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Abstract : 
 

Viscoelastic contact problems are one of the most important problems in mechanical 
and robot engineering. These problems become more tedious when one of the contacting 
bodies carries a viscoelastic and soft material. In this study, the mathematical model of 
contact interface and limit surface for viscoelastic contact which can be applied to robotic 
and prosthetic hemicylindrical fingertips has been proposed. The new achievement of this 
research comprises the integration of the time-dependent nature of viscoelastic contact into 
the modeling of grasping and manipulation. Specifically, two conjugation equations to get 
together the two significant parameters of contact modeling (the half width of rectangular 
contact area and the profile of pressure distribution across the contact interface) have been 
suggested. Additionally, two cases viable to prosthetic and robotic hands for grasping have 
been studied: constant rectangular contact area and constant normal contact force. The 
results show that the control of the grasp contact forces (case 2) when employing 
viscoelastic contacts is most advantageous, because it promotes the stability of grasping 
through the enlargement domain of limit surface as time terminates. Finally, the 
viscoelastic limit surface results proved that the new mathematical model is more effective 
(18-22%) than previous models. 

Keywords: Viscoelastic contact, hemicylindrical fingertip, soft material, nonlinear 
elastic. 
 

النصف اسطوانیة  الأصابع لإطرافنمذجة التماس اللزج المرن و استقراریة المسكة 
  الاصطناعیة و الروبوتیة للأیدي

 
  صادق حسین باخي . د.م

 الجامعة التكنولوجیة –قسم ھندسة المكائن والمعدات 
 

  : الخلاصة
  

وعندما یكون احد الاجسام المتماسة ، مسائل التماس اللزج المرن واحدة من المشاكل الھندسیة الأكثر أھمیة
في ھذا البحث ، تم اقتراح نمذجة ریاضیة . یتصرف بشكل لزج مرن والمادة ناعمة تصبح ھذه المسائل أكثر تعقید

مرنة التي یمكن تطبیقھا على أطراف الأصابع لمسائلة التماس السطح البیني وتماس السطوح المحددة اللزجة ال
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تضمن الانجاز الجدید من ھذا البحث دمج الوقت المعتمد الطبیعي لتماس . الروبوتیة والاصطناعیة النصف اسطوانیة 
على وجھ التحدید، تم اقترح اثنین من معادلات الاقتران لربط اثنین من . اللزج المرن في نمذجة المسك والمناولة

نصف عرض مساحة المستطیل المتماسة ومسارتوزیع الضغط خلال تماس للسطح (ات المھمة لنمذجة التماس المتغیر
مساحة التماس : والروبوتیة الاصطناعیة على المسك للأیدي للتطبیق قابلة دراسة حالتین تم ذلك، إلى بالإضافة). البیني

 استخدام عند فائدة تكون اكثر )2 الحالة( المسك قوى على السیطرة أن النتائج أظھرت .الثابتة والقوة العمودیة الثابتة
أخیرا، . الزمن مع انقضاء المحدد  السطح مساحة توسیع خلال من المسك استقراریة یحسن لأنھ، المرن اللزج التماس

 ذج السابقاالنم من%) 22-18( فاعلیةأكثر  يذج الریاضي الجدیدومرنة أن النمالاللزجة  السطوح المحددة أثبتت نتائج
.  

  .تماس اللزج المرن ، أطراف الأصابع النصف اسطوانیة ، مادة لینة ، المرونة الغیر الخطي: مرشدةكلمات الال
  

  

1. Introduction   
 

One of great significant mechanical characteristics of fingertips is soft material [1]. Soft 
material contact mechanics represents a paramount role in grasping stability as well as safe 
object prehension and handling during manipulation [2]. Hertz first presented the modeling of 
contact mechanics, based on point contact between two linear elastic materials [3]. If 
Coulomb’s friction model is used, all the forces that lie within the friction cone can be applied 

[4]. The employment of this contact model in the manipulation planning problem has led to 
some interesting conclusions. There may be multiple solutions to a particular problem 
(opacity), or there may be no solutions (discrepancy) [5]. Friction “limit surface” is a fictional 
surface within which slipping does not happen; that is, the limit surface is the boundary 
between non-sliding vs. sliding motions in prosthetic and robotic hands for grasping and 
manipulation [6]. However, robotic fingertips are manufactured from nonlinear elastic 
materials. For that reason, the Hertzian contact model does not strictly represent this contact. 
A power-law theory was deduced for modeling nonlinear elastic contacts present in robotic 
hand fingers by [7-9] for hemispherical and hemicylindrical soft fingertips, respectively.  

Viscoelastic contact comprises, aside from linear or nonlinear elastic response, time-
dependent response due to relaxation or creep phenomena that dominated the contact behavior 
[10]. As the materials and geometric designs of fingertips varied, the viscoelastic action of 
particular types of fingertips was noticed, in particular with the relaxation of fingertip contact 
force or the creep of contact zone, and characteristics of viscoelastic contact [11]. Applications 
of such contact modeling of human and biomedical fingertips were studied [12]. The 
viscoelastic contact of hemispherical fingertips was investigated [13]. The evolution of their 
friction limit surfaces and of the pressure distributions at the contact interface was studied. A 
quasistatic frictionless contact problem for viscoelastic bodies with long memory was 
considered [14] and modeled the contact with normal compliance in such a way that the 
penetration is limited and restricted to unilateral constraints. The adhesion between contact 
surfaces was taken into account, and the evolution of the bonding field was described by a 
first order differential equation. 
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It is noted that none of the above-cited references focused on the analysis of viscoelastic 
contact and grasping stability problems of hemicylindrical fingertips for robotic and prosthetic 
hands. Therefore, the aim of this research is to develop the pressure distribution and limit 
surfaces of a hemicylindrical soft fingertip for viscoelastic contact interface, due to its time-
dependent nature, as well as the implication of such evolving limit surfaces on the stability of 
grasping for robotic and prosthetic hands. This research introduces a proper modeling of 
viscoelastic contact that can cover the analysis of contacts to satisfy the elastic and temporal 
responses of contacts. Finally, an analytical study will be verified for nonlinear viscoelastic 
characteristics of the proposed fingertip and compared with the previous model. 

 
 

2. Modeling of  Viscoelastic  Hemicylindrical  Fingertips 
 

In general, the modeling of finger for the human and robotic hand can be solid and 
homogeneous, as discussed in [15] and [16], or its body can have a constant thick, soft layer 
covering a rigid “core,” as studied in [8] and [16], see  Figure (1a-C) . A hemicylindrical 
viscoelastic fingertip makes contact with a rigid flat surface by the application of a normal 
force N, with corresponding normal moment and tangential force at the contact interface, as 
shown in Figure (1d).   

 
  
 
 
 
 
 
 
 
    
 

 
 

Fig .(1)  (a) Human fingertip. (b) Anthropomorphic fingers (c) Hemicylindrical 
viscoelastic fingertip with or without rigid core (d) Geometry of contact 

between a hemicylindrical fingertip and a rigid plane surface[15, 16, 8] 
 

For the sake of modeling, the contact is assumed to be hold without slip; that is, the 
resulting tangential force and normal moment at the contact area are within the friction limit 
surface. From Figure (1), the following geometrical relationship can be written [17]: 
 a = R − (R − δ)                                                                                          (1)  
 

viscoelastic fingertip 

Finger structure  
 

(b) a)(  (c) (d) 

auricular 
cartilage 
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Moreover, the following general equation of pressure distribution of hemicylindrical soft 
fingertip is utilized [9]: 
 P( ) =  C NπaB   1 −  ya      
 

where C  is a coefficient, a function of
distribution to accept the equilibrium condition at the contact interface. Hertz
presented a pressure distribution, corresponding to 
contact with small deformation, which was adopted later for instance in 
is not necessarily 2 for a general contact pressure dist
contact problems, after relaxation due to the time
pressure distribution will be more uniformly, corresponding to a higher value in equation (2). 
Equation (2) is adopted and k is allowed to change to render different pressure distributions 
over the contact surface, as illustrated in 

equation (2) are not necessarily constants, due to the relaxation and creep of viscoelastic 
contacts. Therefore, it is significant to observe the general formulation of pressure 
distribution, and to recognize that the pressure distribution for viscoelastic soft fingers is a 
function of time.  

 
 

  
 
Fig .(2)  Pressure distribution of Hemicylindrical viscoelastic fingertip contact 

depends on equation (2) [9]

 

 
Equation (2) can be integrated over total contact area

equilibrium condition at the contact interface can be 
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Moreover, the following general equation of pressure distribution of hemicylindrical soft 

                                                                                    
is a coefficient, a function of  k, that regulates the profile of pressure 

distribution to accept the equilibrium condition at the contact interface. Hertz
presented a pressure distribution, corresponding to k = 2 in equation (2), for linear elastic 
contact with small deformation, which was adopted later for instance in [19], but the value for 
is not necessarily 2 for a general contact pressure distribution. Indeed, in a typical viscoelastic 
contact problems, after relaxation due to the time-dependent characteristics, the contact 
pressure distribution will be more uniformly, corresponding to a higher value in equation (2). 

is allowed to change to render different pressure distributions 
over the contact surface, as illustrated in Figure (2). Furthermore, the parameters 

equation (2) are not necessarily constants, due to the relaxation and creep of viscoelastic 
ntacts. Therefore, it is significant to observe the general formulation of pressure 

distribution, and to recognize that the pressure distribution for viscoelastic soft fingers is a 

Pressure distribution of Hemicylindrical viscoelastic fingertip contact 
[9] 

Equation (2) can be integrated over total contact area A  to get the coefficient
equilibrium condition at the contact interface can be applied 
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Moreover, the following general equation of pressure distribution of hemicylindrical soft 

     (2) 

, that regulates the profile of pressure 
distribution to accept the equilibrium condition at the contact interface. Hertz [18] first 

in equation (2), for linear elastic 
, but the value for 

ribution. Indeed, in a typical viscoelastic 
dependent characteristics, the contact 

pressure distribution will be more uniformly, corresponding to a higher value in equation (2). 
is allowed to change to render different pressure distributions 

Furthermore, the parameters  and  in 

equation (2) are not necessarily constants, due to the relaxation and creep of viscoelastic 
ntacts. Therefore, it is significant to observe the general formulation of pressure 

distribution, and to recognize that the pressure distribution for viscoelastic soft fingers is a 

Pressure distribution of Hemicylindrical viscoelastic fingertip contact 

 C , and the 
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N =  P(y) dA    =    P(y) dy dx  
  

  
                                                                (3) 

 
from which it is deduce that [9] 
 

C = π k Γ  2k    Γ  1k                                                                                                                   (4)   
 

Where  Γ   is gamma function and  is a positive real number. It is clear from equation (4) 

that C  is only a function of  k (see the table 1). In this work, two different cases will be 
studied due to the nature of the time-dependent functions for contact modeling of viscoelastic 
hemicylindrical fingertips. At first case, a prescribed constant contact area (i.e. constant 
normal displacement case) is used and the influence of relaxation is studied, as illustrated in 
Figure (3a). The second case considers the creep phenomenon due to a constant normal load, 
as shown in Figure (3b). To describe the viscoelastic behavior, a general approach considers 
the normal force and the displacement regarding functions as the form [20] 

 
 N(t) =  ϕ (δ, t)                                                                                                              (5) 
 
 δ(t) =  ψ (N, t)                                                                                                                  (6) 
 

Table  .(1)  Values of    for different values of  . 
 

k    
1 3.142 
2 2 
3 1.778 
4 1.694 
6 1.630 
10 1.594 
100 1.5708 
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Fig .(3)  (a) Case I: contact with imposed displacement (b) Case II: contact with 

imposed normal load
 

that can be very complex to implementing. The function 

function ψ is the creep compliance. In the general case of nonlinear viscoelasticity, the 
relaxation function  designates the force response to a step displacement 

undeformed shape, while the creep compliance 

force from the undeformed shape. Creep and relaxation are related because of the two 
functions are two aspects of the same viscoelastic phenomenon 
hypothesis holds, the functions 

respectively. Equation (5) and equation (6) will become
 N(t) = ϕ (t) . δ                            δ(t) =  ψ (t) . N                          

where  is mandatory displacement at the contact, and 

hypothesis of Fung [21] will be used in this paper so as to overcome the complexity of the 
formulation equation (5) and equation (6) in the general case of nonlinear viscoelasticity. 
Also, the reduced relaxation function 
introduced in the following sections to characterize the time
viscoelastic contacts. Firstly, it should be noted that the hypothesis of Feng 
elastic response from the time response. This approach enables to utilize elastic r
based on different models developed for soft fingertips, independent of the time response for 
viscoelastic contacts. Particularly, the viscoelastic contact modeling of soft finger can be 
thought of as the concatenation of the linear or nonlinear el
imposed  or N and the temporal response with creep or relaxation, a function of time.
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(a) Case I: contact with imposed displacement (b) Case II: contact with 
imposed normal load. [19, 20] 

that can be very complex to implementing. The function  is relaxation function and the 

is the creep compliance. In the general case of nonlinear viscoelasticity, the 
designates the force response to a step displacement 

undeformed shape, while the creep compliance  allows the displacement response to a step 

force from the undeformed shape. Creep and relaxation are related because of the two 
functions are two aspects of the same viscoelastic phenomenon [20]. When the linear 

 and ψ become only function of time and specify, 

respectively. Equation (5) and equation (6) will become 

                                                                                      
                                                                                      

is mandatory displacement at the contact, and  is the contact force. The 

will be used in this paper so as to overcome the complexity of the 
formulation equation (5) and equation (6) in the general case of nonlinear viscoelasticity. 
Also, the reduced relaxation function g(t) and the reduced creep compliance 

d in the following sections to characterize the time-dependent behavior of 
viscoelastic contacts. Firstly, it should be noted that the hypothesis of Feng [21] separates the 
elastic response from the time response. This approach enables to utilize elastic r
based on different models developed for soft fingertips, independent of the time response for 
viscoelastic contacts. Particularly, the viscoelastic contact modeling of soft finger can be 
thought of as the concatenation of the linear or nonlinear elastic response, a function of the 

and the temporal response with creep or relaxation, a function of time.
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(a) Case I: contact with imposed displacement (b) Case II: contact with 

is relaxation function and the 

is the creep compliance. In the general case of nonlinear viscoelasticity, the 
 from the 

allows the displacement response to a step 

force from the undeformed shape. Creep and relaxation are related because of the two 
n the linear 

become only function of time and specify, 

     (7) 
     (8) 

is the contact force. The 

will be used in this paper so as to overcome the complexity of the 
formulation equation (5) and equation (6) in the general case of nonlinear viscoelasticity. 

and the reduced creep compliance h(t)will be 
dependent behavior of 

separates the 
elastic response from the time response. This approach enables to utilize elastic response 
based on different models developed for soft fingertips, independent of the time response for 
viscoelastic contacts. Particularly, the viscoelastic contact modeling of soft finger can be 

astic response, a function of the 
and the temporal response with creep or relaxation, a function of time. 
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3. Contact with imposed displacement of hemicylindrical fingertips 
 

Figure 3(a) illustrated the first case, the hemicylindrical viscoelastic fingertip pushing 
onto the rectangular contact surface is considered while maintaining a constant step 
displacement δ . Relaxation phenomenon occurs and the contact force will reduce with time 
[19, 20] due to the viscoelastic behavior, as explain in Figure (3a). Because the normal 
displacement is held constant, the half width contact of rectangular contact area for 

hemicylindrical fingertips also remains constant due to the contact geometry, as given by 
equation (1). Due to the fact that the total normal contact force varies over time, the pressure 
distribution over the entire rectangular contact area changes according to the following 
equation by modifying from equation (2): 
  ( , ) =     ( )    1−                                                                                            (9) 

 
where the normal force  ( ) becomes time-dependent because the contact displacement 

and half width contact of rectangular contact area do not change, while the parameters  , , , 

and    remain constant as in equation (2). Also, the shape of the pressure distribution is 
assumed constant. To model the relaxation of normal force   after the contact is made, and in 
order to overcome the difficulties of formulation in equation (5), the noticeable model 
suggested by Fung [21] for the tissues of human and used by [22, 23] to model the human 
fingertip behavior is adopted. The relaxation-function (ϕ) was assumed by Fung [21] as the 
following equation 
   ( ,  ) =  ( )( ) .   ( )              ℎ  (0) = 1                                                              (10)  
 

where  ( )( ) is the elastic response, with superscript “( )” denoting the elastic 
response, and  ( ) is the reduced relaxation function which characterizes the time-dependent 
behavior of the material. A quasi-linear viscoelastic model has been improved by [24, 25]. The 
term  ( )( ) is the amplitude of the force generated promptly by a displacement from the 
undeformed configuration. The nonlinear elastic response  ( )can be modeled through 
several analytical expressions. Two important models of the elastic stiffness               ( )( ) =        used in the literature are 

  ( )( ) =   .                                                                                                                         (11) 
 
  ( )( ) =  .                                                                                                                             (12) 
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where (m, w) and (p, q) are parameters which depend on the geometry and materials. 
The expression of can be found from equation (11) or equation (12) after the integration them 
with respect to δ, as well as the initial condition N( )|   = 0 
  ( ) =        − 1                                                                                                                 (13)    ( ) =    + 1                                                                                                                          (14) 

 
Equation (11) was utilized by Pawluk and Howe [22] and Barbagli et al. [26] to model the 

relationship between normal force and normal displacement in human finger indentation. The 
human finger stiffness was compared with that of artificial fingers using both equations (11) 
and (12) by Han and Kawamura [27]. Kao and Yang [17, 28], beginning from previous research 
results [8], deduced an expression for nonlinear stiffness of soft contact that can be related with 
equation (12). Tiezzi and Vassura [29] utilized both equations (11) and (12) to inspect the 
behavior of elastic skins covering a rigid fingertip structure. The reduced relaxation function g(t) is a time-decaying function. When normalized to 1     = 0 , it can be illustrated by the 
following equation [20, 22]: 
 g(t) =   c   

   e    .    with   c   
   = 1  and v = 0                                                     (15)  

 
where the parameters    and     be depended on the material of the viscoelastic interface, 

and the exponents match the rates of the relaxation phenomena. The relaxation function   , 
explained in equation (10), knows the force response to a step displacement    from the 
undeformed configuration as time elapses. Thus, in the case of a single step 
displacement     =   , the force response will be 
 N(t) =  ( )(  ) .    ( )                                                                                                         (16) 
 

The pressure distribution at the contact interface of the viscoelastic fingertip is found by 
substituting equations (15) and (16) into equation (9) to obtain the following equation 
 P( , ) =  C πaB  1 −  ya         c +  c   

   e    .(   )     ( )(  )                                 (17) 
 

The first part in equation (17) depends only on   , while the second term expresses the 

time dependence of the pressure distribution due to the variation normal force N(t)  . Figure 
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(4) explains the calculated results of the pressure distribution of hemicylindrical fingertips due 
to the relaxation of the normal force in the case of a constant normal displacement 
second-order contact pressure distribution profile

relaxation state, Figure (4 A,B)

respectively. The parameters of the decreased relaxation function
graphics, are  n = 1, c = 0.7,  c 
experimental results mention in [24, 25]

 
 

 

Fig .(4)  (a) Relaxation of normal load when a constant normal displacement is 
imposed. (b) Evolution of the pressure distribution due to the relaxation of 

the normal load using 
 

If the imposed displacement of hemicylindrical fingertip is changing, the contribution of 
the whole past history should be taken into consideration. The normal force resulted by an 
infinitesimal displacement   ( ), superposed in a condition of displacement of 
hemicylindrical fingertip at an instant of time
 dN(t) = g(t − τ) dN( )(δ(τ))dδ   
as deduced from equation (16). By using a modified superposition principle 
normal force at the time instant is the sum of contribution of all the past changes; that is
  ( ) =    ( −  )   ( )  ( )   

 
 
Equation (19) will be rewritten as follows:
  ( ) =    ( −  ). ( )( ( )) . 
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explains the calculated results of the pressure distribution of hemicylindrical fingertips due 
to the relaxation of the normal force in the case of a constant normal displacement 

order contact pressure distribution profile (k = 2). In order to display only the 

Figure (4 A,B) plots the normalized force N N  and pressure

respectively. The parameters of the decreased relaxation function  g(t), used to plot the = 0.3 and  v = 3.1  which are concluded from the 
[24, 25]. 

 

(a) Relaxation of normal load when a constant normal displacement is 
imposed. (b) Evolution of the pressure distribution due to the relaxation of 

the normal load using   =  ,    =  ,    =   .  ;    =  .  ,      
If the imposed displacement of hemicylindrical fingertip is changing, the contribution of 

the whole past history should be taken into consideration. The normal force resulted by an 
, superposed in a condition of displacement of 

hemicylindrical fingertip at an instant of time  , with  >  , is 

)  dδ(τ)                                                                          
as deduced from equation (16). By using a modified superposition principle [20, 30, 31]

normal force at the time instant is the sum of contribution of all the past changes; that is

 ( )   ( )                                                                
Equation (19) will be rewritten as follows: 

)    ̇( )  ( )                                                                 
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explains the calculated results of the pressure distribution of hemicylindrical fingertips due 
to the relaxation of the normal force in the case of a constant normal displacement δ with a 

to display only the  and pressure P P  , 

, used to plot the 
ded from the 

(a) Relaxation of normal load when a constant normal displacement is 
imposed. (b) Evolution of the pressure distribution due to the relaxation of =  .  . 

If the imposed displacement of hemicylindrical fingertip is changing, the contribution of 
the whole past history should be taken into consideration. The normal force resulted by an 

, superposed in a condition of displacement of 

        (18) 
[20, 30, 31], the total 

normal force at the time instant is the sum of contribution of all the past changes; that is 

           (19) 

           (20) 
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          where  ( ) is the elastic stiffness as indicted by equations (11) or (12), and  ̇( ) is the 
rate of hemicylindrical fingertip displacement. The evolution of the pressure distribution is 
found by substituting equations (15) and (20) into equation (9). That is 
  ( , ) =       1−               +      

        .(   )  . ( )( ( )) . 
    ̇( )  ( )        (21) 

 
 
4. Contact with imposed normal load on the hemicylindrical soft 

fingertip 
 

For the case in which the normal load ( =    ) applied on the hemicylindrical soft 
fingertip is maintained at constant, the normal displacement   will increase over time because 
of the nature of viscoelastic creep phenomena [20], as illustrated in Figure (3b). Moreover, it is 
well known that by conservation the normal force constant, the pressure distribution of 
viscoelastic contact will gradually become more uniform because of relaxation [19, 32].  Indeed, 
as a result of the increasing normal displacement, the half width of contact area  also 

increases, while the depth 2b remaining nearly constant that proved by experimental by [8, 17], 
while, the equilibrium condition at the contact area imposes a constraint equation with the 
normal force   being constant, as in equation (3). The shape of pressure distribution changes 
because the rectangular contact area increases while the normal force is held constant, 
implying the changes in the shape factor of pressure profile   in equation (2). The pressure 
distributions for various typical values of   and   are plotted in Figure (2). In the following 
modified pressure distribution equation (22) which   and   are functions of the time 
  ( , ) =   ( )  ( )  ( )  1 −     ( )   ( )    ( )                                                                      (22) 
 
where C ( ) indicates the coefficient C  as a function of k(t). The maximum pressure become 
at  y = 0, and is found by 
      ( ) =   ( , ) =    ( )                                                                                                       (23) 

 
From equation (23), the maximum pressure decreases while the contact area increases. In 

Figure (2), the normalized maximum pressure at y = 0 coincides to the coefficient at each 
value of  . The total area under each half-curve is unity, as denoted in (24). Note that 
as  →  ∞, the pressure becomes uniformly distributed, as foreseeable. Substituting equation 
(22) into (3), the integral constrain equation becomes  
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   ( )  ( )   1 −    ( )  ( )    ( ) ( )
  ( )    = 1                                                                         (24) 

 
 

A. Half width of contact area and pressure distribution 
 

The constraint equation in equation (24), when integrated, will yield equation (4), which 
does not include  ( ) at any instant  . This is owing to the specific formula of contact 
pressure distribution utilized in equation (2). This has deep implication on the analysis of 
contact and the behavior of viscoelastic fingertips. The following observations are recorded. 
• Theoretically, the shape factor of pressure profile   can be selected independent of the 

constraint equation in equation (24). The choice of   is primarily determined by the shape 
of the pressure distribution at the contact area. Larger value of   denotes more uniform 
pressure distribution 

• The constraint equation (24), when integrated, does not yield an equation which retains the 
half width contact of rectangular contact area   . Therefore, the parameter   is independent 

of the equilibrium condition clarified by equation (24). 
• • Due to the specific form of the contact pressure distribution, the equilibrium condition 

equation (24) imposes a value of C , clarified by equation (4), that relates the   P   ( ) = P( , ) and the mean-pressure        , taking into account the pressure distribution due to

exponent   .  
Although the two important parameters, half width contact of rectangular contact area   a  

and the shape factor of pressure profile  , are independent based on the theoretical modeling 
as proposed here, it is postulated that the two parameters a and  are correlated, according to 

the properties of the fingertip geometric configuration as well as the material of the fingertip. 
It is useful to deduce a coupling equation for the two important parameters, in order to 
facilitate the analysis and formulation for the modeling of viscoelastic contact area. Such a 
coupling equation needs to agreement the equation equilibrium and physical coherent 
behavior. In the following parts, two such coupling equations are introduced and discussed. 
 
 

B. Coupling equation based on pressure distribution 
 

In this paragraph, a coupling equation based on the evolution of the profile of pressure 
distribution at the rectangular contact interface is derived. The fact that as the relaxation is 
happening, so as to set the parameters   and   . The pressure distribution becomes more 
uniform with gradually increasing and the half width contact of rectangular contact area 
enlarge too [32], as illustrate in Figure (2). In order to correlate the two parameters   and  k , 
the half width contact of rectangular contact area for hemicylindrical fingertips    in such a 
way that is selection 
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    ∝   1                                                                                                                          (25) 

 
As mentioned in Section 4-A, the coupling equation requires satisfying the equilibrium 

equation and physical coherent behavior. It is significant to observe that the assumption of 
relationship in equation (25) fulfills such criteria. Moreover, the assumptions in equation (25) 
give a growing half width contact of rectangular contact area when the value of diminution 
due to a more uniform pressure distribution. Thus, this relationship is convenient with the 
well-known physical behavior. The curve of   with respect to   can be plot and fit it with a 
weighted least-squares (LS) best fit using Matlab program [33] , based on the option of the half 
width contact described in equation (25), to get the following equation 

    ≅  (1 − 0.52   .    )                                                                                (26) 
 

where    is the half width contact of rectangular contact area at  = 0 when  = 2, and  = 1.217, a constant. Equation (26) includes changes in contact pressure distribution 
corresponding to 2 ≤  ≤ 6.5 as time changes from 0 ≤  ≤ ∞. A few values of k between 2 
and 6.5 with corresponding values of growing normalized half width contact are listed from 
Table 2. Figure (5) explains the growth of contact pressures and areas as time elapses that is 
obtained using equation (26), where the relaxation of the viscoelastic fingertip with constant 
normal force outcomes in the flattening of the pressure distribution at the contact area, also 
the increase of half width contact of rectangular contact area. The results are in line with the 
physical behavior of viscoelastic contacts [32]. 
 

Table .(2) Values of    and       corresponding to different values of the 
parameter   between 2 and 4. 

 

k     /√           

2 2 0.707107 0.99993 
2.5 1.858 0.73363 1.050879 
3 1.778 0.749953 1.089869 

3.5 1.728 0.760726 1.119708 
4 1.694 0.768322 1.142543 

4.5 1.671 0.773592 1.160019 
5 1.653 0.777792 1.173393 

5.5 1.640 0.780869 1.183628 
6 1.630 0.78326 1.191461 

6.5 1.622 0.78519 1.197455 
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Fig .(5) Evolution of pressure distribution for the viscoelastic soft finger when 

the normal contact force is maintained at constant, resulting in the 
relaxation and growth of the half width of rectangular contact.

 
C. Coupling equation based on creep compliance
 

An alternative approach is introduced in this section based on the creep compliance to get 
a relationship between the parameters 
both parameters with the viscoelastic property of the fingertip mater  ( ,  ) is supposed to be in the form by using the same modeling approach as that in 
Section3: 
   ( ,  ) =   ( )( ) .  ℎ( )          
 

where the function h(t) is the reduced creep compliance that characterizes the time
dependent behavior of the fingertip, and 
by the force from the undeformed configuration.

The elastic displacement equations are found by inve
  ( )( ) =  1       + 1         
  ( )( ) =    + 1                      
 

The reduced creep compliance can be explained, without loss of generality 
following form: 

g and Development, Vol. 18, No.5, September 2014, ISSN 1813
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Evolution of pressure distribution for the viscoelastic soft finger when 
the normal contact force is maintained at constant, resulting in the 

relaxation and growth of the half width of rectangular contact.
 

oupling equation based on creep compliance 

An alternative approach is introduced in this section based on the creep compliance to get 
a relationship between the parameters   and  . A constitutive equation is presented to relate 
both parameters with the viscoelastic property of the fingertip material. The creep compliance 

is supposed to be in the form by using the same modeling approach as that in 

        ℎ   ℎ(0) = 1                                                   
is the reduced creep compliance that characterizes the time

dependent behavior of the fingertip, and  ( )( ) denotes the elastic response that is created 
by the force from the undeformed configuration. 

The elastic displacement equations are found by inverting equations (13) and (14)

                                                                                       
                                                                                      

The reduced creep compliance can be explained, without loss of generality 

2014, ISSN 1813- 7822 
 

Evolution of pressure distribution for the viscoelastic soft finger when 
the normal contact force is maintained at constant, resulting in the 

relaxation and growth of the half width of rectangular contact. 

An alternative approach is introduced in this section based on the creep compliance to get 
. A constitutive equation is presented to relate 

ial. The creep compliance 
is supposed to be in the form by using the same modeling approach as that in 

      (27) 

is the reduced creep compliance that characterizes the time-
denotes the elastic response that is created 

rting equations (13) and (14) 

         (28) 
          (29) 

The reduced creep compliance can be explained, without loss of generality [20], by the 
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 ℎ( ) = 1 +    ( 
     ɳ    .   )                                                                                                        (30) 

 
where the parameters    and ɳ   are constants depending on the materials, and the 

exponents ɳ   represent  the rates of creep phenomena. The displacement response  ( ) is 
obtained from the creep compliance    ( ,  ) in equation (27), which results from a single 
step of normal load ( =    ) that is using at the initial instant  = 0, that is 
  ( ) =   ( )(  ) .ℎ( )                                                                                                                (31) 
 

The half width contact of rectangular contact area increases because of the increase of the 

normal displacement. For simplicity, the relationship between the half width contact of 

rectangular contact area   and the displacement    can be deduced from equation (1) as 
   ≅ 2                                                                                                                                         (32) 
 

by cancelling the second-order term in δ  [17]. The half width contact of rectangular 

contact area found from the approximation in equation (32) is slightly larger than that from 
equation (1). Nevertheless, the half width contact given by equation (32) is closer to the actual 

half width contact that is impacted by the enlargement because of the conservation of the 

volume of the pad at the contact interface. Substituting equation (31) into (32), to get 
   ( )   ≅   2  ( )   =    2  ( )(  ) .  ℎ( )                                                                          (33)   
 
Equation (33) can be rewritten as 
  ( ) ≅     ℎ( )                                                                                                                         (34) 
 

where   = 2  ( )(  ) is the half width of rectangular contact area at the initial instant. 

A useful hypothesis, assumed in equation (25), is   ∝    . Combining equation (34) with 

equation (34), to obtain 
     ∝    1       ∝     1ℎ( )                                                                                                            (35) 

 
Subsequently, it can relate the coefficient    and the reduced creep compliance  as 

follows: 
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  =      2       1     =    ℎ( )                                                                                                         (36) 

 
where    =   ( |   ) is used because ℎ|   = 1 . For example, when the initial 

pressure profile is second-order, i.e.,  |   = 2 , the corresponding worth for    is 1.5. The 
relationship between the shape factor of pressure profile  and the time can be found from 

equation (36). The direct use of equation (36) is not proper because the shape factor of 
pressure profile  is included in the arguments of the gamma function, thus an equivalent 

relationship between C  and   requires to be obtained. It can be noted that the two amounts log(  − 1) and log( ) are linearly related, as illustrated in Figure (6a). By using the LS best 
fit, the following approximate relationship can be written as follows:  log(  − 1) =   log( ) + 2                                                                                                (37)             

 
with a = −0.5261 and a = −0.3647. After some mathematical processing, it can be 

derived that the approximate relationship between the coefficient of pressure distribution over 
the contact area C  and shape factor of the pressure profile   can be written as 

    ≅       .       ( ) + 1                                                                                                        (38) 
 
 
 

(a)                                                                                      (b) 
 
 
 
 
 
 
 

Fig .(6)  (a) Linear relationship between    ( ) and    (  −  ) is plotted. (b) 
Comparison between the calculated and approximated    values in 

equation (38). 
 
 

Equation (38) is a very good approximation of C (k) over a larger range of  k , as shown 
in Figure 6 (B), where the constants a  and a  are found through the LS method. Substituting 
equation (38) into equation (36), to obtain 
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   .       ( ) + 1 =     ℎ( )                                                                                                         (39) 

 
Where   =    and   =     , therefore the alteration of    as a function of time can be 

found from equation (39), that is  
 ( ) =      ℎ( ) − 1   =      ℎ( ) − 11.44    .                                                                                       (40) 

 
where α =   α =  1.44 and β = α   = −1.9. Equation (40) appears that the relationship 

between  and time is only impacted by the properties of the material through the reduced 

creep compliance.  Figure (7) explains   as a function of k, as explained by equation (4), and 
 as a function of time, as explained by equation (40). The function ℎ( ) is supposed to be in 

the form of equation (30) with only two parameters as follow:  ℎ( ) = 1 +    (1−   ɳ   .   )                                                                                                     (41)     
 

where c = 0.3 and  ɳ = 3.1. This option is proper with the experimental results that are 
obtained from [24, 25]. 

 
 

 
  
  
  
  
  
  
  
  

 
Fig .(7)  (a) Plot of    as a function of k, as shown by equation (4). (b) Plot of k 

as a function of time, as illustrated by equation (40), by adopting reduced 
creep compliance  ( ), as expressed by (41). 

 
The pressure distribution  ( , ) can be obtained by substituting equations (34), (40), and 

(41) into (22). Figure (8) shows the results of the creep of the viscoelastic fingertip by 
keeping the normal force constant as well as the evolution of the half width contact, resulting 
in the flattening of the pressure distribution at the contact. The resulting relaxation and growth 

(a)                                                                                  (b) 
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of the contact area are exponential because of the option of the reduced creep compliance 
(41). As over time, the pressure distribution approaches a more constant profile, with  

varying from 2 to 6.46 (as shown in figure 7) and the half width contact of rectangular contact 

area is heighten by approximately 11%.  In general, the contribution of the whole past history 
must be considered when the normal load N is not constant but varying. To drive the dual 
relationship of equation (19) by substituting  ( )( ) with  ( )( )  and   ( ) with ℎ( ) 
similar to section 3 is adopted. Consequently, the change of the normal displacement   as a 
function of time can be shows as 

  ( )   =   ℎ( −  )   ( )  ( )     ( ) ( )   
   ( )                                                           (42) 

Or   ( )   =  ℎ( −  )  ( )  ( )  ̇( )  
   ( )                                                                 (43) 

 
 
 

 
 
 
  
  
  
  
 
  
 

 
 
Fig .(8) (a) The pressure distribution as a function of the normalized half width 

contact of rectangular contact area  /   (b) The half width contact of 
rectangular contact area as a function of time. 

 
where  ( ) is the elastic compliance, and  ̇( )is the rate of change of the normal contact 

load. The elastic compliance term is the inverse of the elastic stiffness  ( ) 
  ( ) =    ( )   = 1 ( )                                                                                                                    (44) 

 

(a)                                                                                (b) 
  



Journal of Engineering and Development, Vol. 18, No.5, September 2014, ISSN 1813- 7822 
 

 123

from equations (13) and (14), to obtain 
  ( )( ) =  1  +                                                                                                                      (45) 

  ( )( ) =  1    + 1                                                                                                              (46) 

 
Subsequently, the half width contact of rectangular contact area becomes a function of 

the normal load history, as illustrated by the following equation: 
   ( )   = 2  ℎ( −  )  ( )  ( )  ̇( )  

   ( )                                                           (47) 

 
which is found by substituting equation (43) into equation (32). Likewise, the 

parameter  ( ) becomes a function of the normal load history as showed in equation (40). 
Therefore, this is the convolution integral, that is 
  ℎ( −  ) .   ( )  ( )  .  ̇( )  

   ( )                                                                                (48) 

 
Also, the pressure distribution in equation (22) becomes a function of the normal load history. 
 
5. Construction of limit surfaces in viscoelastic of hemicylindrical 

fingertips 
 

In this section, the construction of the limit surfaces depended on the theoretical models 
of the two cases introduced in the preceding sections is considered. The basics of the limit 
surface construction are illustrated in Appendix. The new achievement of this research is to 
adopt the methodology to explain the evolution of limit surfaces in viscoelastic contacts of 
hemicylindrical fingertips. The evolution of limit surfaces as a time-dependent feature of 
typical viscoelastic contact interface is introduced and discussed. 
 
a. Constant rectangular contact area 

 

The construction of limit surface in the case of constant rectangular contact area is similar 
to that of an elastic fingertip in contact. The details can be seen in Appendix. The integrands 
in equation (A5) and equation (A6) do not depend on time, and are particularly the same of 
the elastic soft fingertips in contact. The two equations proposed that the friction limit 
surfaces are developed, based on the changing normal force N(t) , with the shape of each 
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individual limit surface being the same as that of the corresponding limit surface for elastic 
soft fingertip at the same normal force at each time instant. In the current case, the shape of 
the limit surface does not change, but scales proportionally inward as  decrease. If the 

normal force reduces exponentially, as seen in figure 4(a), both the tangential force and the 
moment will also reduce exponentially. The normalized tangential force and normal moment 
can be explained as follows from equations (A5) and (A6) for the construction of the limit 
surface: 
   ( )  ( ) =    2        −         −      + (  ∗  ) 

 
     (1−    )   

                                              (49)  
 
   ( )   ( ) =    2         −      + (  ∗  )      −      + (  ∗  ) 

 
     1  (1−    )   

                                 (50)  
 

where the normalized coordinates   =       ,   =     , and   =    are used to make easy the 

integration processes. Since the normal force reduces exponentially and approaches 
asymptotically a specific value after a certain settling time, as illustrated in figure 4(a), the 
change of limit surface will follow the same exponential pattern. An example of the evolution 
of such limit surfaces in the first quadrant is plotted in Figure (9) by imposing that the 
pressure distribution and coefficient    do not change. As illustrated in Figure (9), the limit 
surfaces move inward as the normal force  ( ) reduces. The exponential decay proposes 
larger shrinkage initially, while asymptotically approaches a constant surface as  → ∞. 

 
 
 
 
 
 
  
  
  
 

 
 

Fig .(9) Limit surface when the contact area is continued at constant to the 
decay of normal force from    to   . 

 steady state 

Increasing 
Normal Force 

Stable Region (No slipping) 

Unstable Region 
(Slipping Region) 
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b. Constant normal load 
 

As researched in Section 4, when the normal contact force is maintained constant ( =  ), the normal displacement and half width contact will gradually relax as time elapses. By 

using the equations obtained in Section 4-C and substituting equation (22) into equations (A1) 
and (A3), the normalized force and moment for the viscoelastic contact of hemicylindrical 
fingertip can be formulated, similar to equations (A5) and (A6), as illustrated in equations 

(51) and (52), where y =        , d  =     , a =    , D =     , and x =    are the normalized 

coordinates, and the parameters  a(t), k(t), and h(t) evolve as prescribed in equations (34), 
(40), and (41). The limit surface can be found by using these two equations, but the evolution 
of the limit surfaces as time elapses is less axiomatically. The results of integration of 
equations (51) and (52) in Figure (10) are showed. The development of the limit surfaces 
when time elapses can be explained from the figure as they move outward. 
   ( )   =  12        −         −      + (  ∗  ) 

  
       1 − (    ) ( )   ( ) 

      ( )                          (51)  
 
   ( )    ( ) =    2         −      + (  ∗  )      −      + (  ∗  ) 

  
        ( ) ∗    (1 −    )   

                               (52)  
 
 
 
 
 

 
 
 
 
 
 
 

 
 
Fig  .(10)  The limit surface as a function of time in the case of constant force. 

 

Increasing time 

Stable Region (No slipping) 

Unstable Region 
(Slipping Region) 
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6. Verification the present model   
 

To verify the importance of the new model adopted in the current research, the 
hemicylindrical soft fingertips are applied to the viscoelastic limit surfaces based on the 
theoretical models of the two cases presented in the preceding sections, which are based on 
the current theoretical proposed, are compared with other results obtained by the earlier 
investigators [13] for viscoelastic contact of the hemispherical soft fingertip at same radius of 
fingertip, shape factor of the pressure profile, and applied load, and conditions. Figure (11.a)  
shows  sample result of limit surface when the contact area is maintained  constant, in which 
the constant half width contact of rectangular contact area for hemicylindrical fingertip is 
remained, resulting in the exponential decrease of the normal force. The limit surface will also 
scale in proportion to the decay of normal force from N  to N  ,while Figure (11.B) shows 
sample result hemispherical soft fingertip [13] at same conditions. Development of the limit 
surface for the present work, as a function of time in the case of constant normal force, is 
shown in Figure (12.A). The tangential force f  is normalized with respect to the maximum 
tangential force at the instant t =  0, and the normal moment m  is normalized with respect to 
the product μa  N . And, Figure (12.B) presents sample result hemispherical soft fingertip [13] 
at same conditions. The results showed that viscoelastic limit surfaces have been enhanced 
(18 - 22 %), if hemicylindrical fingertips are utilized instead of hemispherical fingertips at the 
same radius of fingertip, shape factor of the pressure profile, and applied load. Despite the 
similarity relative to the shape of results of the two models because both models were adopted 
on the same principle in the assumption and approach to get viscoelastic contact interface for 
soft fingertips, but they differ in the shape of contact area that effects on magnitude of 
pressure distribution across the contact interface as well as the application of such evolving 
viscoelastic limit surfaces. Moreover, the half width contact of the hemicylindrical fingertip 
can be controlled easily, in the case of hemicylindrical fingertip, by altering the depth of the 
hemicylinder, while this is limited in the case of hemispherical tip due to axis symmetry.   

 
 

Fig .(11)  Sample result of limit surface for viscoelastic contact interface when 
the contact area is maintained at constant, in which (a) the constant half width 
of rectangular contact is maintained (present work), (b) the constant radius of 

circular contact is maintained [13]. 
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Fig .(12) The limit surface as a function of time in the case of constant normal 
force. ( .  .    =      . ). The tangential force     is normalized with respect to 

the maximum tangential force      at the instant  =  , and the normal moment    is normalized with respect to the product        , (a) Hemicylindrical soft 
fingertips (present work). (b) Hemispherical soft fingertips [13]. 

 
 
7. Discussions 
 

The viscoelastic contact models for hemicylindrical soft fingertips introduced in this 
research are depended on separating the effects of the instantaneous time-independent elastic 
response and the time-dependent creep or relaxation response. The suggested approach has 
been explained to be very beneficial, because the model can be found by utilizing elastic 
modeling previously developed. Recent researches in contact with inclined hemicylindrical 
soft fingertips were introduced in [34-36] using elastic modulus of fingertip and stiffness model 
in conjunction with geometry. Such researches and previous modeling of soft fingers [1, 7-9, 27, 

28, 37] study the elastic response in contacts of grasping and manipulating. Such models give 
augment to the elastic response as illustrated by N( )(δ). Viscoelastic modeling can utilize 
any of such modeling to get the elastic response of hemicylindrical soft fingertips and raise it 
with the temporal response. Using the present model, the temporal response and the elastic 
response can be separated and dealt with independently. By the kind of the modeling 
equations, the two necessary parameters governing the contact (namely, the half width 
contact  a  and the shape factor of pressure profile  at the contact interface) are not directly 

related by employing the modeling and analytical equations. Moreover, coupling equations 
are suggested to correlate the two parameters based on pressure distribution and creep 
compliance. The former is valuable when 2 ≤ k ≤ 6.5, while the other is more general for all 
ranges of  k values. It is shown that both equations satisfy the equilibrium equation and 
physical coherent behavior of viscoelastic contacts. The reduced creep compliance h(t) is 
presented, which functions only on the viscous properties of the material, for the modeling of 
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the creep behavior at the contact interface. By using this function, the evolution of both the 
pressure distribution, depending on k, and the half width contact of rectangular contact area a, 

can be obtained. A noticeable is conclusion that both parameters k and a are related to the 
same function h(t). Furthermore, they relied on the geometry.  

Two cases are presented with respective modeling equations and introduced with the 
evolution of limit surfaces as time elapses. The two cases are constant rectangular contact area 
and constant normal force. In the first case with constant contact deformation, and thus 
constant contact half width of rectangular contact area, it is obtained that the relaxation and 
reduction of normal force makes the limit surfaces shrink asymptotically, resulting in a less 
stable grasp because its viscoelastic behavior. This is explained in Figure (9).  In the second 
case with constant normal force, the contact area augments due to creep. As a result of the 
growth of the rectangular contact area while maintaining the same normal force, the limit 
surface increases, promoting the stability of grasping at the contact interface. This is clarified 
in Figure (10), in which the limit surfaces alter the shapes because the maximum tangential 
force (when m = 0 ) relies only on the normal load and the friction coefficient, but does not 
depend on the viscoelastic phenomena.  Furthermore, the maximum normal moment 
augments, because the contact area enlarges and the pressure distribution becomes more 
uniform. Since the normal to the limit surface appears the instantaneous direction of sliding, 
this result also has a deep inclusion on the grasping and manipulation using viscoelastic 
fingertips. In typical grasping tasks, a normal force is kept and dominated instead of the 
contact deformation. Based on the former discussions, it is deduced that such grasp with 
viscoelastic contacts will become more stable as time elapses because of the time-dependent 
nature of viscoelasticity, as illustrated in Figure 10. While this is intuitive, the viscoelastic 
modeling introduced in this study shows such an intuition.  

Thus, robotic and prosthetic fingertips presented with soft materials that display notable 
viscoelastic behavior are more valuable, because the relaxation phenomena create and an 
advanced growth of rectangular contact area under the same normal loads occurs, resulting in 
expanded limit surface and increased stability against sliding at the contact interface. 
However, it is noted that manipulation without detailed contact modeling was introduced in 
[38-41] with regard to sensor less manipulation. This research introduces a proper modeling of 
viscoelastic contact that can cover the analysis of contacts to satisfy the elastic and temporal 
responses of contacts. Such modeling, when achieved, will enhance the ability in grasping and 
manipulation by adopting the features of contacts. 
  

8. Conclusions 
 

This research clarifies the effect of the time-dependent relaxation nature of viscoelastic 
hemicylindrical soft fingertips in contact interface for robotic and prosthetic grasping. The 
principle of splitting between the elastic and transient responses is applied for modeling and 
analysis, because the time-dependent nature of the viscoelastic finger is generally independent 
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of the elastic response. It is concluded, when analyzing the theoretical model, that the two 
important parameters characterizing the viscoelastic contacts (i.e., the half width contact of 

rectangular contact area    and shape factor of pressure profile k) can be correlated depending 
on the characteristics of the materials and the physical behavior of the contact interface. Two 
different cases usable to robotic and prosthetic hands for grasping were studied: constant 
rectangular contact area and constant normal force. The development of friction limit surfaces 
and pressure distributions of the two cases for viscoelastic hemicylindrical soft fingertips 
were introduced and discussed. It is obtained that the control of the grasp forces (second case) 
when using viscoelastic contacts is most advantageous, because it promotes the stability of 
grasping through the enlargement of friction limit surface as time terminates. Finally, the 
viscoelastic limit surface results showed that the current model is more effective than previous 
model [13] at same conditions. 
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 Appendix 
  

Equations Of Tangential Force And Moment In Constructing Limit 
Surface For Viscoelastic Contact Of Hemicylindrical Fingertips 
 

The equations of tangential force and moment for viscoelastic fingers follow the same 
derivation depended on the scanning of instantaneous center of rotation (COR), initially 
utilized in [9]. The tangential force f  over the entire contact area is the sum of the friction 
forces  df  , as illustrated in Figure (11), ruled by the Coulomb’s law on the infinitesimal 
element dA. 

 

  =       = −      ( )  ( )                                                                                                  (  ) 

 
The vector   ( ) in equation (A1) appears the unit vector along the direction of the 

velocity (opposite to the direction of    ) with respect to the COR, as illustrated in figure 
(A1),   is the coefficient of friction, and  ( ) is the pressure on the infinitesimal contact 
patch. Since the coordinate frame such that the COR is along the   axis, it can be concluded 
that   = 0 due to symmetry. So, the force vector in equation (A1) can be represented as a 
scalar    =    . The   -component of the unit vector can be used as [6] 

 ῦ( ) =   ( −   ) +    − ( −   )                                                                                              (  ) 

 
where  ,  ,and    are the distances explained in figure (A1). Similarly, the moment about 

the normal to the contact area in the   direction is 
 

  =    ‖  ×    ( )‖  ( )                                                                                                       (  ) 
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Since    is along the   direction, the scalar notation of    representing the magnitude 
will be utilized. The magnitude of the cross product in equation (A3) becomes  

 ‖  ×    ( )‖ = ( −   ) ( −   ) +                                                                                                     (  ) 

 
Note that equations (A1) and (A3) stay the same for viscoelastic contact, except that the 

terms    and    are now functions of time and depend on the nature of the load, because the 
pressure   is a function of time. By combining terms from equations (A1) to (A4), the 
following equations are derived: 

     =             −         −      + ( ∗   ) 
 

       −        
                                                            (  ) 

 
      =              −      + ( ∗   )      −      + ( ∗   ) 

 
         −        

                                                   (  ) 

 

Where   =      ,      =         ,  =       ,          =      =              
 
 

 
 
 
Fig . (A1): Contact and coordinates for COR and local infinitesimal area    for 

numerical integration to construct the limit surface of hemicylindrical soft 
fingertips [9]. 

 


