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Abstract
The main goal of this work is to create a new type of proper G — space , namely, regular
proper G — space and to explain some of examples and propositions of r - proper action;
where X and G is T, — spaces.

Introduction
One of the very important concepts in topological groups is the concept of group actions
and there are several types of these actions. This paper studies an important class of actions
namely, regular proper actions .Proper G — spaces were studied by many mathematicians such
as group, Bourbaki, Palais, Abels, and others.

Let B be a subset of a topological space (X, 7). We denote the closure of B and the interior
of Bby B and B°, respectively.The subset B of (X, T) is called regular open (r — open)
ifz_% .The complement of a regular open set is defined to be a regular closed (r — closed)
. If B = B then the family of all r — open sets in (X, T)forms a base of asmaller topology T"on

X ,called the semi — regularization of 7 . In section one of this work, we include some of
results which then will needed in section two.

In section two, we deal with the definitions, examples, remarks, propositions, theorem and
corollaries of regular proper function. Section three recalls the definition of proper G — space,
gives a new type of proper G — space (to the best of our Knowledge), namely, regular proper
G — space and studies some of its properties, where G- space is meant T, — space topological X
on which an r — locally r — compact, non — compact, T, — topological group G acts
continuously on the left.

1. Preliminaries

1.1 Definition [3]:

A subset B of a space X is called regular open (R — open) set if B=5 ° . The complement of
a regular open set is defined to be regular closed (r — closed) set, then the family of all r — open
sets in (X, T)forms a base of a smaller topology T" on X ,called the semi — regularization of T .

In [3] that the subset B of X'is r — open if and only if Be T'".



1.2 Proposition [3]:
Let X be a space. Then

(i) If 4 and B are r- open sets then A M B is an r-open set.
(i1)If Ais an r-closed subset of X and B is aclopen set in X, then 4 (1 B is an r — closed in X.

1.3 Proposition [3]: Let X and Y be two spaces. Then 4; — X, 4, <Y be r — open(r — closed)
sets in X and Y, respectively if and only if 4;xA4> is r — open(r — closed) in XxY.

1.4 Definition[3]: A subset B of a space X is called regular neighborhood (r — neighborhood)
of xeX if there is r- open subset O of X such that xeO  B.

1.5 Definition [3]: Let X and Y be spaces and f: X—Y be a function. Then:
(i) f is called regular continuous (r — continuous) function if f'(4) is an r — open set in X for
every openset 4 in Y.

(ii) f is called regular irresolute (r — irresolute) function if f'(4) is an r — open set in X for
every r- open set 4 in Y.

1.6 Proposition [3]: Let f: X—Y be a function of spaces. Then f is an r - continuous function
if and only if f'(4) is an r - closed set in X for every closed set A in Y.

1.7 Proposition: Let X and Y be spaces and let f: X—Y be a continuous, open function. Then
f is r — irresolute function.

. Proof:

o

(i)Let A be an r-open set of Y,then A= 4 .Since fis continues and open then

= flca ’ )= [f‘1 (Z)]ﬂ = {f_l (A)T , 1(4) is an r-open set of X.

1.8 Definition [3]:
(i) A function f: X—7Yis called regular closed ( r — closed) function if

the image of each closed subset of X'is an r — closed set in Y.
(ii) A function f: X—Y is called regular open ( r — open) function if

the image of each open subset of X is an r — open set in Y.

1.9 Definition [3]:I.et X and Y be spaces. Then a function f: X — Y is calleda r—
homeomorphism if:

(i) f is bijective .
(ii) f is continuous .

(iii) f is r— closed ( r— open).



1.10 Proposition|[3]: Every r- homeomorphism is homeomorphism.

1.11 Definition [3]: Let (% 4)scp be a net in a space X, xeX. Then :

i) (Ya)aep T — converges to x (written yy——>x) if (Y4)sep is eventually in every r —

neighborhood of x . The point x is called an r — limit point of (y4)sep, and the notation

"Y4——> 00" is mean that (y,)scp has no r — convergent subnet.

ii) (%4)aep 1s said to have x as an r — cluster point [written x4% x] if (Xa)aep is frequently in
every r - neighborhood of x .

”

1.12 Proposition: Let (%4)scp be a net in a space (X, T) and x, in X. Then y; ¢ x, if and only if
there exists a subnet (Yum)amep Of (a)aep such that y, ——> x,.

Proof: = Let ()4)scp be a net in a space (X, T) such that y4“ x, in (X, T) . Then y4 ax, in (X,
T"), so there exists a subnet (Ydm)amep Of (Ya)aep such that ygm —>x, in (X, T'). Then y;——>
X0

< By same way we will proof only if part.

1.13 Remark: Let ())scp be a net in a space (X, T) such that ;% x, xeX and let 4 be an open
set in X which contains x. Then there exists a subnet (Ym)amep Of (Ya)aep in A such that

Xdm —> X.
1.14 Remark [3]: Let X be a space, then:

(1) If ()q)dep 1s a net in X, xe X such that y; ——x then y; ——x .

(1) If (4@)aep 1s a net in X, xeX such that y; ¢ x then y, @ X.

(ii1) If ()4)aep 1s a net in X, xeX. Then y; ——x in (X, T) if and only if y; —>x in (X,
T"), and 4 Or‘ xin (X, T) if and only if x4 @ x in (X, T").

1.15 Remark: Let ()s)qep be a net in a space (X, T) such that X is compact T,- space then
xa® x if and only if ¥4 x,.

Proof: =Clearly, .
< Let (y2)aep be a net in X such that x4“ x, so by Proposition (1.12) there exists a subnet of

(Xa)aep ,say itself such that y;,——> x. Since X is compact space then (y,)sep has a cluster
point ,say y ,then there exists a subnet of (y4)sepn ,say itself such that y,—— y ,by remark

(1.14) xyy——> y ,then x=y (since X is T, space then by [3] X is r-T; space ,thus y; may have
unique r-limit point ) ,s0 ¥4% x.



1.16 Definition [3]: A subset 4 of space X is called r — compact set if every r — open cover of
A has a finite sub cover. If A=X then X is called an r — compact space.

1.17 Proposition [3]:I.et X be a space and F be an r — closed subset of X. Then FNK is r —
compact subset of F, for every r — compact set K in X.

1.18 Proposition [3]:[.et ¥ be an r — open subspace of space X and AcY. Then 4 is an r —
compact set in Y if and only if 4 is an r — compact set in X.

1.19 Definition [3]:

(1) A subset 4 of space X is called r - relative compact if A ist— compact.

(i1) A space X is called r—locally r — compact if every point in X has an r — relative
compact r — neighborhood.

1.20 Proposition[3]: Let X and Y be spaces and f: X—Y be a function, then:

()If f is continuous ,then an image f(A)of any compact set A in X is a compact set in Y.
(i)If f is r-irresolute,then an image f (A) of any r- compact set A in X is an r-compact set in
Y

1..21 Definition [3]: Let f: X—Y be a function of spaces. Then f is called an regular compact
(r-compact) function if f '(4) is a compact set in X for every r — compact set 4 in Y.
2 — Regular Proper Function
2.1 Definition [3]: Let X and Y be two spaces. Then f: X—Y is called regular proper ( r -
proper) function if :
(i) f is continuous function.

(ii) f xIz: XxZ—YxZ is t— closed function, for every space Z.

2.2 Proposition [3]: Let X and Y be spaces and f: X—>7Y be a continuous function .Then the
following statements are equivalent:

(i) f is an r— proper function.
(ii) f is an r— closed function and f ™' ({y})isa compact set, for each yeY.
(iii) If (yz)aep is @ net in X and yeY is an r — cluster point of f (y,), then there is a cluster point

xeX of (Ya)aep such that f (x) = y.

2.3 Proposition [3]: Let X, Y and Z be spaces, f: X—Y and g: Y—>Z be an r — proper functions
. Then gof:X—Z is an r — proper function.

2.4 Proposition [3]; Let fi: X;—7Y; and f,: Xo— Y, be functions. Then fixf,: XixXo—YxY; is
an r- proper function if and only if f, and f; are r— proper functions.



2.5 Proposition [3]:

(i) Every r— proper function is r — closed.
(i1)Every r-proper function is proper..

(iii)Every r-homeomorphism is r-proper.

2.6 Proposition[3]: Let f: X—>P= {w} be a function on a space X. Then f is an r — proper
function if and only if X' is an compact, where w is any point which dose not belongs to X.
._2.7 Propesition[3]: Every continuous function from an compact space into a Hausdorff

space is 1- proper.

2.8 Proposition:[3 ]: Let X, Y and Z be spaces, f: X—>Yis an r— proper functions and g: Y—>Z
is homeomorphism function . Then gof:X—Z is an r — proper function.

2.9 Proposition [3]: Let X and Y be a spaces, such that Y is a T, — space and f: X—Y be
continuous, function. Then the following statements are equivalent:
(i) f1is r—compact function.

(ii) f is r— proper function.

3 — Regular Proper G-Space.

3.1 Definition [S]: A topological transformation group is a triple (G,X,9) where G is a T, —
topological group, X is a T, — topological space and ¢ :GxX — X is a continuous function such
that:

(1) @ (g1, 9 (22, X)) = @ (g122, x) for allg|,g,eG , xeX and denote g. x for ¢ (g, x)

(11) ¢ (e, x) = x for all xe X, where e is the identity element of G.

3.2 Remark [4]: Let X be a G — space and xeX. Then:
(1) The function ¢ is called an action of G on X and the space X together with ¢ is called a G —

space ( or more precisely left G — space ).

(i1) A set A < X is said to be invariant under G if GA = 4.

3.3 Definition: A G —space X is called regular proper G — space ( r — proper G — space) if the
function 6: GxX—XxX which is defined by 6 (g, x) = (x, g.x) is r— proper function.

3.4 Example: The topological group Z, = {-1, 1} [as Z, with discrete topology] acts on the
topological space S" [as a subspace of R”™ with usual topology] as follows:
+ 1. (xl, X2y oens xn+1) = (:|:X1,:|:X2,...,:txn+1)

Since Z, is an compact, then by Proposition (2.6) the constant function Z,—P is an r —
proper. Also the identity function is an r — proper, then by Proposition (2.4) the function of

Zyx S" into Px S" is an r — proper.



Since PxS" is homeomorphic to S”, then by Proposition (2.8)the composition Z,xS" — S" is
an r — proper function . Let ¢ be the action of Z, on S". Theng continuous,. Since S" is T, —
space. Then by Proposition (2.7) ¢ is an r — proper function . Thus by Proposition (2.4) Z,xS"

— S"xS" is an r — proper function ,thus S"is an r - proper Z,- space.

3.5 Lemma: If X is a G — space then the function 8: GxX—XxX which is defined by € (g, x) =
(x, g.x) is continuous function and @' ({(x, y)}) is closed in GxX for every (x, y)eXxX.
/

Proof: Since: 0: GxX—14 5 Gx Xx X —2L 5 Xx X

> XxX, where ¢ is action of G on

X. Then @=foq xIyolgxA is continuous function and @' ({(x, y)}) is closed in GxX for every
(x, y) eXxX.
3.6 Theorem: Let X be an r — proper G — space and let H be closed subset of G. If Yisanr —

open subset of X which is invariant under H, then Y is an r- proper H — space.
Proof: Since X is an r — proper G — space, then the function 6 : GxX—XxX which is defined

by 6 (g, x) = (x, gx) is an r — proper function. [To prove that @ : HxY— YxY isan —r —
proper function which is defined by @ (4, y) =6 (h, y) for each (h, y)e HxY.]
(1) Since €: GxX—XxX is continuous, then @ : HxY— YxY is continuous. .

(2) Let (h4, ya)aep be a net in HxY such that @ (% 4 ya)) a (x, y) for some (x, y)e YxY. Then
Va, ha ya) o (x, ) in YxY. Let 4 be an r — open subset of XxX such that (x, y)eA4. Since Yisr—
open in X, then YxY is an r — open set in XxX. Then 4 N (¥xY) is an r — open set in XxX . But
(x, y)e AN (YxY) and (y4, hdyd)éé (x, ¥), thus (yg, hgya) 1s frequently in 4 N (YxY) and then (y,,
hq va) 1s frequently in A, thus (y4, hgya) a (x, y) in XxX. since 0 : GxX—XxX is an r — proper
function, then by Proposition (2.2) there exists (4, x;)e GxX such that (hy, y;) & Ch, x1) and 6
((h, x1))=(x, ), hence (x;,/n x;)=(x,y). Thus x;=x and therefore 4, h. Since (hy)4ep 1s a net in H

,and H is r — closed . Then there exists (4, x) € HxY such that @ (h, x) =6 (h,x) = (x, y). Then
from (1), (2) and by Proposition (2.2) the function @ : HxY—YxY is an r — proper function.

Hence Y is an r — proper H — space.

3.7 Corollary: Let X be an r — proper G — space and Y be an r — open subset of X which is
invariant under G. Then Y is an r- proper G — space.

3.8 Corollary: Let X be an r — proper G — space and let H be a closed subset of G. Then X is
an r- proper H — space.



3.9 Propesition: Let X be an r — proper G — space, xeX such that{x}is clopen and 7={x}xX.
Then the function 6;: @' (I) »Tisan r— proper function, where 6 : GxX—XxX such that &
is an r — irresolute function and 8 (g, x) = (x, g.x), V(g, x)e GxXX.

Proof: Since{x}is clopen in X then {x} is r-clopen set in X. So each Gx{x} and {x}xX arer —
closed in GxX and XxX (respectively). Now, Let ' be a closed setin @' (T) = Gx{x}, then F
is a closed in GxX .Since F=FN(Gx{x}), Ox(F) =60 (F)N({x}xX),since @ is r- proper
therefore & (F) is r— closed in XxX by Proposition (2.1) &/(F) is r — closed in XxX. But 6(F)
c{x}xJX, then there exists a subset V' of X such that &(F) = {x}xV. Since G(F) is r- — closed in
XxX, so {x}xVis an r — closed set in {x}xX, hence O{(F) = {x}xV is an r — closed set in 7=
{x}xX therefore 6r: o' (T)>T is an r — closed. Now, let (x, y)e {x}xX. Since #is r— proper
function, then by Proposition (2.9) @ is an r — compact function. Then @' ({(x, y)}) is

compact in GxX. Then &, ({(x, y)}) is compact set in Gx{x} = @' (T). Since 0 is

continuous, then @7: @' (I)—T is continuous .Thus by Proposition (2.2) &r is an r — proper

function.

Let X' be a G — space and 4 , B be two subset of X . We mean by ((4, B)) the set
{geG/ gA N B=g}.

From now on, we will use G — space, which satisfies the property if (X,T) and (Y,T")

be two spaces and V x,—>x, y,—>» in X and Y, respectively, then (x; y;) ——>

(x,) in product space XxY .

3.10 Proposition: Let X be a G — space such that X and G are compact space. If for every x,
yeX there exists an r — open set A, of X contains x and an r — open set 4, of X contains y such
that K=((4, 4,)) is r — relatively compact in G, then X'is an r — proper G — space.

Proof: We prove that € : GxX—>XxX, € (g, x) = (x, gx) is an r — proper function. Let (g,
Xd)aep be a net in GxX such that 6 (g4, xa)=( xa g4 xa)& (x, ¥), where (x, y) €eXxX. By

proposition (1.15) (x, y) is a cluster point of & (g4 ys). Now, since x, y€X, then there exists an
r — open set A, contains x and an r — open set 4, contains y such that the set K = ((4,, 4,)) is 1 —
relatively compact in G. Thus 4.x4, is an open set in XxX and (x, y)e A.,xA,, so by

Proposition (1.13) there exists a subnet (y,.g, .7, of (Yo ga ys) iIn AxAy and

)deD



(X4 -84 X4 ) —> (x, ), hence y, —>x and g,.J, —>y. Since ¥, € Ay, and ¢, 7, €
Ay, Then g, . Ay NAy# ¢, Vdy, 508, €K, but K is r —relatively compact in G,then Kisr-
compact in G, since G is compact T , space then by [3] K is compact in G, then (g, ) has
limit point, say teG. Since y, —>x, then (&, .7, )——> (tx),8500
(&4, s Xa N)—0 ((t X)) e (¥, .8, X)) —> (x, tx), thusg, .¥, —> ix but

84 X4, — >y and since X is a T, space, then &x = y. But (de,gdm‘}(dm )aep is a subnet of (ya,

a xa) and (&4, , Xy, ) —> (1 x), then (g4 xa) & (1 x), thus 0 ((1, x)) = (x.y).Thus [by

Proposition (2.2)] we have @is an r — proper function. Hence X is an r — proper G — space.

3.11 Corollary: Let X be a G — space such that G is discrete space. If for every x, yeX there is
an r — open set 4, in X contains x and an r — open set 4, in X contains y such that the set K =
((4x, A4y)) 1s finite, then X is an r — proper G — space.

Let X' be a G — space and xeX. The set J” (x)={yeX: there is a net (g4)scp in G and
there is a net (yy)sep in X with g;—* yoo and y; —~ x such that gzx_—" sy} is called
regular first prolongation limit set of x. J”(x) is a good tool to discover about the r-

proper G — space

3.12 Proposition: Let X be an r-proper G — space then " (x)=¢ for each xeX.
Proof: = Suppose that ye j~ (x)> then there is a net (g4)sep in G with g;—~ 300 and there is a

net (Yz)aep In X with y;—- s x such that gz.xs—-—v, s0 0 ((ga%1))=(Xa, La-Ya) —— (x, ¥). But X
is an r — proper G-space, then by Proposition (2.2) there is (g, x;)e GxX such that (g4 x,) &
(g x1). Thus (g4)aep has a subnet (say itself). such that g;,— s g then, by Remark 1.14
ga—'—g, which is contradiction, thus j"(x)=¢.

3.13 Proposition: Let X be an r — proper G — space with the action ¢ : GxX—>X, ¢ (g,

x) = g.x,V(g,x) €eGxX. Then for each xeX, let xeX such that {x} is clopen set in X

the function ¢,:G—X, which is defined by: ¢.(g)=¢ (g,x ) is an r — proper function.

Proof: Let T={x}xX < XxX, then by Proposition (3.9) 67 @' (T)—>Tis an r — proper

function. But:



I~

0. = G = Gx{x} —2Z— {x}xX ~ X, such that f and 4 are r- homeomorphisms.
Now:

1) since each of these functions are continuous so @,: G—>Xis continuous.

i1) Let F' be a closed in G, then f(F )is a closed in Gx{x}. Since 07: Gx{x}—> {x}xXis
an r — proper function, then by Proposition (2.5) @/(f(F)) is r — closed, then
h(0/(f(F))) is an r — closed in X. Then ¢,: G—>Xis an r— closed.

iii) Let yeX, then A ({y}) = {(x, »)} such that xeX, since X is T» — space, then  {(x,

¥)} 1s an r — closed set in {x}xX. Since & is an continuous function, then &, ({(x,
»)}) is closed in Gx{x}, so by Proposition (2.2,ii) &," () = 0" {(x, )} is
compact. Since f is r- homeomorphism, then f1is a continuous function, so its clear
that f'(6," {(x, »)}) is a compact in G. Then (0" (K'({1}) = o." ({}) is a

compact in G. Then by (i),(ii),(iii) and Proposition (2.2,ii) ¢, is an r — proper function.

3.14 Proposition: Let X be an r— proper G — space. then &' ({(x, y)}) isa compact
set, V(x, y)eXxX and for all x, yeX and for all Ue N r((971 ({Cx, 1), A VeNA(x, )
such that @' (V) c U.
Proof: Since X is an r-proper G — space , then 6: GxX—>XxX which is defined by &
(g x) = (x, gx), V(g x)eGxX 1is an r- proper function .Let x, yeX and U be an r —
open neighborhood of o (x, ¥). Since@ an r — proper function, then by Proposition
(2.2.i1)) @ is an r — closed function, so V= (XxX)\@ ((GxX)\U) is an r — open
neighborhood of (x, y) with Q_I(V) c U. Since 6 is continuous and XxX , so by
Proposition (2.2) @' ({(x, y)}) is a compact set V(x, y)eXxX.

3.15 Proposition: Let X be a G — space and 0 : GxX—XxX be a function which is

defined by € (g, x) = (x, gx), V(g x)eGxX. Then the following statements are

equivalent:

(1) o' ({(x, »)}) 1s a compact set, V(x, y)eXxX and for all x, yeX and for all
UeNA((x, ¥))), 3VreN(x) and VeN, (y) such that (V,, V})) < U.
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(i) @' ({(x, y)}) is a compact set, V(x, y)eXxX and for all x, yeX and for all
Ue N’(Q“ ({(x, ¥)})), 3 VeN{(x, ) such that @' (V) < U.
Proof: i)—ii) Let x, yeX and let U be an r — neighborhood of 7' ({(x, )}) =

((x, ¥))x{x}. Since 7' ({(x, »)}) is compact, then there are r — neighborhood U’
of ((x, ¥)) and W of {x} such that U’xW < U, so by (i) there are r — neighborhood

V. of x and ¥, of y such that (Vs, ¥,)) < U’ But @' (Vs 1W)x V) c UXW c U
. Hence (ii), hold.
1) — 1) Let x, yeX and UeN((x, y)). Then UxXeN,((x, y))x{x}. Thus UxXe

N.( 07" (x, »)) so by (ii) there exists ¥eN,(x, y) such that @' (V')  UxX. Then there

are r — neighborhood V, of x and V), of y such that 67 ( VixVy,) < UxX. Hence (i),
holds.

3.16 Corollary: Let Xbe anr — proper G — space , choose a point x € X and let U
be r — neighborhood of the stabilizer G, of x , then x has an r — neighborhood V" such
that U contains the stabilizer of all points in V.

Proof: Since U is r — neighborhood of the stabilizer G, of x, then UeN,(G,). Since G,

= ((x, x)), then UeN,(((x, x))). So by Proposition (3.15)there exist V' eN "(x, x) such
that ((Vy, Vy)) < U. Let yely, then G, < ((Vy, V) < U.
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