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ABSTRACT

Modelling some rare environmental events and obtaining accurate predictions is quite important to determine their
nature and to take action accordingly. In this article, a new three-parameter exponentiated Benini distribution based on
the exponential family is proposed for this purpose. It is called the three-parameter exponentiated Benini distribution. As
an additional motivation, although new distributions are derived by various methods in the literature, there is no study
on variants of the Benini distribution. We first investigate its mathematical properties and then evaluate its performance
in real applications by comparing it with other distributions. In particular, the corresponding probability density and
hazard rate functions, quantile function, stochastic ordering, moment and incomplete moment, and ordered statistics,
are presented in detail. The analysis of the shape of the distribution is also provided by calculating the skewness and
kurtosis coefficients for different parameter values. In addition, several classical estimates for the parameters of the three-
parameter exponential Benini distribution are computed, including maximum likelihood estimates, maximum product
of distance estimates, Anderson-Darling estimates, right and left tail Anderson-Darling estimates, and Cramér-von Mises
estimates. We examine the performance of these methods with simulation studies via different scenarios and sample sizes.
Applying the proposed distribution to two real environmental data sets, we find that the three-parameter exponential
Benini distribution gives the best results compared to the Benini, Ramous Louzada, inverse Pareto, Pareto, Pareto type
I, Pareto type II, Beta Pareto and Weibull Pareto distributions. Overall, it is particularly adapted to the analysis of
environmental data, mainly due to its long-tailed and flexible structure.

Keywords: Lifetime distribution, Exponentiated Benini distribution, Hazard rate function, Moments, Order statistics

1. Introduction

As a major reference, [1] proposed the exponentiated exponential distribution and introduced a novel ap-
proach to generating probability distributions based on the power transformation. The proposed exponentiated
distribution consists of two parameters similar to the Weibull and gamma distributions. It is also shown in [2]
that some of the properties of the distribution are also similar to that of the Weibull and gamma distributions.
However, since the corresponding functions cannot be obtained in closed form when the shape parameter of
the gamma distribution is not an integer, it loses its popularity. In addition, the exponential distribution and
its mathematical properties are often used to analyze data sets in applied sciences. In the literature, based on
the approach of [1], many exponentiated distributions have been proposed, such as the exponentiated beta
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Pareto distribution by [3], exponentiated Pareto distribution by [4], exponentiated log normal distribution
by [5], exponentiated Fréchet distribution by [6], exponentiated Gumbel distribution by [7], exponentiated
gamma distribution by [8], generalized exponentiated gamma distribution by [9], exponentiated Lomax
Poisson distribution by [10], modified exponentiated Weibull distribution by [11], generalized exponentiated
class of distributions by [12], exponentiated Weibull-Pareto distribution by [13], type I half-logistic odd
Weibull distribution by [37], extended modified Weibull distribution by [38] and exponentiated Kumaraswamy
distribution by [14].

On the other hand, in a series of famous articles, Pareto was the first scientist to attempt to discuss this
problem quantitatively, and also to model experimentally the long tail of the cumulative income distribution
of the richest part of a country (see [15]). The Pareto income distribution has been shown to be valid for
different countries and epochs (see [16]). Despite the experimental success of this income distribution, the
characterization of the low-income parts, which constitute the majority of a country, remains an unsolved
problem. Various functions with many parameters have been proposed by economists to describe the low
part or the whole part of the income distribution. Also [17] proposed the Benini distribution, which is
a generalization of the Pareto distribution, to become a solution to this kind of problems in economy.
Since the Benini distribution has a long tail, it allows the characterization of income inequality in income
distributions.

In this study, we propose the exponentiated Benini (E-B) distribution, which is a new three-parameter
extension of the Benini distribution. First, we examine the probability density, survival and hazard functions,
order statistics, skewness and kurtosis. Accordingly, it is found that the corresponding probability density
function (pdf) behaves differently depending on the parameter values, i.e., it has a flexible structure, and also
a long tail structure depending on the parameter values. On the other hand, the model fit of the proposed
distribution to a real data set is investigated, and it is found that the E-B distribution provides a better fit
than the other distributions compared. Considering the flexible and long tail structure of the distribution and
its applicability, it can be said that the proposed distribution can be used for modelling as an alternative to
other distributions, especially in different data structures such as earthquakes, economic crises and waiting
periods.

Section 2 gives a brief overview of the Benini distribution, while Section 3 presents the E-B distribution and
its mathematical properties in detail. Section 4 mathematically examines the classical approaches traditionally
used to obtain parameter estimates for the proposed distribution. Section 5 performs a simulation study to
determine which approach performs better. In Section 6, an application is made with two different data
sets to investigate the applicability of the corresponding model, and its performance is examined with other
models known from the literature. The last section, Section 7, summarises the advantages and properties of the
proposed distribution, the limitations of the study and future studies.

2. Benini distribution

The Benini distribution, developed in [17], is widely used for modelling income in probability, statistics,
economics and actuarial science. The pdf and the cumulative distribution function (cdf) of the (generalized)
Benini distribution are given by

fB(x) =
1
x

[
α + 2β log

( x
σ

)]
exp

{
−α log

( x
σ

)
− β

[
log

( x
σ

)]2
}

(1)

and

FB(x) = 1− exp
{
−α log

( x
σ

)
− β

[
log

( x
σ

)]2
}
. (2)

Thus defined, the Benini distribution has three parameters, α, β, σ > 0, and takes its values over the interval
[σ,∞), i.e., the expressions of fB(x) and FB(x) in Eqs. (1) and (2), respectively, holds for x ≥ σ , and they are
equal to 0 elsewhere. Also, α and β are shape parameters and they determine the behavior of the pdf. Since σ
determines the scale for the pdf of the Benini distribution, it is called as the “scale parameter”. The pdf of the
Benini distribution can be monotonically decreasing or unimodal. The tail of the pdf can be fat, meaning an
algebraic decrease instead of a multiple decrease for the large values of the pdf, or it can be thin.
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The Benini distribution is related to other well-known distributions. For example, it is a natural generalization
of the Pareto distribution; it becomes the Pareto distribution for β = 0. The Benini distribution is also a
transformation of the Rayleigh distribution: if a random variable X has a Rayleigh distribution with parameter
σ , then the random variable Y = exp(X ) has the Benini distribution with parameters α = 0, β = 1/σ 2 and
σ = 1. Because the Benini distribution is sometimes similar to the pdf of the logarithm of a variable with a
Weibull distribution, it is called the log-Weibull distribution. The Benini distribution is therefore closely related
to the gamma, exponential, max-stable, min-stable, Gumbel, Fréchet and uniform distributions. We can refer
to [20] for more details.

For the simple case α = 0, the pdf and cdf of the two-parameter Benini distribution are, respectively, given
by

fB(x) =
2β
x

exp
{
−β

[
log

( x
σ

)]2
}

log
( x
σ

)
(3)

and

FB(x) = 1− exp
{
−β

[
log

( x
σ

)]2
}
, (4)

where x ≥ σ > 0. As a secondary remark, these functions can also be expressed more concisely without the
exponential function, as

fB(x) =
2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

)
, FB(x) = 1−

( x
σ

)−β log( x
σ )
. (5)

3. E-B distribution

The basis of the proposed distribution is the exponential family of (continuous) distributions introduced by
[21]. It consists of adding an extra parameter to a parent distribution. That is, by denoting F (x) the cdf of the
parent distribution, the cdf of the exponentiated family of distributions is defined by

G(x) = F (x)γ , (6)

where γ > 0 is an additional shape parameter. Because of this parameter, the proposed exponentiated distri-
bution has a more flexible structure than the parent distribution. This article proposes the E-B distribution to
achieve a more flexible structure than the former Benini distribution.

Hereafter, X denotes a random variable that follows the proposed E-B distribution with three parameters.
That is, based on Eqs. (3), (4) and (6), the pdf and cdf of X are obtained as

fE−B(x) = γ
2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

) [
1−

( x
σ

)−β log( x
σ )]γ−1

(7)

and

FE−B(x) =
[
1−

( x
σ

)−β log( x
σ )]γ

, (8)

respectively, where σ is the scale parameter of the distribution, while β and γ are the shape parameters,
α, β, σ > 0, and x ≥ σ .

We now show the plots of the above pdf for different parameter values in Fig. 1.
It can be inferred from this figure that the E-B distribution has a flexible structure, as the pdf has different

shapes, showing reversed J and lower truncated bell shape for the different parameter values.
In the following subsections of this section, various statistical properties such as survival and hazard rate

functions, stochastic ordering, skewness and kurtosis, moments and incomplete moments, order statistics,
which provide important information about the structure of the distribution, are explained in detail.
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Fig. 1. The pdf of the E-B Distribution.

3.1. Survival and hazard rate functions of the E-B distribution

As a characteristic property, the survival function (sf) of the E-B distribution can be written by means of the
following formula: SE−B(x) = 1− GE−B(x). It is given as

SE−B(x) = 1−
[
1−

( x
σ

)−β log( x
σ )]γ

. (9)

Now, we present the plot of this sf in Fig. 2 for different parameter values.
As another characteristic property of the E-B distribution, the hrf is obtained as hE−B(x) = fE−B(x)/SE−B(x),

that is

hE−B(x) = γ
2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

) [
1−

( x
σ

)−β log( x
σ )]γ−1

1−
[
1−

( x
σ

)−β log( x
σ )]γ . (10)

In Fig. 3, we illustrate the hrf of the E-B distribution for different parameter values.
This figure shows the decreasing, increasing and revered bathtub shapes for the corresponding hrf, which

are required properties for modelling purposes.
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Fig. 2. The sf of the E-B distribution.

3.2. Stochastic ordering results

Here, we present some stochastic ordering results using the cdf of the E-B distribution. These results are useful
to provide a hierarchical understanding of the related model (also called first-order stochastic dominance). Let
F (x; σ, γ , β) be the cdf of the E-B distribution as defined by Eq. (8), where only the names of the parameters
are given. Then the following inequalities hold:

• For σ2 ≥ σ1, we have F (x; σ2, γ , β) ≤ F (x; σ1, γ , β) (for x ≥ σ2 ≥ σ1).
• For β2 ≥ β1, we have F (x; σ, γ , β1) ≤ F (x; σ, γ , β2).
• For γ2 ≥ γ1, we have F (x; σ, γ2, β) ≤ F (x; σ, γ1, β).

Also, for a stochastic ordering result comparing the former Benini distribution and the E-B distribution, one
has, if γ ≥ 1,

FE−B(x) = F (x; σ, γ , β) ≤ F (x; σ,1, β) = FE (x).

The reversed inequality holds for γ ∈ (0,1).
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Fig. 3. The hrf of the E-B distribution.

3.3. Quantile function of the E-B distribution

The quantile function gives some of the important properties of a distribution. It is obtained by the inverse
function of the corresponding cdf. Thus, thanks to Eq. (8) and after some algebra, we obtain

QE−B(u) = σ exp

[√
−

1
β

log(1− u1/γ )

]
, (11)

where u ∈ (0,1). We can also calculate the quartiles Q1, Q2 and Q3 of our distribution by using this quantile
function. For the 25-th percent (quartile Q1), we take u = 0.25, for the median (quartile Q2), we take u = 0.50,
and for the 75-th percent (quartile Q3), we take u = 0.75 in Eq. (11).

From Eq. (11), skewness and kurtosis coefficients of the E-B distribution can be determined (the details are
given in the next subsection), values of the E-B distribution can be generated via simulation techniques, and
various quantile-derived functions characterizing the E-B distribution can be detailed. For example, the quantile
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density function can be derived by differentiating QE−B(u) as a function of u. It is given as follows:

qE−B(u) =
σ

2βγ

u1/γ−1 exp
[√
− log(1− u1/γ )/β

]
(1− u1/γ )

√
− log(1− u1/γ )/β

, (12)

where u ∈ (0,1). This function is of importance as it appears in many statistical objects (see [22]).

3.4. Skewness and kurtosis coefficients of the E-B distribution

The kurtosis coefficient is related to whether the distribution is heavy-tailed or light-tailed, while the
skewness coefficient is related to the measure of symmetry. We can obtain the skewness coefficient of the
E-B distribution using the Bowley measure (see [23]) as

S =
QE−B (3/4)− 2QE−B (1/2)+ QE−B (1/4)

QE−B (3/4)− QE−B (1/4)
(13)

and, using the Moor measure (see [24]), the kurtosis coefficient is also obtained as

K =
QE−B (7/8)− QE−B (5/8)− QE−B (3/8)+ QE−B (1/8)

QE−B (6/8)− QE−B (2/8)
, (14)

where QE−B(u) is the quantile function given in Eq. (11). We calculate the skewness and kurtosis coefficients
by using the values in Eqs. (13) and (14).

The shape of the distribution becomes symmetric when S = 0, and skewed to the right when S > 0, and
skewed to the left when S < 0. As K increases, the tail of the distribution becomes heavier. As a benchmark,
the kurtosis of the normal distribution is K = 3. Compared to the kurtosis of the normal distribution, K > 3
corresponds to a longer tail and K < 3 corresponds to a shorter tail for the E-B distribution.

Skewness, kurtosis, median, quartiles Q1 and Q3 values of the E-B distribution are given in Table 1 for
different parameter values. Accordingly, it is observed that the all skewness and kurtosis values are positive
for all parameter values, implying a skewed to right distribution with increasing skewness and lengthening tail
by decreasing parameter values.

Table 1. Skewness, kurtosis, median and quartiles of the E-B distribution for different parameter values.

β σ γ Q1 Median Q3 Skewness Kurtosis

0.05 1 0.1 1.0043 1.1500 2.9349 3.2319 5.3179
1 0.05 1.0000 1.0043 1.2867 14.9851 7.9214

0.1 1 0.1 1.0030 1.1038 2.1411 4.7029 3.8329
1 0.05 1.0000 1.0030 1.1951 21.436 6.6791

0.5 0.5 5 2.7264 6.9561 20.7003 2.0774 1.8669
0.5 2 1.4617 2.6431 5.2681 3.1567 1.1527
0.5 0.5 0.8549 1.1496 1.6229 6.2194 0.6466
5 5 27.2637 69.5612 207.0034 2.0774 1.8669
5 2 14.6166 26.4313 52.6811 3.1567 1.1527

5 0.5 8.5488 11.4959 16.2298 6.2194 0.6465
5 10 5 17.0977 22.9919 32.4596 6.2194 0.6466

10 2 14.0386 16.9309 21.0572 9.8249 0.4784
10 0.5 11.8485 13.0119 14.5111 19.673 0.3395
0.5 5 54.5275 139.1224 414.0068 2.0773 1.8669
0.5 2 29.2332 52.8625 105.3623 3.1567 1.1527
0.5 0.5 17.0977 22.9919 32.4596 6.2194 0.6466

10 10 5 14.6121 18.0165 18.0165 8.7875 0.5119
10 2 12.7108 14.5111 16.9309 13.9012 0.3964
10 0.5 11.2742 12.0462 13.0119 27.8413 0.2997
0.5 5 0.7306 0.9008 1.1496 8.7879 0.5119
0.5 2 0.6355 0.7255 0.8466 13.9012 0.3964
0.5 0.5 0.5637 0.6023 0.6506 27.8414 0.2997
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3.5. Moments of the E-B distribution

We now examine the crude moments of the E-B distribution, which are central to defining crucial probabilistic
measures. For any integer r, the r-th crude moment of X exists (unlike the Pareto distribution) and is defined
by

µ′r = E(X r ) =
∫
∞

σ

xr fE−B(x)dx

=

∫
∞

σ

xr

{
γ

2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

) [
1−

( x
σ

)−β log( x
σ )]γ−1}

dx. (15)

By applying the change of variable y = log(x/σ ), we can simplify it as

µ′r = 2σ rγ β

∫
∞

0
yeyre−βy2

[
1− e−βy2

]γ−1
dy. (16)

For fixed parameters, this integral can be determined using any mathematical software. Alternatively, one
can propose a series expression of µ′r. In fact, from the series expansion of the exponential distribution, the
generalized binomial formula and the change of variable z = β(`+ 1)y2 (for the last step), it follows that

µ′r = 2σ rγ β

∫
∞

0
y

{
∞∑

k=0

(yr)k

k!

}
e−βy2


M(γ )∑
`=0

(
γ − 1
`

)
(−1)`e−β`y2

 dy

= 2σ rγ β

∞∑
k=0

M(γ )∑
`=0

rk

k!

(
γ − 1
`

)
(−1)`

∫
∞

0
yk+1e−β(`+1)y2dy

= σ rγ

∞∑
k=0

M(γ )∑
`=0

rk

k!

(
γ − 1
`

)
(−1)`β−k/2(`+ 1)−k/2−10

(
k
2
+ 1

)
, (17)

where 0(y) =
∫
∞

0 ty−1e−tdt with y > 0 (the standard gamma function), and M(γ ) = (γ − 1)! if γ is an integer
greater to 1, and M(γ ) = ∞ otherwise, and

(
γ−1
`

)
=
∏`

i=1(γ − i).
In this series expression, an efficient approximation of µ′r is given by replacing the bound ∞ by any large

integer. Such an approximation is sometimes less error-prone than computing the integral directly.
From the moments, we can derive several important quantities that provide valuable information about the

characteristics of the E-B distribution, such as the mean of X given by µ′1, its variance given by σ 2
= µ′2 − (µ′1)2,

measures of skewness and kurtosis complementing those defined by S and K, and the general coefficient. In
this respect, we can refer to the book by [25].

3.6. Incomplete moments of the E-B distribution

The incomplete moments of a distribution allow to define useful functions in various applied fields. Here, we
study them in the context of the E-B distribution. For any integer r and t ≥ σ , there exists the r-th incomplete
moment of X defined at t , which is given by

µ′r(t ) = E(X r1{X≤t}) =
∫ t

σ

xr fE−B(x)dx

=

∫ t

σ

xr

{
γ

2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

) [
1−

( x
σ

)−β log( x
σ )]γ−1}

dx. (18)

By proceeding as for the crude moments, we arrive at the following concise integral:

µ′r(t ) = 2σ rγ β

∫ log(t/σ )

0
yeyre−βy2

[
1− e−βy2

]γ−1
dy. (19)
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If t and the parameters are fixed, we can at least evaluate this integral numerically. Alternatively, using the
same technical steps as for the crude moments, a series expression of µ′r(t ) is given below

µ′r(t ) = σ
rγ

∞∑
k=0

M(γ )∑
`=0

rk

k!

(
γ − 1
`

)
(−1)`β−k/2(`+ 1)−k/2−1

×

γ

(
k
2
+ 1, β(`+ 1)

[
log

(
t
σ

)]2
)
, (20)

where γ (y, z) =
∫ z

0 ty−1e−tdt with y > 0 (which is the lower incomplete gamma function).
Thanks to the incomplete moments, we can define, among others, the mean deviations, important income

functions and indices (such as the Bonferroni curve, Bonferroni index, and Lorenz curve). All of them are
described in full generality in [25].

3.7. Order statistics of the E-B distribution

Order statistics are often used in the fields of reliability and survival testing. On the other hand, it has a
crucial importance in statistical estimation (see [19]). If a random variable X has pdf and cdf given as f (x)
and F (x), respectively, then the pdf of the r-th order statistic of X , say X(r), is defined as

fX(r) (x) =
n!

(r − 1)!(n− r)!
f (x)[F (x)]r−1[1− F (x)]n−r. (21)

Then, based on Eqs. (7), (8) and (21), the r-th order statistic of the E-B distribution has the following pdf:

fX(r) (x) =
n!

(r − 1)!(n− r)!
γ

2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

)
×[

1−
( x
σ

)−β log( x
σ )]γ r−1 {

1−
[
1−

( x
σ

)−β log( x
σ )]γ}n−r

. (22)

In particular, the maximum order statistics X(n) has the pdf given as

fX(n) (x) = nγ
2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

) [
1−

( x
σ

)−β log( x
σ )]γ n−1

(23)

and the minimum order statistics X(1) has the pdf given as

fX(1) (x) = nγ
2β
x

( x
σ

)−β log( x
σ )

log
( x
σ

)
×[

1−
( x
σ

)−β log( x
σ )]γ−1 {

1−
[
1−

( x
σ

)−β log( x
σ )]γ}n−1

. (24)

These expressions remain tractable. They can be used for further purposes.

4. Estimation methods

This section discusses various estimation methods for the E-B distribution. Traditional estimation techniques
using order statistics are used to estimate the parameters of the distribution. The corresponding formulas
can be derived by minimizing objective functions for the ordinary least-squares estimates (OLSEs), weighted
least-squares estimates (WLSEs), Anderson-Darling estimates (ADEs), right-tail Anderson Darling estimates
(RTADEs), left-tail Anderson Darling estimates (LTADEs), and Cramér-von Mises estimates (CVMEs). For the
maximum likelihood estimates (MLEs) and maximum product of interval estimates (MPSEs) methods, the
respective objective functions must be maximized.
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We consider n observations of X , say x1, x2, . . . , xn, which are supposed to be independent in context, as well
as their ordered values in increasing order, denoted by x1:n, x2:n, . . . , xn:n.

4.1. OLSEs and WLSEs

The OLSE and WLSE methods were first used to estimate the parameters of the beta distribution (see [36]).
To obtain the corresponding parameter estimates for the E-B distribution, we consider the following objective
functions:

OLSEs =
n∑

i=1

[ FE−B (xi:n)−
i

n+ 1
]2
=

n∑
i=1

[(
1−

(xi:n

σ

)−β log
(

xi:n
σ

))γ
−

i
n+ 1

]2

(25)

and

WLSEs =
n∑

i=1

(n+ 1)2(n+ 2)
i(n− i+ 1)

[
FE−B (xi:n)−

i
n+ 1

]2

=

n∑
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(n+ 1)2(n+ 2)
i(n− i+ 1)

[(
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(xi:n

σ
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σ

))γ
−

i
n+ 1

]2

.

(26)

Minimizing these function give the OLSEs and WLSEs of the parameters, respectively.

4.2. MLEs

Based on Eq. (7), the likelihood function of the E-B distribution is given by

L(β, γ , σ ) =
n∏

i=1

γ 2β
xi

(xi

σ

)−β log
(

xi
σ

)
log

(xi

σ

)[
1−

(xi

σ

)−β log
(
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σ

)]γ−1
 (27)

and the log-likelihood function is defined as follows:

log L(β, γ , σ ) = n log γ + n log 2+ n logβ −
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(28)

The MLEs are obtained by maximizing this function. Then the known theory can be applied to this method.
In this respect, the book by [26] can be useful.

4.3. MPSEs

The MPSE method is used as an alternative to the MLE approach. The corresponding objective function is
given as

MPSEs =
1

n+ 1

n∑
i=1

log
[
FE−B (xi:n)− FE−B(xi:n−1)

]
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1
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(29)

The MPSEs are obtained by maximizing this function.
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4.4. ADEs, RTADEs and LTADEs

The Anderson-Darling method is a form of minimum distance estimation achieved by minimizing an
Anderson-Darling statistic, as referenced in [18]. For the E-B distribution, we can write the objective functions
related to the ADEs, RTADEs and LTADEs as follows:

ADEs = −n−
1
n

n∑
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The ADEs, RTADEs and LTADEs are obtained by minimizing these functions, respectively.

4.5. CVMEs

The CVME method was first introduced by [35]. To obtain the parameter estimates for the E-B distribution,
we consider the following objective function:

CVMEs = CV =
1

12n
+

n∑
i=1

[
FE−B (xi:n)−

2i− 1
2n

]2

=
1

12n
+
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)−β log
(
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))γ
−

2i− 1
2n

]2

.

The CVMEs are obtained by minimizing this function.

5. Numerical simulation

This section is devoted to the simulation work, which is considered a crucial aspect of our research. Our
aim is to evaluate the effectiveness of different estimation methods proposed to estimate the parameters of
the E-B model by analyzing detailed simulation results. To achieve this goal, we have conducted a series of
experiments using different sample sizes (n = 10, 30, 50, 100, 250) and different parameter values, including
σ = {3, 4, 0.75} , β = {0.5, 0.75, 0.8} and γ = {2, 0.5, 4.5}. In addition, we generated N = 5000 random
samples from the E-B model using Eq. (2) to obtain a substantial data set in the R programming language.
Finally, we computed the average absolute biases (|BIAS|), root mean square errors (RMSEs), and mean relative
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Table 2. The results of the simulation for σ = 3, β = 0.5 and γ = 2.

|Bias| RMSE MRSE

Method n β σ γ β σ γ β σ γ

MLEs 10 2.1090 1.6009 0.6535 4.8746 2.6113 2.0677 4.2287 0.7030 1.1252
30 1.9800 1.5921 0.5600 4.7236 2.5564 2.0515 4.2072 0.6600 1.0766
50 1.8810 1.5785 0.5547 4.5882 2.5161 1.9977 4.0884 0.6270 1.0571
100 1.6095 1.5529 0.5441 4.3789 2.4662 1.8495 3.7649 0.6182 0.9476
250 1.5100 1.5213 0.5191 4.1311 2.4274 1.7649 3.2191 0.5033 0.9404

OLSEs 10 0.0499 0.3874 4.2576 1.5067 2.6112 7.4713 0.0998 0.0166 0.0250
30 0.0386 0.1746 2.3141 0.1589 2.0236 6.4468 0.0772 0.0129 0.0393
50 0.0261 0.1471 1.5764 0.1370 1.8226 4.0175 0.0633 0.0105 0.0158
100 0.0202 0.0926 1.1976 0.1108 1.5935 3.0564 0.0403 0.0067 0.0101
250 0.0094 0.0576 0.7466 0.0906 1.3550 2.1848 0.0187 0.0031 0.0047

MPSEs 10 0.1152 0.6932 9.3154 0.2563 2.9172 8.4914 0.2303 0.0384 0.0576
30 0.1086 0.6596 9.1443 0.1900 2.1193 6.9750 0.2172 0.0362 0.0543
50 0.1032 0.4871 8.7425 0.1772 1.8584 5.9819 0.1980 0.0330 0.0495
100 0.0948 0.3585 8.9106 0.1623 1.6776 5.7305 0.1897 0.0310 0.0474
250 0.0811 0.2481 8.2351 0.1370 1.3505 3.0395 0.1621 0.0270 0.0405

CVMEs 10 0.1530 0.8546 4.9505 0.5683 2.4585 8.3091 0.3060 0.0510 0.0765
30 0.0213 0.4443 1.9305 0.1746 1.9124 5.5598 0.0427 0.0071 0.0107
50 0.0088 0.3077 1.3632 0.1395 1.7498 3.7399 0.0176 0.0048 0.0044
100 0.0064 0.1951 0.9593 0.1084 1.5165 2.7577 0.0127 0.0021 0.0016
250 0.0050 0.0525 0.7814 0.0855 1.2967 2.1779 0.0100 0.0006 0.0009

WLEs 10 0.0465 0.2221 5.0411 0.3346 2.5669 9.4191 0.0979 0.0163 0.0245
30 0.0419 0.1347 3.5029 0.1576 1.9382 7.8403 0.0837 0.0140 0.0209
50 0.0378 0.1242 2.3282 0.1334 1.7122 5.1689 0.0756 0.0126 0.0189
100 0.0270 0.1121 1.8584 0.1142 1.5457 4.2540 0.0541 0.0105 0.0176
250 0.0249 0.0889 1.4021 0.0903 1.2332 3.0722 0.0498 0.0083 0.0163

ADEs 10 0.0343 0.8097 4.7153 0.2763 2.6831 9.1744 0.0685 0.0107 0.0161
30 0.0311 0.3878 4.5766 0.1567 1.9920 6.5365 0.0641 0.0099 0.0153
50 0.0296 0.2868 2.6218 0.1349 1.6843 5.7393 0.0594 0.0090 0.0140
100 0.0250 0.2416 2.4409 0.1132 1.4145 5.4940 0.0454 0.0088 0.0135
250 0.0227 0.1218 1.4422 0.0869 1.1250 3.1976 0.0421 0.0076 0.0113

RTADEs 10 0.1140 0.9225 7.5830 0.5514 2.6994 9.2141 0.2280 0.0380 0.0570
30 0.0262 0.2589 6.2315 0.1940 2.1281 8.3577 0.0524 0.0092 0.0126
50 0.0229 0.1711 5.5292 0.1451 1.9182 7.1611 0.0466 0.0084 0.0107
100 0.0198 0.0640 3.8545 0.1243 1.7453 5.3224 0.0382 0.0078 0.0099
250 0.0160 0.0250 1.9740 0.1023 1.5186 4.9145 0.0320 0.0062 0.0080

LTADEs 10 2.1426 1.7725 9.2849 3.5955 2.2448 7.4134 3.3992 0.5665 0.8498
30 1.8565 1.4144 8.8881 3.2023 2.1683 7.2533 2.8025 0.4667 0.7004
50 1.7443 1.3349 7.5953 3.0648 2.0649 6.9407 2.3798 0.1746 0.4471
100 1.6996 1.3220 6.9194 2.5485 1.6988 6.8602 1.7886 0.0442 0.3698
250 1.4012 1.1290 6.5286 2.3000 1.3138 5.9945 1.0478 0.0130 0.2269

errors (MREs) for all parameters using the following formulas:

|BIAS| =
1
N

N∑
i=1

(
θ̂i − θ

)
,

RMSEs =

√√√√ 1
N

N∑
i=1

(
θ̂i − θ

)2
and

MRSEs =
1
N

N∑
i=1

θ̂i − θ

θ
,
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Table 3. The results of the simulation for σ = 4, β = 0.75 and γ = 0.5.

|BIAS| RMSEs MRSEs

Method n β σ γ β σ γ β σ γ

MLEs 10 0.1984 1.7584 0.6094 1.6262 3.2186 3.3067 0.2646 0.0496 0.3969
30 0.1359 1.5602 0.5276 0.9779 2.8970 2.9131 0.2646 0.0340 0.2719
50 0.1093 1.4805 0.2271 0.7810 1.7440 1.9655 0.1915 0.0287 0.2186
100 0.0768 1.4378 0.1390 0.6401 1.5108 1.1808 0.1457 0.0128 0.1536
250 0.0069 1.3631 0.0513 0.5243 1.3634 0.9317 0.1024 0.0033 0.1025

OLSEs 10 0.0407 0.4579 0.7704 0.4245 1.0357 2.4111 0.0543 0.0102 0.0814
30 0.0337 0.4050 0.6851 0.3029 0.9458 2.2944 0.0449 0.0084 0.0674
50 0.0233 0.2585 0.2904 0.2136 0.7005 1.1423 0.0311 0.0058 0.0466
100 0.0107 0.1013 0.0787 0.1633 0.3661 0.4432 0.0143 0.0027 0.0214
250 0.0063 0.0239 0.0137 0.1012 0.1420 0.0845 0.0056 0.0006 0.0083

MPSEs 10 0.1590 0.3695 4.2546 0.4090 1.2781 2.8590 0.2120 0.0397 0.3179
30 0.0780 0.1945 1.4240 0.2380 0.4934 2.4903 0.1040 0.0195 0.1560
50 0.0470 0.0121 0.1257 0.1770 0.1483 0.1386 0.0627 0.0118 0.0941
100 0.0326 0.0045 0.0146 0.1240 0.0724 0.0816 0.0478 0.0082 0.0653
250 0.0181 0.0019 0.0077 0.0809 0.0278 0.0447 0.0200 0.0038 0.0300

CVMEs 10 0.3543 0.4304 1.8940 1.9305 1.3079 8.3434 0.4724 0.0886 0.7086
30 0.0789 0.3056 0.4593 0.3073 0.8270 1.3829 0.0630 0.0118 0.0946
50 0.0314 0.2349 0.3055 0.2309 0.6668 1.2229 0.0419 0.0092 0.0629
100 0.0189 0.0782 0.0717 0.1597 0.3394 0.3815 0.0252 0.0058 0.0378
250 0.0061 0.0272 0.0191 0.0989 0.1360 0.0837 0.0084 0.0016 0.0126

WLEs 10 0.0623 0.6207 1.6290 0.6769 1.3685 5.1974 0.0830 0.0156 0.1245
30 0.0154 0.2644 0.4388 0.2809 0.7071 1.9754 0.0223 0.0042 0.0334
50 0.0069 0.1091 0.2154 0.1983 0.5139 1.0711 0.0172 0.0039 0.0258
100 0.0037 0.0245 0.0258 0.1629 0.1678 0.1465 0.0096 0.0018 0.0143
250 0.0029 0.0059 0.0029 0.0855 0.0471 0.0488 0.0039 0.0007 0.0058

ADEs 10 0.0422 0.1882 1.1640 0.5572 1.1518 5.2838 0.0562 0.0105 0.0844
30 0.0261 0.1293 0.2785 0.2511 0.5901 1.7524 0.0279 0.0046 0.0419
50 0.0142 0.0768 0.1623 0.1983 0.4176 1.5191 0.0160 0.0035 0.0284
100 0.0103 0.0215 0.0243 0.1278 0.1669 0.1401 0.0144 0.0027 0.0205
250 0.0056 0.0060 0.0051 0.0853 0.0581 0.0517 0.0075 0.0012 0.0096

RTADEs 10 0.1509 0.3676 1.3323 0.8840 1.2295 6.3512 0.2012 0.0377 0.3018
30 0.0125 0.2698 0.4954 0.3407 0.9411 4.6861 0.0103 0.0019 0.0250
50 0.0077 0.2006 0.3235 0.2080 0.7864 2.4145 0.0098 0.0012 0.0146
100 0.0061 0.1441 0.1639 0.1324 0.5129 0.9414 0.0049 0.0009 0.0122
250 0.0021 0.0349 0.0206 0.0879 0.2100 0.1115 0.0029 0.0005 0.0043

LTADEs 10 0.4017 3.1181 3.4659 0.8592 1.6805 3.8806 0.5356 0.1004 0.6088
30 0.3044 2.9873 2.6019 0.7902 1.5942 2.5672 0.3764 0.0776 0.5646
50 0.2227 2.6780 2.3385 0.7125 1.5188 2.3874 0.2019 0.0627 0.4548
100 0.1070 2.4620 1.5369 0.6716 1.4872 1.9876 0.1356 0.0557 0.3663
250 0.0564 2.0628 1.1697 0.6197 1.3566 1.0151 0.0437 0.0398 0.3188

where the index i refers to the i-th sample, θ is the unknown parameter considered and θ̂i is the indicated
estimate of θ based on the i-th sample.

5.1. Simulation algorithm

1- Provide the initial parameter values.
2- Create a random sample of size ’n’ using the inverse cdf described in Eq. (8).
3- Assess the estimates obtained from different estimation methods.
4- Calculate BIAS, MSEs and MREs for all parameters obtained using various estimation methods.

5.2. Simulation result

From Tables 2 to 4 and Fig. 4, we see that for different parameter values of the E-B distribution, all parameter
estimation methods give better results (smaller side and RMSE values) in large samples compared to small
samples.
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Table 4. The results of the simulation for σ = 3, β = 0.5 and γ = 2.

|BIAS| RMSEs MRSEs

Method n β σ γ β σ γ β σ γ

MLEs 10 0.2199 0.2034 0.6699 0.8936 0.7413 1.6851 0.2749 0.2932 0.0489
30 0.2029 0.1894 0.6577 0.8001 0.7260 1.6712 0.2537 0.2706 0.0451
50 0.1515 0.1820 0.6428 0.7467 0.7064 1.6633 0.2110 0.2020 0.0337
100 0.1179 0.1769 0.6359 0.7177 0.6910 1.6226 0.1917 0.1754 0.0330
250 0.0957 0.1583 0.5949 0.6869 0.6669 1.5455 0.1229 0.1311 0.0218

OLSEs 10 0.7995 0.2858 0.2057 0.7996 0.8640 0.8371 0.9995 1.0661 0.1777
30 0.7990 0.2353 0.1686 0.7991 0.8589 0.8297 0.9991 1.0657 0.1772
50 0.7985 0.2002 0.1241 0.7966 0.8481 0.8175 0.9942 1.0630 0.1767
100 0.7870 0.1303 0.0647 0.7903 0.8310 0.7986 0.9837 1.0493 0.1749
250 0.7752 0.1115 0.0336 0.7859 0.8257 0.7802 0.9690 1.0336 0.1723

MPSEs 10 0.1952 0.2143 9.5216 0.4999 0.7468 8.7927 0.2440 0.2603 0.0434
30 0.1862 0.1964 8.4273 0.3880 0.5966 8.1044 0.2328 0.2483 0.0410
50 0.1736 0.1864 7.2801 0.3549 0.5510 7.3788 0.2170 0.2315 0.0386
100 0.1586 0.1706 6.7554 0.3195 0.4858 6.4774 0.1983 0.2115 0.0353
250 0.1422 0.1693 6.4797 0.2586 0.4109 6.0326 0.1778 0.1896 0.0316

CVMEs 10 0.1436 0.9547 5.1020 0.4810 2.5069 9.4984 0.2871 0.0479 0.0718
30 0.0285 0.5723 1.7581 0.1762 1.9739 5.2974 0.0570 0.0095 0.0142
50 0.0141 0.4130 1.4403 0.1595 1.7578 4.6527 0.0282 0.0047 0.0070
100 0.0069 0.1776 1.0478 0.1062 1.5180 2.7972 0.0138 0.0023 0.0034
250 0.0028 0.1557 0.6664 0.0911 1.3242 2.1964 0.0056 0.0009 0.0014

WLEs 10 0.1021 0.1670 24.7303 0.6944 0.5374 32.4495 0.1276 0.1361 0.0227
30 0.0985 0.1617 20.0856 0.3262 0.4357 30.7602 0.1236 0.1314 0.0219
50 0.0747 0.1050 15.0517 0.2839 0.4322 26.3758 0.0934 0.0996 0.0166
100 0.0691 0.0975 11.8587 0.2470 0.4120 20.1116 0.0864 0.0921 0.0154
250 0.0471 0.0555 6.8245 0.2005 0.3507 12.6073 0.0708 0.0755 0.0126

ADEs 10 0.0939 0.1353 17.0768 0.5869 0.6653 24.3289 0.1174 0.1252 0.0209
30 0.0731 0.0969 14.1305 0.3200 0.4823 23.0001 0.0988 0.0913 0.0176
50 0.0669 0.0894 11.7996 0.2824 0.4520 19.6600 0.0836 0.0892 0.0153
100 0.0648 0.0877 9.3125 0.2407 0.4006 16.5649 0.0811 0.0863 0.0144
250 0.0569 0.0817 7.6071 0.2009 0.3444 14.5147 0.0712 0.0759 0.0127

RTADEs 10 0.2622 0.0687 15.7062 1.1964 0.7727 24.0205 0.3277 0.3495 0.0583
30 0.0516 0.0613 14.0218 0.4664 0.5933 23.8581 0.0645 0.0707 0.0115
50 0.0472 0.0413 11.3686 0.3507 0.5393 21.3873 0.0590 0.0629 0.0086
100 0.0430 0.0357 10.7343 0.2950 0.4890 18.4095 0.0413 0.0518 0.0073
250 0.0311 0.0329 9.5612 0.2513 0.4460 17.4455 0.0389 0.0415 0.0069

LTADEs 10 0.7965 0.9050 0.0616 0.7964 0.8430 0.7965 0.9956 1.0620 0.1770
30 0.7960 0.8453 0.0610 0.7962 0.7976 0.7959 0.9948 1.0617 0.1769
50 0.7959 0.7898 0.0600 0.7955 0.7966 0.7951 0.9944 1.0607 0.1767
100 0.7955 0.6906 0.0597 0.7952 0.7965 0.7949 0.9936 1.0598 0.1767
250 0.7845 0.5910 0.0584 0.7945 0.7955 0.7945 0.9932 1.0594 0.1766

Table 5. Descriptive statistics of the two data sets.

Data Min Q1 Median Mean Q3 Max.

I 17.88 47.20 67.80 73.85 101.88 173.40
II 4.10 8.45 10.60 13.49 16.85 39.20

We also found that the CVME, WLE and ADE methods for different values of the parameter β, the WLE, ADE,
CVME and RTADE methods for all different values of the parameter σ , and the MLE, OLSE and CVME methods
for all different values of the parameter γ give less biased estimates than the other methods. As a result, we
can say that the CVME approach gives less biased estimates for all parameters compared to other parameter
estimation methods.
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Table 6. Numerical values for analyzing the first data set.

Model A1 A2 A3 A4 D1 D2 D3 D3(p) Est. parameters (SEs)

EB 236.102 237.365 239.508 236.959 0.36333 0.0492655 0.101799 0.970988 γ̂ = 4.70893 (7.62629)
β̂ = 0.431846 (0.225768)
σ̂ = 7.21743 (9.40747)

B 238.972 239.572 241.243 239.543 1.51977 0.290379 0.239414 0.143144 β̂ = 0.383349 (0.127748)
σ̂ = 13.8546 (3.0486)

RL 245.888 246.079 247.024 246.174 2.72797 0.512763 0.299685 0.0321232 λ̂ = 72.8116 (15.4004)

IP 248.624 249.224 250.895 249.195 2.58989 0.483118 0.309539 0.0243718 α̂ = 53452.5 (1.15541× 106)
θ̂ = 0.00104305 (0.0225464)

P 251.376 251.567 252.512 251.662 3.66263 0.726424 0.35033 0.00706576 α̂ = 0.777412 (0.162102)

PTI 305.472 305.663 306.608 305.758 8.08562 1.73726 0.510306 0.0000125494 α̂ = 0.239841 (0.0500103)

PTII 247.892 248.492 250.163 248.463 2.72738 0.51258 0.299636 0.0321665 α̂ = 1.29098× 107 (749.197)
θ̂ = 9.53351× 108 (10914× 10−10)

BP 253.107 254.371 256.514 253.964 2.62449 0.4515 0.286575 0.0457477 γ̂ = 1.53572 (0.412996)
β̂ = 282.791 (9333.69)
σ̂ = 0.00421776 (0.139078)

WP 245.027 245.627 247.298 245.599 1.51882 0.206096 0.205353 0.286608 α̂ = 0.726655 (0.0846417)
θ̂ = 1.8237 (0.334853)

Table 7. Numerical values for analyzing the second data set.

Model A1 A2 A3 A4 D1 D2 D3 D3(p) Est. parameters (SEs)

EB 382.33 382.766 388.562 384.763 0.273084 0.0443203 0.0622399 0.976268 γ̂ = 1.76914 (1.42196)
β̂ = 0.724401 (0.147663)
σ̂ = 3.20966 (1.36783)

B 409.107 409.321 413.262 410.729 13.1385 2.51183 0.322841 < 0.000001 β̂ = 0.784942 (0.234091)
σ̂ = 3.02028 (0.462226)

RL 426.707 426.777 428.785 427.518 6.96233 1.32559 0.304805 0.00003467 λ̂ = 12.2561 (1.76747)

IP 426.646 426.86 430.801 428.268 7.51117 1.42369 0.292074 0.0000849 α̂ = 127587 (1.03051× 106)
θ̂ = 0.0000811755 (0.000655651)

P 416.146 416.216 418.223 416.957 6.72268 1.31179 0.273 0.00030315 α̂ = 0.95128 (0.123846)

PTI 516.459 516.529 518.537 517.27 17.2069 3.63814 0.467417 < 0.000001 α̂ = 0.406545 (0.0529276)

PTII 429.014 429.228 433.169 430.636 6.92151 1.3119 0.303445 0.0000383 α̂ = 1.56913× 107 (515.7)
θ̂ = 2.11653× 108 (0.0000000245)

BP 396.888 397.324 403.12 399.321 1.09477 0.152467 0.123111 0.332872 γ̂ = 2.58016 (0.447702)
β̂ = 56.1482 (264.018)
σ̂ = 0.0431205 (0.200007)

WP 386.116 386.33 390.271 387.738 0.455329 0.0512657 0.0779402 0.866039 α̂ = 0.854343 (0.0581366)
θ̂ = 1.99664 (0.20761)

6. Application

In this section, we demonstrate the application of the E-B distribution on two different real data sets to
highlight its modelling behavior. We aim to show its consistency and reliability in dealing with different data
sets. The first data set represents the number of millions of revolutions before failure for each of the 23 ball
bearings in the life tests and was introduced by citeLawless. The second data set represents the monthly actual
tax revenue in Egypt between January 2006 and November 2010 and introduced it citeNassar. The descriptive
statistics of these data sets are given in Table 5.

The results of our research show the remarkable performance of the proposed model compared to other
models that have been evaluated for their suitability in fitting the aforementioned data sets. The comparative
models studied are those realted to the Benini (B) distribution by [17], the Ramous Louzada (RL) distribution
by [30], the inverse Pareto (IP) distribution by [31], the Pareto (P) distribution by [32], the Pareto type I (PTI)
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Fig. 4. RMSE values of the parameter estimation methods for different parameter values.

distribution by [32], the Pareto type II (PTII) distribution by [32], the beta Pareto (BP) distribution by [33],
and the Weibull Pareto (WP) distribution by [34].

We focus on the MLEs for the parameter estimates, standard errors (SEs), and eight analytical information
criteria and goodness-of-fit measures. Specifically, we investigate the effectiveness of four prominent analyt-
ical information criteria: Akaike information criterion (AIC) denoted as (A1), corrected AIC (A2), Bayesian
information criterion (BIC - A3), and Hannan-Quinn information criterion (HQIC or A4). In addition, to
ensure the robustness of the model assessments, we integrate several goodness-of-fit measures, including the
Anderson-Darling measure (D1), Cramér-von Mises measure (D2), and Kolmogorov-Smirnov measure (D3),
along with the associated p-value (D3(p)). By thoroughly evaluating these metrics, we aim to identify the
most appropriate statistical models that effectively capture the underlying data patterns while accounting for
model complexity.

Tables 6 and 7 present the parameter estimates, standard errors (SEs) and the eight performance measures.
Based on the observed results, it can be inferred that our proposed model exhibits superior fitting performance
compared to the equivalent models considered for these real data sets. These results indicate the effectiveness
of our proposed model in capturing the underlying data patterns and emphasize its potential as a more suitable
choice for accurately representing the complexities inherent in the respective data sets.

Fig. 5 displays the estimated pdfs of the considered models for the first data set. Similarly, Fig. 6 presents the
same for the second data set. In Figs. 7 and 8, the probability-probability (P-P) plots illustrate the comparison
of the proposed model with all other models for the first and second data sets, respectively. Figs. 9 and 10 show
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Fig. 5. Histogram of the first data set with the fitted pdfs of all compared models.

the empirical cdf plots for all models on the first and second data sets, respectively. Finally, Figs. 11 and 12
show the Kaplan-Meier survival curves and estimated sfs for both data sets, respectively.

7. Conclusion

Unlike most of the distribution articles in the literature, this article introduces a new distribution that will
provide a significant advance in the field of statistics by deriving the three-parameter exponential Benini
distribution, which has never been studied before. Thanks to its various flexible properties, the proposed
distribution offers an alternative way to analyze real data sets in various fields, such as engineering, economics
and natural sciences. Various classical estimate methods have been used to estimate unknown parameter values
by introducing mathematical functions and properties of the distribution.
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Fig. 6. Histogram of the second data set with the fitted pdfs of all compared models.

In particular, we examined the goodness of fit measures and prediction accuracy of the corresponding model
on real data sets and found that it has superior performance compared to existing models. It can be said that
the proposed distribution can be an important tool in analyzing different data structures encountered in real
life, thanks to its ability to accurately model real data. Furthermore, considering the suitability of this new
distribution for long-tailed data, it can be said that it can lead to significant advances in various areas of
statistical modelling.

The mathematical model and prediction methods developed for the proposed distribution can be improved
in several ways. The flexible structure of the distribution allows modelling in different data structures such as
earthquakes, economic crises and waiting times. In addition, the unknown parameters can be estimated using
different approaches, such as Bayesian statistics, and compared with classical approaches.
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Fig. 7. The P-P plots of the fitted models for the first data set.
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Fig. 8. The P-P plots of the fitted models for the second data set.
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Fig. 9. Plots of the empirical cdfs with the fitted cdfs of all models for the first data set.
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Fig. 10. Plots of the empirical cdfs with the fitted cdfs of all models for the second data set.
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Fig. 11. Plots of the Kaplan-Meier survival functions with the fitted sfs of all models for the first data set.
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Fig. 12. Plots of the Kaplan-Meier survival functions with the fitted sfs of all models for the second data set.
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