cy,is 1.5. The
relationship between the shape factor of pressure profile k and the time can be found from
equation (36). The direct use of equation (36) is not proper because the shape factor of
pressure profile k is included in the arguments of the gamma function, thus an equivalent
relationship between Cy and k requires to be obtained. It can be noted that the two amounts

log(C, — 1) and log(k) arelinearly related, asillustrated in Figure (6a). By using the LS best
fit, the following approximate relationship can be written as follows:

log(C, — 1) = a, log(k) +2 (37)
with a; = —0.5261 and a; = —0.3647. After some mathematical processing, it can be

derived that the approximate relationship between the coefficient of pressure distribution over
the contact area Cy, and shape factor of the pressure profile k can be written as

Ck = %2 e log(k) +1 (38)
T T T - 22
70.02 i \\ 21 ——Ck calculated
0.1 \ + Ck approximated

Ck

Rl | 7 !
-0.15

0.2 ™ 13

-0.25 - ! \\ 18

-0.3 + i ™ 1.7 A ‘*‘*H

-0.35 16 Rhaas. 2SS POPUN U
.0‘4 { { i {

-0.45 1 ! { . . 15 :
0.5 4 ! ] 14 | . :
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log(k) k

log(Ck-1)

Fig .(6) (a) Linear relationship between log(k) and log(Cy — 1) is plotted. (b)
Comparison between the calculated and approximated Cy values in
equation (38).

Equation (38) is a very good approximation of C, (k) over alarger range of k , as shown
in Figure 6 (B), where the constants a; and a, are found through the LS method. Substituting
equation (38) into equation (36), to obtain
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Cko

eailoglk) 4 1 = X2
a,.e A0

(39)

Where a; = a; and a, = e%, therefore the alteration of k as afunction of time can be
found from equation (39), that is

Cko _ B Cko _ -9
"L |m
a | 144

Kw = (40)

wherea = a, = 1.44 and B = a;* = —1.9. Equation (40) appears that the relationship
between K and time is only impacted by the properties of the material through the reduced

creep compliance. Figure (7) explains Cas afunction of k, as explained by equation (4), and
K as a function of time, as explained by equation (40). The function h(t) is supposed to bein
the form of equation (30) with only two parameters as follow:

ht)=1+c¢ (1—e™u-t) (41)

wherec; = 0.3 and n; = 3.1. Thisoption is proper with the experimental results that are
obtained from 2+ %,

2 8
1.9 i e
\ 1]
1.8 i

-..____
16 —— 2
1.5 ! 0
2 3 4 L 6 7 8 9 10 0 1 2 3 4 5 6
k Time (sec)
@

Fig .(7) (a) Plot of Cy as a function of k, as shown by equation (4). (b) Plot of k
as a function of time, as illustrated by equation (40), by adopting reduced
creep compliance h(t), as expressed by (41).

The pressure distribution P, ;y can be obtained by substituting equations (34), (40), and

(41) into (22). Figure (8) shows the results of the creep of the viscoelastic fingertip by
keeping the normal force constant as well as the evolution of the half width contact, resulting
in the flattening of the pressure distribution at the contact. The resulting relaxation and growth
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of the contact area are exponential because of the option of the reduced creep compliance
(41). As over time, the pressure distribution approaches a more constant profile, with k

varying from 2 to 6.46 (as shown in figure 7) and the half width contact of rectangular contact
area is heighten by approximately 11%. In general, the contribution of the whole past history
must be considered when the normal load N is not constant but varying. To drive the dua
relationship of equation (19) by substituting N(©)(8) with §©(N) and g(t) with h(t)
similar to section 3 is adopted. Consequently, the change of the normal displacement 6 as a
function of time can be shows as

t (e)
dé (N (T)) dN(7)
5@ = [ nee d(x) (42)
Or
t .
5(t) = j Me-1) CONE) NE) d@) 43)
0
----- t=0sec === t=0.1sec == == t=0.3sec == = +{=0.5sec = steady state
556 1.16
@ ‘ 114 ! !
a| "5' o . Lo £ 112 /
& - 15 '““'“""“--'-:::.'.-_., ‘ 2 /
s T ESSESSS===Sasy ‘ gmgﬂ /|
5 1 ."-?\‘\ N gms ! / I
H )\ \\ %,
5 o5 L
£ ) S10
5 {, ! =
z g B ® 4 / | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 0 0.5 1 15 2 25 3
Normalized contact half width, a/ao Time [sec]
@ (b)

Fig .(8) (a) The pressure distribution as a function of the normalized half width
contact of rectangular contact area a/a, (b) The half width contact of

rectangular contact area as a function of time.

where C(®) is the elastic compliance, and N (7)is the rate of change of the normal contact
load. The elastic compliance term is the inverse of the elastic stiffness K (¢)

ds© 1

(e) = -
¢ AN K@

(44)
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from equations (13) and (14), to obtain

1
(e) =
W)= (42)
1 /0+1 \aH
6(6)(1\/) - E (qT N)q (46)

Subsequently, the half width contact of rectangular contact area becomes a function of
the normal load history, asillustrated by the following equation:

a’(t) =2R jth(t —7) CY(N(x)) N() d(r) 47)
0

which is found by substituting equation (43) into equation (32). Likewise, the
parameter k(t) becomes a function of the normal load history as showed in equation (40).
Therefore, thisis the convolution integral, that is

j he-1). CONE). M@ d@) (48)
0

Also, the pressure distribution in equation (22) becomes a function of the normal load history.

5. Construction of limit surfaces in viscoelastic of hemicylindrical
fingertips

In this section, the construction of the limit surfaces depended on the theoretical models
of the two cases introduced in the preceding sections is considered. The basics of the limit
surface construction are illustrated in Appendix. The new achievement of this research is to
adopt the methodology to explain the evolution of limit surfaces in viscoelastic contacts of
hemicylindrical fingertips. The evolution of limit surfaces as a time-dependent feature of
typical viscoelastic contact interface is introduced and discussed.

a. Constant rectangular contact area

The construction of limit surface in the case of constant rectangular contact areais similar
to that of an elastic fingertip in contact. The details can be seen in Appendix. The integrands
in equation (A5) and equation (A6) do not depend on time, and are particularly the same of
the elastic soft fingertips in contact. The two equations proposed that the friction limit
surfaces are developed, based on the changing normal force N(t) , with the shape of each
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individual limit surface being the same as that of the corresponding limit surface for elastic
soft fingertip at the same normal force at each time instant. In the current case, the shape of
the limit surface does not change, but scales proportionally inward as N decrease. If the

normal force reduces exponentially, as seen in figure 4(a), both the tangential force and the
moment will also reduce exponentialy. The normalized tangential force and normal moment
can be explained as follows from equations (A5) and (A6) for the construction of the limit
surface:

RO G [ (F-d) el
uN(t) 2@ —j1—j1 \/(%—d)2+(3~,*0)2 Q-9 dydx (49)

(1-J9F dj dz (50)

m,(t) _ i _f _f (;22 —xd, + (J * D)z)
paN(t) 2m JJ \/(i _ dc)z + (5 D)2

where the normalized coordinates § = 2

> d, :%, and % :§areusedtomakeeasythe
integration processes. Since the norma force reduces exponentialy and approaches
asymptotically a specific value after a certain settling time, as illustrated in figure 4(a), the
change of limit surface will follow the same exponential pattern. An example of the evolution
of such limit surfaces in the first quadrant is plotted in Figure (9) by imposing that the
pressure distribution and coefficient C,, do not change. As illustrated in Figure (9), the limit
surfaces move inward as the normal force N(t) reduces. The exponential decay proposes

larger shrinkage initially, while asymptotically approaches a constant surfaceast — co.

0.8

'g 2 e \ | Unstable Region
3 06 F=mmal_ ~ (Slipping Region)
E oSl o™
@ 0.5 Mesoarthios T — =t=0 5ec
5 e K
‘_‘c: o0& [ \'v:_'. ‘ === t=0.2 sec
E | J b ¥ t=0.4 sec
] | InCreesiNgpigsil Ny LR 8 L =
g 0.3 Normal FOI‘CGJ':".‘. \\ \ t=0.6 sec
£02 L A VA e t:;c
E Sy M steady state
501 [ \ \ \

" |Stable Region (No slipping) 1% | p \

0 - Jl L i 1

0 0.2 0.4 0.6 0.8 1 1.2

Normalized force, (ft/uNo)

Fig .(9) Limit surface when the contact area is continued at constant to the
decay of normal force from Ny to N;.
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b. Constant normal load

As researched in Section 4, when the normal contact force is maintained constant (N =
N,), the normal displacement and half width contact will gradually relax as time elapses. By

using the equations obtained in Section 4-C and substituting equation (22) into equations (A1)
and (A3), the normalized force and moment for the viscoelastic contact of hemicylindrical
fingertip can be formulated, similar to equations (A5) and (A6), as illustrated in equations

(51) and (52), where y:i ,acz%,azi, D= %,andizg are the normalized

coordinates, and the parameters a(t), k(t), and h(t) evolve as prescribed in equations (34),
(40), and (41). The limit surface can be found by using these two equations, but the evolution
of the limit surfaces as time elapses is less axiomaticaly. The results of integration of
equations (51) and (52) in Figure (10) are showed. The development of the limit surfaces
when time elapses can be explained from the figure as they move outward.

a -
¥ —d y k@ C
j (x-d.) (1 _ %)km) 29 45 4z (51)

£ 1
UN, - Ejl

1
z 1—-y%)k dy dx (52)
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Fig .(10) The limit surface as a function of time in the case of constant force.
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6. Verification the present model

To verify the importance of the new model adopted in the current research, the
hemicylindrical soft fingertips are applied to the viscodastic limit surfaces based on the
theoretical models of the two cases presented in the preceding sections, which are based on
the current theoretical proposed, are compared with other results obtained by the earlier
investigators [*¥ for viscoelastic contact of the hemispherical soft fingertip at same radius of
fingertip, shape factor of the pressure profile, and applied load, and conditions. Figure (11.a)
shows sample result of limit surface when the contact area is maintained constant, in which
the constant half width contact of rectangular contact area for hemicylindrical fingertip is
remained, resulting in the exponential decrease of the normal force. The limit surface will also
scale in proportion to the decay of norma force from N, to N¢,while Figure (11.B) shows
sample result hemispherical soft fingertip (3 &t same conditions. Development of the limit
surface for the present work, as a function of time in the case of constant normal force, is
shown in Figure (12.A). The tangential force f; is normalized with respect to the maximum
tangentia force at theinstantt = 0, and the normal moment m,, is normalized with respect to
the product pa, No. And, Figure (12.B) presents sample result hemispherical soft fingertip [13]
at same conditions. The results showed that viscoelastic limit surfaces have been enhanced
(18 - 22 %), if hemicylindrical fingertips are utilized instead of hemispherical fingertips at the
same radius of fingertip, shape factor of the pressure profile, and applied load. Despite the
similarity relative to the shape of results of the two models because both models were adopted
on the same principle in the assumption and approach to get viscoelastic contact interface for
soft fingertips, but they differ in the shape of contact area that effects on magnitude of
pressure distribution across the contact interface as well as the application of such evolving
viscoelastic limit surfaces. Moreover, the half width contact of the hemicylindrical fingertip
can be controlled easily, in the case of hemicylindrical fingertip, by atering the depth of the
hemicylinder, while thisis limited in the case of hemispherical tip due to axis symmetry.
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Fig .(11) Sample result of limit surface for viscoelastic contact interface when

the contact area is maintained at constant, in which (a) the constant half width

of rectangular contact is maintained (present work), (b) the constant radius of
circular contact is maintained 3,
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Fig .(12) The limit surface as a function of time in the case of constant normal
force. (i.e. No = const.). The tangential force f; is normalized with respect to
the maximum tangential force u Ny at the instantt = 0, and the normal moment
m, is normalized with respect to the product u Ny ay, (@) Hemicylindrical soft
fingertips (present work). (b) Hemispherical soft fingertips 23,

7. Discussions

The viscoelastic contact models for hemicylindrical soft fingertips introduced in this
research are depended on separating the effects of the instantaneous time-independent elastic
response and the time-dependent creep or relaxation response. The suggested approach has
been explained to be very beneficial, because the model can be found by utilizing elastic
modeling previously developed. Recent researches in contact with inclined hemicylindrical
soft fingertips were introduced in 3+ using elastic modulus of fingertip and stiffness model
in conjunction with geometry. Such researches and previous modeling of soft fingers [ "9 2"
28,37 study the elastic response in contacts of grasping and manipulating. Such models give
augment to the elastic response as illustrated by N(®)(8). Viscoelastic modeling can utilize
any of such modeling to get the elastic response of hemicylindrical soft fingertips and raise it
with the temporal response. Using the present model, the temporal response and the elastic
response can be separated and dealt with independently. By the kind of the modeling
equations, the two necessary parameters governing the contact (namely, the half width
contact a and the shape factor of pressure profile[ a the contact interface) are not directly
related by employing the modeling and anaytical equations. Moreover, coupling equations
are suggested to correlate the two parameters based on pressure distribution and creep
compliance. The former is valuable when 2 < k < 6.5, while the other is more general for all
ranges of k values. It is shown that both equations satisfy the equilibrium equation and
physical coherent behavior of viscoelastic contacts. The reduced creep compliance h(t) is
presented, which functions only on the viscous properties of the material, for the modeling of
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the creep behavior at the contact interface. By using this function, the evolution of both the
pressure distribution, depending on k, and the half width contact]@of rectangular contact areaa,

can be obtained. A noticeable is conclusion that both parametersk and a are related to the
same function h(t). Furthermore, they relied on the geometry.

Two cases are presented with respective modeling equations and introduced with the
evolution of limit surfaces as time elapses. The two cases are constant rectangular contact area
and constant normal force. In the first case with constant contact deformation, and thus
constant contact half width of rectangular contact areg, it is obtained that the relaxation and
reduction of normal force makes the limit surfaces shrink asymptoticaly, resulting in a less
stable grasp because its viscoelastic behavior. This is explained in Figure (9). In the second
case with constant normal force, the contact area augments due to creep. As a result of the
growth of the rectangular contact area while maintaining the same normal force, the limit
surface increases, promoting the stability of grasping at the contact interface. Thisis clarified
in Figure (10), in which the limit surfaces alter the shapes because the maximum tangentia
force (whenm, = 0) relies only on the normal load and the friction coefficient, but does not
depend on the viscoelastic phenomena.  Furthermore, the maximum norma moment
augments, because the contact area enlarges and the pressure distribution becomes more
uniform. Since the normal to the limit surface appears the instantaneous direction of dliding,
this result also has a deep inclusion on the grasping and manipulation using viscoelastic
fingertips. In typical grasping tasks, a normal force is kept and dominated instead of the
contact deformation. Based on the former discussions, it is deduced that such grasp with
viscoelastic contacts will become more stable as time elapses because of the time-dependent
nature of viscoelasticity, as illustrated in Figure 10. While this is intuitive, the viscoelastic
modeling introduced in this study shows such an intuition.

Thus, robotic and prosthetic fingertips presented with soft materials that display notable
viscoelastic behavior are more valuable, because the relaxation phenomena create and an
advanced growth of rectangular contact area under the same normal loads occurs, resulting in
expanded limit surface and increased stability against dliding at the contact interface.
However, it is noted that manipulation without detailed contact modeling was introduced in
(38411 with regard to sensor less manipulation. This research introduces a proper modeling of
viscoelastic contact that can cover the analysis of contacts to satisfy the elastic and temporal
responses of contacts. Such modeling, when achieved, will enhance the ability in grasping and
manipulation by adopting the features of contacts.

8. Conclusions

This research clarifies the effect of the time-dependent relaxation nature of viscoelastic
hemicylindrical soft fingertips in contact interface for robotic and prosthetic grasping. The
principle of splitting between the elastic and transient responses is applied for modeling and
analysis, because the time-dependent nature of the viscoelastic finger is generally independent
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of the elastic response. It is concluded, when analyzing the theoretical model, that the two
important parameters characterizing the viscoelastic contacts (i.e., the half width contact]éof

rectangular contact area a and shape factor of pressure profile k) can be correlated depending
on the characteristics of the materias and the physical behavior of the contact interface. Two
different cases usable to robotic and prosthetic hands for grasping were studied: constant
rectangular contact area and constant normal force. The development of friction limit surfaces
and pressure distributions of the two cases for viscoelastic hemicylindrical soft fingertips
were introduced and discussed. It is obtained that the control of the grasp forces (second case)
when using viscoelastic contacts is most advantageous, because it promotes the stability of
grasping through the enlargement of friction limit surface as time terminates. Finaly, the
viscoelastic limit surface results showed that the current model is more effective than previous
model *¥ at same conditions.
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Appendix

Equations Of Tangential Force And Moment In Constructing Limit
Surface For Viscoelastic Contact Of Hemicylindrical Fingertips

The equations of tangential force and moment for viscoelastic fingers follow the same
derivation depended on the scanning of instantaneous center of rotation (COR), initially
utilized in . The tangential force f, over the entire contact area is the sum of the friction
forces df, , as illustrated in Figure (11), ruled by the Coulomb’s law on the infinitessmal
element dA.

fo = G’y‘) =- f n 9(q) p(q) dA (A1)

A

The vector U(q) in equation (A1) appears the unit vector along the direction of the
velocity (opposite to the direction of df;) with respect to the COR, as illustrated in figure
(AL), u is the coefficient of friction, and p(q) is the pressure on the infinitesimal contact
patch. Since the coordinate frame such that the COR is aong the X axis, it can be concluded
that f, = 0 due to symmetry. So, the force vector in equation (A1) can be represented as a
scaar f, = f,. The y -component of the unit vector can be used as!®

1 -y
Ja—dgz+yz &= 20

0(q) = (A2)

where y, x,and d,. are the distances explained in figure (A1). Similarly, the moment about
the normal to the contact areain the Z direction is

m, = j nilg x v(q)ll p(q) dA (A3)
A
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Since m, is along the Z direction, the scalar notation of m, representing the magnitude
will be utilized. The magnitude of the cross product in equation (A3) becomes

~ _ (X - dc)
g < ¥(q)|l = NCETAESE (A4)

Note that equations (A1) and (A3) stay the same for viscoelastic contact, except that the
terms f; and m, are now functions of time and depend on the nature of the load, because the
pressure p is a function of time. By combining terms from equations (Al) to (A4), the
following equations are derived:

1 1

fe Cy (i — dc) JOF d4o de

—t -k (1-y%)k dydx (A5)
UN Jl J \/ (x—

—yo)k dy dx (A6)

Fig . (Al): Contact and coordinates for COR and local infinitesimal area dA for
numerical integration to construct the limit surface of hemicylindrical soft
fingertips 1.
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