

Ibn Al-Haitham Journal for Pure and Applied Sciences

boy 20 this ham beared 10 to a strip plant beared 10 to a strip plant beared 10 to 1

Journal homepage: jih.uobaghdad.edu.iq

The Completion of Generalized 2-Inner Product Spaces

Safa L. Hamad

Department of Mathematics , College of Sciences, University of Baghdad- Iraq. safalafta2019@gmail.com

Zeana Z. Jamil

Department of Mathematics, College of Sciences, University of Baghdad-Iraq. zina.z@sc.uobaghdad.edu.iq

Article history: Received 14 Augest 2022, Accepted 11 September 2022, Published in January 2023.

doi.org/10.30526/36.1.2952

Abstract

A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space W can be developed into a complete metric space \widehat{W} , referred to as completion of W.

We use the b-Cauchy sequence to form \widehat{W} which "is the set of all b-Cauchy sequences equivalence classes". After that, we prove \widehat{W} to be a 2-normed space. Then, we construct an isometric by defining the function from W to \widehat{W}_0 ; thus \widehat{W}_0 and W are isometric, where \widehat{W}_0 is the subset of \widehat{W} composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that \widehat{W}_0 is dense in \widehat{W} , \widehat{W} is complete and the uniqueness of \widehat{W} is up to isometrics.

Keywords: b-Cauchy Sequence, Equivalent Class, Metric space, Completion Generalized 2-Inner Product Space.

1. Introduction

Cho and Freese [3-4] introduced 2-normed space by: Let W be a real linear space with a dimension greater than 1. Suppose that $\|,\|$ is a real-valued function on W × W for all w, y, z in W and $\alpha \in \mathbb{R}$ satisfying the following requirements:

- 1. $\|\mathbf{w}, \mathbf{y}\| = 0$ if and only if w and y are linearly dependent.
- 2. $\|\mathbf{w}, \mathbf{y}\| = \|\mathbf{y}, \mathbf{w}\|$
- 3. $\|\alpha w, y\| = |\alpha| \|w, y\|$
- 4. $\|w + y, z\| \le \|w, z\| + \|y, z\|$

Then $\|\cdot\|$ is called a 2-norm on W and the pair $(W, \|\cdot\|)$ is called a linear 2-normed space or 2-normed space. For more details, see [11-12]

Riys and Ravinderan [10] defines the generalized 2-inner product space as a complex vector space W, called a generalized 2-inner product space if there exists a complex valued function $\langle (,),(,) \rangle$ on W² × W² such that a, b, c, d \in W, and $\alpha \in$ C, as the following:

- 1. $\langle (a,b), (c,d) \rangle = \overline{\langle (c,d), (a,b) \rangle}$
- 2. If a and b are linear independent in W, then $\langle (a, b), (c, d) \rangle > 0$.
- 3. $\langle (a,b), (c,d) \rangle = -\langle (b,a), (c,d) \rangle$.
- 4. $\langle (\alpha a + e, b), (c, d) \rangle = \alpha \langle (a, b), (c, d) \rangle + \langle (e, b), (c, d) \rangle$. For more details, see [8][2][5].

Ghafoor [6], shows that the generalized 2-inner product space is a 2-normed space with $||w,y|| = \langle (w,y), (w,y) \rangle^{\frac{1}{2}}$.

After many failures to define orthogonal vectors in 2-normed space, Riyas and Ravindran, in 2014, [10] defined orthogonal vectors in a 2-normed space by restriction space $W \times W$ to $W \times \langle b \rangle$, where $\langle b \rangle$ is a non-zero subspace in W. Thus, the domain of the generalized 2-inner product restriction with space $W^2 \times \langle b \rangle^2$.

It is well-known that there are incomplete metric spaces. Kreyszig, in 1978 [7] discussed the strategy for completing every metric space by defining an equivalent relation on Cauchy sequences and the metric on it. In 2001, Cho and Freese [3] used the same strategy for the completion of a 2-normed space, but some difficulties appeared when defining a metric on it, and then, he had to give another condition on the space.

Despite that all generalized 2-inner product space is 2-normed space, but in this paper, we give a completion of the generalized 2-inner product space without need any condition using the b-Cauchy sequences.

This paper includes two sections. The first section discusses some of the properties of the b-Cauchy sequence in a generalized 2-inner product space. The second section proves the completion of the generalized 2-inner product.

We will abbreviate $\|w, b\|$ by $\|w\|_b$ in the sequel.

2. b-Cauchy sequences.

This section discusses some of the properties of the b-Cauchy sequence in a generalized 2-inner product space. Mazaheri and Kazemi in [9] introduce a b-Cauchy sequence concept as follows

Definition (2.1)[9]: Let W be a generalized 2-inner product space, $0 \neq b \in W$, $\{w_n\}$ be a sequence in W, then, it is called a b-Cauchy sequence if $\lim_{n,m\to\infty} ||w_n - w_m, b|| = 0$.

The following definition has been devised from [9]

Definition (2.2): An open ball of radius r and centered at y in a generalized 2-inner product space W is defined as: $B_r(y) := \{w \in W: ||w - y||_b < r\}$.

The following proposition is a characterization of b-Cauchy sequences in a generalized 2-inner product space. But first, we define a neighborhood of 0.

Definition (2.3): If w is a point in a generalized 2-inner product space W, then a neighborhood U of w is a set containing $B_r(w)$ for some r > 0, i.e, there exists r > 0, such that $w \in B_r(w) \subset U$.

Proposition (2.4): Let W be a generalized 2-inner product space, $\{w_n\}$ is a b-Cauchy sequence in W if and only if for any neighborhood U of 0; there is an integer M(U) such that for all $n, m \ge M(U)$ implies that $w_n - w_m \in U$.

Proof: Let U be a neighborhood of 0, then there exists $\varepsilon > 0$ such that $B_0(\varepsilon) \subseteq U$. Since $\{w_n\}$ is a b-Cauchy sequence in W, thus $\lim_{n,m\to\infty} \|w_n - w_m\|_b = 0$. It implies that there exists $M(\varepsilon) > 0$ such that $\|w_n - w_m\|_b < \varepsilon$; $n, m \ge M(\varepsilon)$. Then, $w_n - w_m \in B_0(\varepsilon) \subseteq U$.

Conversely, let $\{w_n\}$ be a sequence in W such that for every neighborhood U of 0 there is an integer M(U) > 0; $w_n - w_m \in U$ where $n, m \ge M(U)$. Then, there exists $\delta(U) > 0$ such that $\|w_n - w_m\|_b < \delta$, where $n, m \ge M(U)$. It implies that for all $\varepsilon > 0$, there exists $M(\varepsilon)$ such that $\|w_n - w_m\|_b < \varepsilon$ for $n, m \ge M(\varepsilon)$, then $\lim_{n,m\to\infty} \|w_n - w_m\|_b = 0$. Thus, $\{w_n\}$ is a b-Cauchy sequence in W.

3. Completion of the generalized 2-inner product spaces.

Kreyszig [1] states few steps to prove that an arbitrary incomplete metric space can be completed. In this section, we follow Kreyszig strategy to prove the completion of the generalized 2-inner product space:

Step1: Forming \widehat{W} is the set of all b-Cauchy sequence equivalence classes.

Definition (3.1): Two b-Cauchy sequences $\{w_n\}$ and $\{y_n\}$ in a generalized 2-inner product space W have a relation denoted by $\{w_n\} \sim \{y_n\}$, if for every neighborhood U of 0 there is an integer M(U) such that $n \ge M(U)$ implies that $w_n - y_n \in U$.

It is clear that \sim is a reflexive and symmetric relation. The following proposition shows that this relation is equivalent.

Proposition (3.2): The relation \sim on the set of b-Cauchy sequences in W is an equivalent relation on W.

Proof: Let $\{w_n\} \sim \{y_n\}$ and $\{y_n\} \sim \{z_n\}$. Let, U is an arbitrary neighborhood of 0. There exists a neighborhood V of 0 such that $V + V \subset U$. By Definition (2.1) and for this V, there exists an integer M such that $w_n - y_n, y_n - z_n \in V$ for $n \ge M$. Hence, $w_n - z_n = (w_n - y_n) + (y_n - z_n)$ is an element of U for $n \ge M$. Therefore, $\{w_n\} \sim \{z_n\}$.

Define \widehat{W} : = { \widehat{w} : \widehat{w} is equivalent class of b-Cauchy sequences}.

Step 2: Proof \widehat{W} vector space.

Let \widehat{w},\widehat{y} in \widehat{W} . Define the terms addition and scalar multiplication. On \widehat{W} where $\{w_n\} \in \widehat{w}$ and $\{y_n\} \in \widehat{y}$, as shown below:

- $\bullet \quad \widehat{w} + \widehat{y} = \{w_n + y_n\}$
- $\alpha \hat{\mathbf{w}} = \{\alpha \mathbf{w}_{\mathbf{n}}\}$

The following proposition explains that the two operations defined on \widehat{W} are well-defined because they are unaffected by the elements chosen from $\{\widehat{w}_n\}$ and $\{\widehat{y}_n\}$. But first, we need the following proposition:

Proposition (3.3): A b-Cauchy sequence $\{w_n\}$ is equivalent to $\{a_n\}$ in a generalized 2-inner product space W if and only if $\lim_{n\to\infty} ||w_n - a_n||_b = 0$.

Proof: Let U be a neighborhood of zero, then, there exists M(U) > 0, such that $w_n - a_n \in U$ for $n \ge M(U)$. Hence, for all neighborhood U of 0, there exists $\varepsilon = \varepsilon(U) > 0$ such that $\|w_n - a_n\|_b < \varepsilon$; $n \ge M(U)$. Then, for every $\delta > 0$, there exists $M(\delta) > 0$ such that $\|w_n - a_n\|_b < \delta$ for all $n \ge M(\delta)$, therefore, $\lim_{n \to \infty} \|w_n - a_n\|_b = 0$ for $n \ge M(\delta)$.

Conversely, let $\{w_n\}$, $\{a_n\}$ be b-Cauchy sequences in W such that for every neighborhood U of 0, there exists $\epsilon > 0$ such that $B_{\epsilon}(0) \subset U$. By our hypothesis $\lim_{n \to \infty} \|w_n - a_n\|_b = 0$, then there exists $M(\epsilon) > 0$ such that $\|w_n - a_n\|_b < \epsilon$ for $n \ge M(\epsilon)$. Hence, $w_n - a_n \in B_{\epsilon}(0) \subset U$ for $n \ge M(\epsilon)$, then $\{w_n\} \sim \{a_n\}$.

Proposition (3.4): If $\{a_n\}$ and $\{b_n\}$ are equivalent to $\{w_n\}$ and $\{y_n\}$ in a generalized 2-inner product space W. Then, $\{a_n + b_n\}$ is equivalent to $\{w_n + y_n\}$ and $\{\alpha a_n\}$ is equivalent to $\{\alpha w_n\}$. Moreover, \widehat{W} is a linear space.

Proof: Since $\{a_n\} \sim \{w_n\}$ and $\{b_n\} \sim \{y_n\}$ thus we get

$$\|(w_n+y_n)-(a_n+b_n)\|_b\leq \|w_n-a_n\|_b+\|y_n-b_n\|_b$$

Then

$$\lim_{n \to \infty} \|(w_n + y_n) - (a_n + b_n)\|_b = 0 \dots (1)$$

On the other hand,

$$\lim_{n\to\infty} \|\alpha w_n - \alpha a_n\|_b = 0 \dots (2)$$

It implies that $\{a_n + b_n\} \sim \{w_n + y_n\}$ and $\{\alpha a_n\} \sim \{\alpha w_n\}$. Therefore, from (1), (2) and Proposition (2.3), \widehat{W} is a linear space.

Step3: Proof \widehat{W} is a 2-normed space.

We will define a 2-norm function on the space \widehat{W} . as:

$$\|.\|_{\widehat{b}}: \widehat{W} \times < \widehat{b} > \rightarrow R^+$$

is defined as:

$$\|\widehat{\mathbf{w}} - \widehat{\mathbf{y}}\|_{\widehat{\mathbf{b}}} = \lim_{n \to \infty} \|\mathbf{w}_n - \mathbf{y}_n\|_{\mathbf{b}} \dots (3)$$

where $\{w_n\} \in \widehat{w}, \{y_n\} \in \widehat{y}$.

The function is well-defined as follows:

Proposition (3.5): If W is a generalized 2-inner product space, then for any two b-Cauchy sequences $\{w_n\}$ and $\{y_n\}$ in W:

- 1. $\lim_{n\to\infty} \|\mathbf{w}_n \mathbf{y}_n\|_b$ exists.
- 2. For pairs of equivalent b-Cauchy sequences $\{a_n\} \sim \{w_n\}$ and $\{b_n\} \sim \{y_n\}$, $\lim_{n \to \infty} \|w_n y_n\|_b = \lim_{n \to \infty} \|a_n b_n\|_b$.

Proof:

1. Let $\{w_n\} \in \widehat{w}$, $\{y_n\} \in \widehat{y}$ be any two b-Cauchy sequences, then

$$\|\mathbf{w}_{n} - \mathbf{y}_{n}\|_{b} \le \|\mathbf{w}_{n} - \mathbf{w}_{m}\|_{b} + \|\mathbf{w}_{m} - \mathbf{y}_{m}\|_{b} + \|\mathbf{y}_{m} - \mathbf{y}_{n}\|_{b}$$

Hence, $\|w_n - y_n\|_b - \|w_m - y_m\|_b \le \|w_n - w_m\|_b + \|y_m - y_n\|_b$

On the other hand, if we change m by n,

$$\|\mathbf{w}_{m} - \mathbf{y}_{m}\|_{b} - \|\mathbf{w}_{n} - \mathbf{y}_{n}\|_{b} \le \|\mathbf{w}_{m} - \mathbf{w}_{n}\|_{b} + \|\mathbf{y}_{n} - \mathbf{y}_{m}\|_{b}$$

It implies that

$$|||w_n - y_n||_b - ||w_m - y_m||_b| \le ||w_n - w_m||_b + ||y_n - y_m||_b \dots (4)$$

Thus, by taking n, m $\rightarrow \infty$ and Definition (1.1), it follows that

$$\lim_{n \to \infty} |||\mathbf{w}_n - \mathbf{y}_n||_b - ||\mathbf{w}_m - \mathbf{y}_m||_b| = 0$$

Then, $\{\|\mathbf{w}_n - \mathbf{y}_n\|_b\}$ is a Cauchy sequence in R. But, R is complete, thus $\lim_{n \to \infty} \|\mathbf{w}_n - \mathbf{y}_n\|_b$ exists.

2. Let $\{a_n\} \sim \{w_n\}$ and $\{b_n\} \sim \{y_n\}$. By the same argument of (4), it implies that

$$|||w_n - y_n||_b - ||a_n - b_n||_b| \le ||w_n - a_n||_b + ||y_n - b_n||_b$$

By taking n, m $\rightarrow \infty$ and proposition (2.3), we get

$$\lim_{n\to\infty} ||\mathbf{w}_n - \mathbf{y}_n||_b = \lim_{n\to\infty} ||\mathbf{a}_n - \mathbf{b}_n||_b . \blacksquare$$

From equation (3) and Proposition (2.3), the conditions (1-3) of a 2-normed space are done.

Proposition (3.6): $(\widehat{\mathbb{W}}, \|.\|_{\widehat{\mathbb{h}}})$ is a 2-normed space.

Proof: since
$$\|\widehat{\mathbf{w}} - \widehat{\mathbf{z}}\|_{\widehat{\mathbf{b}}} = \lim_{n \to \infty} \|\mathbf{w}_n - \mathbf{z}_n\|_{\mathbf{b}} \le \lim_{n \to \infty} \|\mathbf{w}_n - \mathbf{y}_n\|_{\mathbf{b}} + \lim_{n \to \infty} \|\mathbf{y}_n - \mathbf{z}_n\|_{\mathbf{b}} = \|\widehat{\mathbf{w}} - \widehat{\mathbf{y}}\|_{\widehat{\mathbf{b}}} + \|\widehat{\mathbf{y}} - \widehat{\mathbf{z}}\|_{\widehat{\mathbf{b}}}$$
, then $(\widehat{\mathbf{W}}, \|, \|_{\widehat{\mathbf{b}}})$ is a 2-norm. ■

Step4: Construction of an isometric $T: W \to \widehat{W}_0 \subset \widehat{W}$.

Let \widehat{W}_0 be the subset of \widehat{W} composed of the equivalence classes containing constant b-Cauchy sequences.

Define a function T: W $\to \widehat{W}_0 \subset \widehat{W}$ by $T(w) = \widehat{w} = (w, w, ...)$. It is clearly that T is a well-defined onto and one to one. In fact,

$$\|Tw - Ty\|_b = \|\widehat{w} - \widehat{y}\|_{\widehat{b}} = \lim_{n \to \infty} \|w - y\|_b = \|w - y\|_b,$$

Thus, \widehat{W}_0 and W are isometric.

Step 5: Proof \widehat{W}_0 is dense in \widehat{W} .

Proposition (3.7): If W is a generalized 2-inner product space, then, \widehat{W}_0 is dense in \widehat{W} .

Proof: Let $\widehat{w} \in \widehat{W} - \widehat{W}_0$, then, there exists a b-Cauchy sequence $\{w_n\} \in \widehat{w}$ where $\{w_n\} = \{w_1, w_2, ...\}$. Define $\widehat{w}^m = \{w_m, w_m, ...\}$ for all $m \in \mathbb{N}$, thus $\widehat{w}^m \in \widehat{X}_0$. Hence, by Definition (1.1)

$$\|\widehat{\mathbf{w}}^{\mathrm{m}} - \widehat{\mathbf{w}}\|_{\widehat{\mathbf{b}}} = \lim_{n, m \to \infty} \|\mathbf{w}_{\mathrm{n}} - \mathbf{w}_{\mathrm{m}}\|_{\mathbf{b}} = 0.$$

Then, \widehat{W}_0 is dense in \widehat{W} .

Step 6: Proof completeness of \widehat{W} .

Theorem (3.8): If W is a generalized 2-inner product space, then \widehat{W} is complete.

Proof: Let $\{\widehat{w}_n\}$ be a b-Cauchy sequence in \widehat{W} . Since \widehat{W}_0 is dense in \widehat{W} , thus there exists $\{\widehat{z}_n\} \in \widehat{W}_0$ such that $\|\widehat{w}_n - \widehat{z}_n\|_{\widehat{b}} = 0$. But

$$\|\hat{\mathbf{z}}_{n} - \hat{\mathbf{z}}_{m}\|_{\widehat{\mathbf{b}}} \leq \|\hat{\mathbf{z}}_{n} - \widehat{w}_{n}\|_{\widehat{\mathbf{b}}} + \|\widehat{w}_{n} - \widehat{w}_{m}\|_{\widehat{\mathbf{b}}} + \|\widehat{w}_{m} - \hat{\mathbf{z}}_{m}\|_{\widehat{\mathbf{b}}}.$$

Then, by equation (3) and Definition (1.1) and if we take n, $m \to \infty$, we get

 $\lim_{n,m\to\infty} \|\widehat{z}_n - \widehat{z}_m\|_{\widehat{b}} = 0 \text{ , it implies that } \{\widehat{z}_n\} \text{ is a b-Cauchy sequence in } \widehat{W}_0. \text{ But W and } \widehat{W} \text{ are isometric. Thus, there exists a b-Cauchy sequence } \{z_n\} \text{ in W which is contained in an equivalent class in } \widehat{W}, say \widehat{w}.$

Note that, $\|\widehat{w}_n - \widehat{w}\|_{\widehat{b}} \leq \|\widehat{w}_n - \widehat{z}_n\|_{\widehat{b}} + \|\widehat{z}_n - \widehat{w}\|_{\widehat{b}} = \|\widehat{w}_n - \widehat{z}_n\|_{\widehat{b}} + \|\widehat{z}_n - \widehat{z}_n\|_{\widehat{b}}$. Thus, $\lim_{n \to \infty} \|\widehat{w}_n - \widehat{w}\|_{\widehat{b}} = 0$. Therefore, \widehat{W} is complete.

Step7: Proof uniqueness of \widehat{W} up to isometrics.

Theorem (3.9): The space \widehat{W} is unique up to isometrics.

Proof: Let \widehat{Y} be another completion to W with a dense subset \widehat{Y}_0 in \widehat{Y} . Then, there exists S: W $\rightarrow \widehat{Y}_0$ is isometric by step 4 defined by S(w) = \widehat{y} = (y, y, ...).

We will define h: $\widehat{W}_0 \to \widehat{Y}_0$ by h(\widehat{w}) = ST⁻¹(\widehat{w}). It implies that \widehat{W}_0 isometric to \widehat{Y}_0 . For $\widehat{y}_1, \widehat{y}_2$ in \widehat{Y}_0 there exists b-Cauchy sequences $\{\widehat{y}_{1n}\}$, $\{\widehat{y}_{2n}\}$ in \widehat{Y}_0 such that $\widehat{y}_{1n} \to \widehat{y}_1$ and $\widehat{y}_{2n} \to \widehat{y}_2$. Thus, by equation (4)

$$|\|\hat{y}_1 - \hat{y}_2\|_{\hat{b}} - \|\hat{y}_{1n} - \hat{y}_{2n}\|_{b}| \le \|\hat{y}_1 - \hat{y}_{1n}\|_{b} - \|\hat{y}_2 - \hat{y}_{2n}\|_{b} \to 0$$

By taking $n \to \infty$

$$\|\hat{y}_1 - \hat{y}_2\|_{\hat{b}} = \lim_{n \to \infty} \|\hat{y}_{1n} - \hat{y}_{2n}\|_b \tag{5}$$

by the same argument

$$\|\widehat{w}_1 - \widehat{w}_2\|_{\widehat{b}} = \lim_{n \to \infty} \|\widehat{w}_{1n} - \widehat{w}_{2n}\|_b \qquad (6)$$

Thus, by (5) and (6) we get

$$\|\hat{y}_1 - \hat{y}_2\|_{\hat{b}} = \lim_{n \to \infty} \|\hat{y}_{1n} - \hat{y}_{2n}\|_b = \lim_{n \to \infty} \|\hat{w}_{1n} - \hat{w}_{2n}\|_b = \|\hat{w}_1 - \hat{w}_2\|_{\hat{b}}$$

It implies that \widehat{W} is isometric to \widehat{Y} .

4. Discussion and Conclusion

A complete metric space is a well-known concept. Every non-complete metric space W can be built into a complete metric space \widehat{W} , which is known as a completion of W. In this paper, we construct equivalent classes of b-Cauchy sequences to complete a generalized 2-inner product space.

References

- 1. Anshul, R.; Ravinder, K., S., ; Sumit, C., Stability of Complex Functional Equations in 2-Banach Spaces. *Journal of Mathematical Physics, Analysis, Geometry*. **2021**, *17*, *3*, 341–368.
- 2.Bahram, D.; Mohammad, J., Atomic Systems in 2-inner Product Spaces, *Iranian Journal of Mathematical Sciences and Informatics*. **2018**, *13*, *1*, 103-110.
- 3.Cho, Y., J; Freese, R. W., Geometry of Linear 2-Normed Spaces, Nova Science Publishers, New York, **2001**.
- 4.Y. J. Cho, M. Matic, J. E., Pecaric, On Gram's Determinant in 2-Inner Product Spaces, *J. Korean Math. Soc.*, **2001**, *38*(4), 1125–1156.
- 5.Debnath, P., Saha, M., Categorization of n-inner product space. Asian Res. *J. Math.* **2018,**11(4), 1–10.
- 6.Ghafoor, G., R.; Jamil, Z., Z., Study of b-Hilbert Spaces and Some Classes of Operators, University of Baghdad, Baghdad, 2018, 27-28.
- 7. Kreyszig, Erwin, Introductory Functional Analysis with Applications, *John Wiley and Sons, New York*, **1978**.
- 8. Prasenjit, G., Frame operator for K-frame in 2-inner product space, *International Journal of Mathematics Trends and Technology*. **2021**, *67*.
- 9.Mazaheri, H.; Kazemi, R., Some Results on 2-Inner Product Spaces, *Nove Sad. J.Math.* **2007**, *37*, 35-40.
- 10.Riyas, P., ; Ravindran, K., T., Riesz Theorems and ~Adjoint Operators On Generalized 2-Inner Product Spaces, *Global Journal mathematics*, **2015**, *3*, *1*, *May 18*, 244-254.
- 11. Sibel, E. Ideal Strong Lacunary Quasi Cauchy Sequences in 2-normed spaces. AIP Conference Proceedings 2334, 040004 .2021.
- 12. Vijayakumar, S.; Baskaran B., A Characterization of 2-Inner Product Spaces. AIP Conference Proceedings 2282, 020040 . **2020**