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Abstract:

Through the course of this study, a numerical approximation approach was
developed for a category of scalar delay differential equations that were
subject to impulsive conditions. Every one of these equations was taken into
consideration. An innovative method of approximation is used, it makes use
of piecewise constant inputs in delay equation applications. Except for the
impulsive instants of time, at each stage, the approximation approach's
theoretical convergence was shown. Furthermore, the numerical technique
estimates the impulsive instants of time rather well. In the event that the S
parameter of the problem is positive; we possess the capability to establish
the convergence conclusion by imposing an additional condition via the use
of an additional condition. Without making the assumption of a self-
supporting condition, this condition guarantees that the solution will cross
the line x = c at a temporal interval that is impulsive. The conclusions of the
theoretical convergence were shown by the presentation of numerical
examples. Through the use of numerical study, we identified periods in the
solution. In this particular solution, the minimal period is defined by being
bigger than the delay 7 that is associated with the model. Though enough
requirements are given to ensure that periodic solutions exist, numerical
examples show that periodic solutions express themselves through criteria
that are far less stringent than those that ensure their existence. In light of
this, there is a pressing need for more studies to be conducted to determine
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whether or not periodic solutions are accessible for this particular set of
impulsive equations.
Keywords: Delayed differential equations, Impulses, Equations with
piecewise constant arguments, Numerical approximation
1. Introduction
Differential equations that include a delay argument are referred to as
delayed differential equations, or DDEs for short (Alaminos et al., 2011, p.
235). The difference between differential equations and ordinary differential
equations is that differential equations take into consideration the function at
earlier times in addition to its present value and derivatives (Brauer, Castillo-
Chavez, 2012, p. 33). The domains of physics and biology are only two of
the many areas in which these equations have found specific applications
(Hartung 2022, p. 17). Recently, there has been a substantial amount of
interest in the process of creating improved numerical approximation
techniques for DDEs that include criteria of impulsive self-support (Zhang
2014, p. 340). To achieve solutions that are more dependable and effective,
these strategies intend to enhance the accuracy and convergence features of
the techniques that are already in use (Koch 2014, p. 302).
For a better understanding of DDEs, let's look at some instances below. An
illustration of the notion is provided by the following equations:
First, the Equation (1)

xMN (@) = 2x(t—m/2) (1)

The following equation may be found in Equation (2):
x"(t) = —x'"(t) — x'(t—1) — 3sin(x(t)) (2)
+ cos(t)

xMN () = x(t) — x(t/2) + xMN(t—1) (3)

according to the Equation (3). With respect to Equation (4),
x'(t) = x@®)x(t—-1) + t"2x(t+2). (4)

o4V
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Although Equations (1) and (2) are instances of DDEs in this set of
equations, Equations (3) and (4) are not examples of DDEs since they do not
feature delayed terms. Although equations (3) and (4) both have x*' (t — 1)
on the right side, these equations are not regarded as DDEs (Zhang 2020, p.
9).
To illustrate how DDEs may be used, let's have a look at the following
example:
An example of this would be (1): Consider the case of a barrel that is filled
with brine and has a capacity of B gallons overall. In addition to the water
that is being poured into the top of the barrel at a pace of g gallons per
minute, the salt water that is contained inside the barrel is being stirred on a
consistent basis. A steady flow of g gallons of seawater per minute is being
expelled from the barrel that is located at the bottom of the container (Zhang
2017, p. 35).
The variable x(t) should be used to represent the amount of salt, measured
in pounds of seawater, that is present in the barrel at the moment being
signified by the variable. If the saltwater is continuously mixed into the
liquid, the remaining salt water in the barrel will have a concentration of
x(t)/B pounds of salt per gallon. This is made on the assumption that the
saltwater is always being mixed. Therefore, the equation may be represented
in the form that is described below (Federson 2021, p. 610).
The expression:
x (t) = —q(x(t))/B
In reality, however, it is quite improbable that the seawater that is contained
inside the barrel could be churned up in a single second. Since r is a positive
constant, the concentration of the saltwater that is still there will be
equivalent to the average concentration that was present at some point in the
past, which is represented by the symbol t — r. A differential equation for x
IS turned into a differential equation (DDE) in this specific instance (Piper et
al., 2013, p. 69):
The x’ (t) equals —q(x(t — r)) divided by B.
We may alternatively write the equation as x*' (t) = —cx(t —r) if we
define c as g/B. This is another possible formula. On the other hand, this is
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an alternate method of comprehending the equation. A usual term for this
specific kind of DDE is either an R-delay, a time-delay, or a slowness
equation. All of these names refer to the same thing (Federson et. al, 2020, p.
1675).

Another distinction between delayed differential equations and ordinary
differential equations is that delayed differential equations take into
consideration the function's previous values. Ordinary differential equations
do not take this into account. Delay arguments are included into the
equations to create them, and they have a wide range of applications in the
domains of physics and biology. It was explained how DDEs may be used in
the process of replicating the concentration of saltwater in a barrel over a
period of time by the example that was provided (Din et. al, 2015, p. 788,
Liu et. al., 2014, p. 4).

This study focuses on scalars linear delays differential equations with
constant delays and impulsive self-support conditions. This work aims to
develop and investigate more efficient numerical approximation techniques
for these equations (Cooke, 1986). To evaluates they accuracy's, stability,
and's effectiveness of various techniques based on their unique levels of
performance, we want to compare and contrast the levels of performance of
the various methods. Furthermore, we will examine the convergence
characteristics of different methodologies and assess the degree to which
they may be utilized to address a diverse array of real-world issues (Din,
2012, p. 734, Li et. al., 2019, p. 307).

2. Methodology
2.1 Problem Statement
The simple form of delay differential equations is as follows:

y(@©) =ay®)+by(t—1), t=t,
y(t) = 0(t), t<t, (5)

044
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When a, b are real complex fixed values, T > 0, and the starting function is
provided by @. For a delay differential equation to have a solution,
continuity of @ is one of the requirements.

In this thesis, the linear delay equation with self-supporting impulse
conditions is generally as follows:

x(t) = ax(t) + fx(t — 1) a.et=>0 (6)

x(t)=c+d, ifx(t-)=c

Now, considering the initial conditions, we will have:

x() = (), t€[=r 0] (7)

In this case, we will keep in mind throughout the above equation:

(H) c,d>0,a+ |l <0,t>0, c<(t) fort € [T, 0], :[—T, 0]
- R

The Lipshitz function is continuous. By solving the impulsive initial value
problem (6) and (7) on the function, x is continuous on [0, o). There are
discontinuities only in time values in relation (6). Otherwise, it looks
completely continuous in any interval [0,c0) that does not contain
discontinuity points x. Therefore, in this thesis, we seek to achieve the
convergence of the existing method and use numerical results to show given
the approximation convergence, with a constant delay and an impulsive self-
supports condition, wen derive a numerical approximations strategy for a
linear scalar delays differential equation.

Delay differential equations with bounded delays and notation,
uniqueness and existence

The majority of delay differential equations have limited, constant delays
with non-constant delays. Examine the differential equation for delay.

x'() = f(t,x(g1(1)) s -, X(gm (D)) (8)
1 LN ]
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We must assume that t—r < g;(t) <tVt=tyandj=1,2,..,ms for
some's constants > 0. Then they initial functions is given as follows.

x(t) =0(t), ty,—r<t<t,

Note that if r = 0, the delay differential equation becomes an ordinary
differential equation. Assume that f is on [t,, B) x D™ — R™ for some
B > t, and the open set D < R™ is defined.

F(t, x) = f(t, x(g1(D), ..., x(gm (D)) ©)

Therefore, Equation (8) briefly becomes the following equation.
x'(t) = F(t, x¢) (10)

The following definition, which was introduced by Simanov in 1960, is
widely used for delay differential equations.

Definition 1. If the function defined on [¢ — r, t] > R™, then we define the

new function x;: [-r, 0] - R™ as follows.
x:(0) =x(t + o) —-r<og<0 (11)

Note that x; is obtained by considering x(s) fort —r <s <t and
transferring this part x to the interval [—7, 0].
If x is a continuous function, then x, is a continuous function on [—r, 0].
Notation: We denote the set C([—r, 0], R"including all continuous functions
from [—r, O] — R™ by Zand if A is a subset of R™, we assume do.
), = c([—r, 0],A) (12)

So, if x is continuous on [t — r, t| -

T
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Then: x; € L,Sometimes we use the semi-open interval [to, ,8)-| or the full
open interval («, #) so the symbol J for [to, ,8) or (a, ) We use

Delay differential equations with constant coefficients

The delay differential equations with constant coefficients will be as follows.

x'(t) = Zij (t —r) + (D)
=1

(13)

That A; are fixedand 0 < r; <rforj =0, 1,2,.., mand h(t)

continuous fu

nction on [t,, B).

IS a

We usually consider equation (6) on [t,, 8) with the initial function x,, = @,

which @ € L.

If h(t) = 0, we call the equation homogeneous, so we emphasize more on

homogeneous

(t)-Z

n Y

equations.

(14)
iy (t—

O

o d
e
c=s-t .
+-v + S =Y

Figure 1. When D = R™ and %, = %, then ||-]|,-

5

The solutions of equation (15) are
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A numerical approximation scheme. In this section, for a class of linear
FDEs, we define a simple numerical approximation of II\VP (15, 16) using

EPCAs
x(t) = ax(t) + fx(t —1),a.e.t = (15)

X(t) = gO(t),t € [—T,] (16)

Prove a discrete parameter h > 0 numerical approximation. The set if mesh
points NAh | N, it exhibits Nh|N, h and Zh are defined by {kh:k €
N}| {kh:k € N} and {kh: k € Z}, respectively. We introduce a simplified
notation.

1= 3] n

t
There is a piecewise constant function t — [t]h. At locations Z h, when it is

right-continuous, it exhibits jump discontinuities. The following EPCA is
linked to I1\VP (15, 16) under self-supporting circumstances:
(v-h) @) = ay_h ([t].h )+ By h([t]_h (18)

— [t].h),a.e.t =0

7

y h (kh) = ¢ + d,if y.h (kh—) <, (19)

y_h(t) = @(t),t € [—1,0]. (20)

A function y ™: [ —7,00) — R, which is separable [0,c0 ), and satisfies
(18) omitting possible points, is the solution of I1VP (18) — (20). N, h; Its
discontinuity point is limited to the mesh locations in [—z, 0] where (19) is
present. All solutions to (19) for k € N are in intervals [kh,(k + 1)h)
since the right side of the equation is in fixed intervals [kh, (k + 1)h). We
believe that the impulsive condition (19) indicates that there are
discontinuities in 11VP (18) and (29) only at some sites.

Nh. Some of the attributes [-]h that we will utilize later in the text are
summarized in the following. The estimate is provided by the definition
of [t]h

¥
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t—h<[t],<t,t€R (21)

From this rule lim, . , [t], = t uniform in the entire real line of the above
estimate implies

—h=t—-1—t+@—-—h)<t—t—([t]ly —[t]lp) <t —-17—-(t —
h) + t=h,

Therefore

It —t—([tl, —[t])| < h t € R (22)

Finally, we mention the relationship

[t —jhl, = [tl,—jht € R,j €T (23)

Fix h > 0 and let t € [kh, (k +))h) and 4, == [7/h]. Integrating
both sides of (18) from kh to t, and taking the left limit, we get t — (k +
h

yi ((k +1)h =)= yy (kh) + h (ayn (kh) + By, (kh — £, b)) §z4

We introduce the sequences

a(k):=
Yo (kh), k = =4 , —
¢, + 1, ,andb(k):= y, (kh—=), k € N.

Then they impulsive self-supporting conditions (200) yields a(k) = b(k) if
b(k) > c, otherwise a (k) = c¢ + d. Hence, they sequence's a(k) and
b(k) are obtained.
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(k+1) = (1+ ha)a(k) + hBa(k —£,), k € N,

_(b(k+1). b(k+1)>c (25)
a(k+1)_{ c+d. blk+1)<c }

a(—k) = o(-=kh), k=0,1,...,7%,

Between kh and s (k + 10) h, the functions y, linearly interpolates they
values off a (ka) and b(k + 10). As a result, we find that I1\VP (18) - (20)
has a unique solution. Let”™ h > 0 be fixed, and s lets

t, € Ng h, ¢y € G. Wen considers they approximates IVP without

impulsive terms:
wy (1) = awy, ([tlp) + Bwy ([tly —[7lw), t = ¢, (26)

wp (0) = Yt —t, ), t€t, -1 t,] (27)

Introduce the sequence c:(k) c=wp (kh +t ),k =—4,,—¢, +)
Then, it is easy to see

a(k+1)=(1+ ha)a(k) + hBa (k —€,), k € N, (28)
a(=k) = W(=kh), k=0,1,..., %, (29)

3. Result

Example: In this example, the initial shock value problem of Equation (30)
with

X(t) = ax(t) + Bx(t—T),a,t > 0,
x(t) = c + d,if x(t—) = ¢, (2)
x(t) = g(t),t € [—1,0].

a = —05f=04,i=10,c= 01,d= 04,9 (t) =02
1.0
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Consider. Since B > 0, the solution is generally not uniform in time
intervals

[5 Ent) for n € N. Numerical solution of the impulsive initial value problem
Int) = ayn (tn) + Byn(tn—1 — [t|n),a0.t = 0
yn(kh) = ¢ + d,if yn(kh—) < ¢, (31)
Ya (t) = v(t),t € [-1,0].

With the values of h = 0.1 (blue dots)and h = 0.001 (red points),
we produced the figures shown in Figure 2. The graphic illustrates the
closeness of the numerical approximations for the time span [0,209] for high
step size (h =0.1) and small step size (h = 0.001). This is obviously
present.

In Figure 2, the horizontal green lines denote the levels x = ¢ and
x = ¢ + d, whereas the blue and purple dots correspond to the numerical
solutions for h=0.1 and h=0.001 in the interval [0,300].

0.5

0.45 |-

04

0.35

0.25 -

A L

0.1

\

0 1 1 1 1 1
0 50 100 150 200 250 300

0.05

Figure 2. Numerical solution for h = 0.1 (blue points) and A = 0.001 (red
points).

However, the level c is not reached by the numerical solution corresponding
to h=0.1 time, 209.4, so due to the impulsive conditions y,(t) =

1%
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@(t),t € [—1, *] creates a fake jump and for the next time 209.4, these two
answers differ significantly.

This is a rough version of this kind of impulsive problem: if the precise
answer is really near the lower critical value c, a tiny approximation mistake
might result in a false leap that is identical, at which point tracking the
solution would fail.

Keep in mind that the resultant graphs match visually if the numerical
solutions for h = 0.01, h = 0.001, and A = 0.0001 are found even over a
lengthy time period, and the numerical method's convergence is determined
ash - 0 +.

In the end, we provide the numerical solution for the [0800] interval in
Figure 3at h = 0.001.

0.5

0.45

04}

0.35

03

0.25

0.2

0.15

[

0 I 1 1 1
0 100 200 300 400 500 600 700 800

0.1

005

Figure 3. Numerical solution for A = 0.001 in [0,800].

For this case, the graphic suggests that there exists a periodic solution with
a minimum period around 7 > 111, as the numerical solution is
asymptotically periodic. As of right now, the existence of a periodic solution
for the impulsive starting value problem (30) for § > 0 has no recognized
theoretical conclusion.

4. Conclusion

1Y
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An approach to numerical approximation has been developed for the class
of scalar delay differential equations that include impulsive elements. This
approach has been given specific attention. As its mathematical foundation,
the unique technique of approximation uses delay equations with piecewise
constant inputs as its implementation. We showed approximation scheme is
theoretically convergent at every point, except for impulsive time instants,
even though the numerical approach approximates the impulsive time
instants. This was accomplished by demonstrating that the approximation
scheme is convergent at every point. In situations where the g parameter of
the issue is positive, we possess the capability to exhibit the convergence
conclusion by applying an additional constraint. It is the responsibility of
this condition to guarantee that the solution crosses the line x=c at a moment
that is impulsive, in addition to the self-supporting condition that is expected
to be there. To illustrate the theoretical convergence results, we gave
numerical examples. This was done to illustrate the conclusions. Through
the use of numerical research, we were able to demonstrate that there is a
periodic solution. This solution in particular has a minimum period that is
greater than the model-associated delay t. Although this thesis provides
enough requirements to ensure periodic solutions exist, numerical examples
show that periodic solutions can exist with far weaker circumstances. This
kind of stuff is something we know exists. Further investigation is required
since it is vital to determine whether periodic solutions for this collection of
impulsive equations exist.

Reference

[1]. Alaminos, J., Extremera, J., & Villena, A. R. (2011). Approximately spectrum-

preserving maps. Journal of Functional Analysis, 261(1), 233-266.

[2]. Brauer, F., Castillo-Chavez, C., & Castillo-Chavez, C. (2012). Mathematical models in

population biology and epidemiology (Vol. 2, No. 40). New York: springer.

[3]. Din, Q., Donchev, T., & Kolev, D. (2013). Numerical approximations of impulsive

delay differential equations. Numerical Functional Analysis and Optimization, 34(7),
728-740.

T A



. D

I Print -ISSN 2306-5249

J O B S ) L“Y‘ ?J ‘ Online-ISSN 2791-3279
------ Journal of Ba5|c Smence Qaxal) 5 gaal) aaml)

AVEE0/aY Y

J

[4]. Din, Q., Donchev, T., Nosheen, A., & Rafagat, M. (2015). Runge-Kutta methods for
differential equations with variable time of impulses. Numerical functional analysis and
optimization, 36(6), 777-791.

[5]. Federson, M., Gyodri, ., Mesquita, J. G., & Taboas, P. (2020). A delay differential
equation with an impulsive self-support condition. Journal of Dynamics and Differential
Equations, 32, 605-614.

[6]. Hartung, F. (2022). On numerical approximation of a delay differential equation with
impulsive self-support condition. Applied Mathematics and Computation, 418, 126818.
[7]. Koch, G., Krzyzanski, W., Pérez-Ruixo, J. J., & Schropp, J. (2014). Modeling of
delays in PKPD: classical approaches and a tutorial for delay differential

equations. Journal of pharmacokinetics and pharmacodynamics, 41, 291-318.

[8]. Li, X., Li, H., & Wu, B. (2019). Piecewise reproducing kernel method for linear
impulsive delay differential equations with piecewise constant arguments. Applied
Mathematics and Computation, 349, 304-313.

[9]. Piper, L., Scolozzi, D., Lay-Ekuakille, A., Vergallo, P., De Franchis, E., & Griffo, G.
(2013, May). Modeling an artificial pancreas using retarded impulsive differential
equation. In 2013 IEEE International Symposium on Medical Measurements and
Applications (MeMeA) (pp. 67-71). IEEE.

[10]. Zhang, G. L. (2017). Oscillation of Runge-Kutta methods for advanced impulsive
differential equations with piecewise constant arguments. Advances in Difference
Equations, 2017(1), 32.

[11]. Zhang, G. L. (2020). Asymptotical stability of Runge—Kutta methods for nonlinear
impulsive differential equations. Advances in Difference Equations, 2020(1), 1-12.

[12]. Zhang, Z., & Liang, H. (2014). Collocation methods for impulsive differential
equations. Applied mathematics and computation, 228, 336-348.

[13]. Liu, X., Song, M. H., & Liu, M. Z. (2012). Linear multistep methods for impulsive
differential equations. Discrete Dynamics in Nature and Society, 2012.

19






