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Stable Heterogeneous Traffic Flow with Effective
Localization and Path Planning in Wireless
Network Connected and Automated Vehicles
in Internet of Vehicular Things (IoVT)

Ahmed N. Rashid *, Ahmed Mahdi Jubair

University of Anbar, College of Computer Science and Information Technology, Anbar, Iraq, Al-Ramadi-Altaamim, Al-Anbar, Iraq

ABSTRACT

The increasing complexity of networks comprising both Connected Autonomous Vehicles (CAVs) and Human-Driven
Vehicles (HDVs) presents substantial challenges in achieving accurate positioning, efficient communication, and optimal
route planning. Current methodologies fall short in enhancing vehicular network efficiency and reliability due to
noise interference, inefficient data transmission, and unstable data transfer. This study aims to improve localization
accuracy, reduce communication noise, and enhance path planning efficiency in mixed CAV and HDV environments
through the Stable Heterogeneous Traffic Flow using Deep Reinforcement Learning and Effective Path Planning (SHTDR-
EPP) approach. The primary goals are to ensure dependable localization, efficient communication, and reliable route
planning, thereby maintaining stable and efficient vehicle operations. The SHTDR-EPP approach integrates advanced
techniques to analyze heterogeneous traffic flow. Firstly, effective localization is achieved among CAVs. Secondly,
a deep reinforcement learning model is developed using the Markov Decision Process to manage mixed traffic flow
efficiently. Thirdly, effective path planning is conducted using Extended Direction Analysis. These methods collectively
ensure efficient communication between CAVs and HDVs. Experiments were conducted using NS3 and SUMO, with
key parameters evaluated including vehicle delay, energy consumption, and safety metrics. The proposed SHTDR-EPP
approach significantly enhances vehicular network performance. Positional accuracy is improved through effective
localization techniques. Communication efficiency is increased by employing DRL to manage noise and stability. Path
planning is optimized through EDA, ensuring efficient and reliable data transmission routes. Comparative analysis with
prior methods such as OPP-CAVs and ROC-CAVs demonstrates that SHTDR-EPP achieves superior energy efficiency and
vehicle safety. The SHTDR-EPP model effectively addresses critical issues of localization, communication noise, and path
planning in mixed vehicular networks. By leveraging modern techniques, the proposed approach significantly enhances
the overall efficiency, stability, and reliability of CAV and HDV interactions.

Keywords: Connected Automated Vehicles (CAVs), Intelligent Transportation Systems (ITS), Human Driven Vehicles
(HDVs), Stable heterogeneous traffic flow, Deep reinforcement learning, Effective path planning

1. Introduction

The current development in intelligent transporta-
tion systems creates a way for the localization of
Connected Autonomous Vehicles (CAVs), which are
mainly utilized to control and manage the vehicles’

traffic safety and high-speed mobility. Through CAV
technology, traffic safety is highly improvised, reduc-
ing traffic congestion and increasing manufacturers’
production. A recent study proves that around 90%
of human errors during driving are rectified by using
CAV technology [1]. The fact is that CAV technology
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Fig. 1. Network structure of Connected and Automated Vehicle (CAV).

is still not perfectly adapted by real-world vehicular
applications to control safety and mobility effectively.
Then, the micro-simulation process is introduced to
improve the benefits of CAVs in communication net-
works. The driving functionalities and characteristics
of CAVs are dissimilar to humans, so they cannot
handle any critical situation at the time of driving. In
current real-life conditions, a CAV can only commu-
nicate with other vehicles in a fixed communication
range, and multiple CAV connectivity is not appropri-
ate similarly. Simulation data may not fully describe
the complexity of real-world driving conditions. The
study overlooks the possible cyber security risks asso-
ciated with CAV and AV equipment [2]. The structure
of a CAV is given in Fig. 1.

To improve the real-life CAV performance and to
connect to multiple vehicles, the considered driv-
ing characteristics of the vehicles are their speed,
velocity, location, and acceleration, surrounded by
its DSRC (Dedicated Short-Range Communication)
area. Currently, a maximum of drivers utilizes the
automated features of cars while driving on the
highways. The connectivity features are also im-
proved, like “turned on” and “turned off,” which
is purely automatic in CAVs [3, 4]. Focusing on a
specific geographic area (SR417 in Orlando, Florida)
may limit the generalizability of the results to other
regions or traffic environments. Most of its function-
ality is derived from computer-generated models, but
these may not always reflect the driving environment
and behavior [5]. To reduce congestion in the CAV
technology, collisions at recurrent motorway bottle-
necks are concentrated, which mainly talks about
diverges and weaves because it mainly reduces the
network throughput and increases the delay, which
directly becomes the major anxiety for the users.
Car-following and lane-changing are other behaviors
that affect the throughput performance. Countless
earlier research concentrates on these issues to im-
prove the throughput performance [6]. Study results

are highly dependent on certain model parameters
and prevalence rates, which may limit their gener-
alizability. There is no mention in this document
of the potential difficulties involved in deploying
and integrating CAV technology into various trans-
portation infrastructures [7]. At the current time,
the improvement of stability and safety in CAVs has
become an open research area, so several pieces of
research have been done in this area to improve
the benefits of effective traffic flow. The usage of
CAVs has gradually increased compared with Human-
driven vehicles (HDVs), which account for around
75% of global vehicle ownership. The traffic flow of
the vehicles is currently at a mixed traffic flow of the
HDVs and CAVs. In general, the speed of the CAVs
is higher than the HDVs, so it is essential to moni-
tor the network effectively [8]. Real-time healthcare
applications may face significant delays and addi-
tional computational costs due to the implementation
of blockchain technology. This can be problematic
for many applications. The findings cannot be gen-
eralized to other medical data or Internet of things
applications, as the study focuses on only two specific
data sets. The lack of a comprehensive discussion on
the implementation and maintenance of an effective
blockchain-based cybersecurity framework in health-
care, as noted in the article, is due to time-consuming
and multifaceted tasks [9].

The current traffic flow becomes highly hetero-
geneous, affecting the performance regarding the
user understanding of an essential factor [9]. Real
traffic conditions may be more complex and var-
ied than what can be accurately estimated using
numerical simulations. HDVs may exhibit a simple
compensatory behavior that can lead to inaccurate
results. Notably, the report does not address whether
these proposed lane allocation strategies could be
implemented effectively in existing and future traf-
fic infrastructures [10]. Hence, heterogeneous traffic
flow is the combination of both the HDVs and CAVs,
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which utilize various reaction times. The reaction
time of CAVs is higher than that of HDVs, so it
is essential to achieve an appropriate reaction time
between the HDVs and CAVs to achieve effective
vehicle-to-vehicle communication in the network.
The approach’s practical implementation may be
constrained by its reliance on simulation outcomes,
which does not validate it in a real-world WSN setup.
The study neglects to fully compare the proposed
hybrid method with other advanced energy-efficient
clustering algorithms, apart from LEACH [11]. The
hybrid method’s performance is not adequately eval-
uated considering the presence of variable network
conditions and scalability issues [12, 13]. Real-
life traffic dynamics and potential communication
failures may not be fully captured by simulations. Em-
pirical validation of the proposed models and safety
measures in real-world traffic scenarios is not present.
The analysis overlooks the influence of varying envi-
ronmental conditions and infrastructure variations on
the effectiveness and safety of CAV and heavy vehicle
cross-country operations [14]. This research article
primarily concentrates on improving the stability of
heterogeneous traffic flow with the combination of
HDVs and CAVs.

The major drawbacks of CAVs are analyzed with
the help of earlier research. The problems identi-
fied in CAVs are stability and safety improvisation
among the vehicles and a proper communication
building among the HDVs and CAVs to achieve effec-
tive communication among the vehicles from various
categories. Consequently, effective, and stable path
planning becomes more crucial to accomplish this
task. To increase the efficiency and constancy of
the heterogeneous vehicular communication, which
consists of connected and non-connected automated
vehicles, EPP between them needs improvement, and
the trajectories of the CAVs need to be concentrated.
There is a lack of research on the effectiveness of the
method in dealing with highly dynamic or severe traf-
fic conditions, and there is no consideration of how
the localization process is affected by sensor errors
and variable data quality. The lack of exploration
on integration with real V2X systems and scalability
to accommodate larger fleets is also an issue. Vari-
able sensor noise and interference have an impact
on the proposed localization method. Furthermore,
it does not prove the effectiveness of this method in
extremely dynamic or complex traffic situations other
than simulation. The contribution of the research is
described below:

• The current generation of vehicular communica-
tion combines CAVs and HDVs. To improve the
stability and connectivity of the CAVs to HDVs and

HDVs to CAVs communication, a novel framework
is developed that concentrates on the optimiza-
tion of the whole mixed traffic flow of the CAVs
called Stable Heterogeneous Traffic Flow using
Deep Reinforcement Learning (SHTDR) with Ef-
fective Path Planning (EPP) among the connected
and non-connected automated vehicles.

• Parameters such as relative Direction-of-Arrival
(DOA) and Relative Distance (RD) are consid-
ered at the initial condition to achieve effective
localization. Through these parameters, an effec-
tive vehicle deployment is performed among the
CAVs. In addition, it also increases the vehicle-to-
vehicle communication quality.

• The SHTDR method works through Deep Re-
inforcement Learning using MDP, and the EPP
method works through the Extended Direction al-
gorithm (EDA). To achieve normalized traffic flow
among the CAVs and HDVs, the response time
of the CAVs is degraded, which helps to achieve
linear stability among the vehicles. These two
methods are effective enough to improve connec-
tivity and stability among the CAVs and HDVs.

The organization of the paper is Section 2 is dis-
cussed the related works of the previous fault and
losses. Section 3 is a construct SHTDR-EPP proposed
model which was developed from existing models.
Section 4 discusses the simulation results to com-
pare the previous models and shows the SHTDR-EPP
model is better than the existing model. Section 5 is
the conclusion of the study.

2. Related works

Several earlier studies have been developed in the
context of Wireless Network Connected and Auto-
mated Vehicles within internet of vehicles things.
This section discusses some of these significant stud-
ies. They include: The authors in [15], to solve the
System-Optimal Dynamic Traffic Assignment (SO-
DTA) problem with vehicle-exclusive lane segments,
the author Haiyang Liu et al. proposed a cell trans-
mission model for separate vehicle and bus traffic
(CTM-SCB) for analysing the network performance
of XBLs and IBLs and optimizing the network-wide
configurations for future urban traffic networks. The
effectiveness of the network is significantly increased
by the proposed method. In [16], a route genera-
tion methodology of an Enhanced Driver Model and
a Dynamic Programming based algorithm is devel-
oped to build a variety of simulated vehicle journeys
and synthetic paths for large-scale CAV energy us-
age assessment. The extracted real-world routes from
open-source mapping tools can then be compared
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to the produced simulated routes in terms of their
characteristics. In [17], a decentralized method for
optimizing the paths of CAVs is proposed in both
the longitudinal and transverse directions along a
signalized highway where both human-driven and au-
tonomous vehicles CAVs coexist. A two-stage model is
created to maximize CAV paths based on traffic light
plans of downstream junctions and trajectory data of
nearby cars. The proposed model can decrease CAVs
average delay times.

In [18], the predictive control (MPC)-based ap-
proach is embedded within the Aimsun microsim-
ulation platform, which permits the assessment of
numerous genuine vehicles’ operating and progres-
sion situations under various vehicle combinations.
Due to better real-time knowledge and short-term
projection from V2V contact, linked controlled vehi-
cles appear more effective at reaching their desired
pace than non-connected controlled vehicles. In [19],
it has provided a solution to the resilient optimum
control issue for linked and autonomous vehicle
platoons concurrently prone to unclear parasitic
actuation latency and input delays. An improved
multi-agent-based particle swarm optimization algo-
rithm is used to find the optimal design parameters in
the derived stability region to minimize a weighted
objective function for the robust optimal problem.
In [20] suggests a technique that defines successive
HDVs (i.e., AHDV) to minimize HDV stochasticity
and uses its prominent characteristics to regulate the
CAVs. The results show that the proposed control
method performs well in oscillatory reduction, eco-
driving, and generalization.

In [21], the general model framework of the funda-
mental diagram of the mixed traffic flow is proposed.
Under critical conditions, the influence factors of the
fundamental diagram are addressed. Finally, the gen-
eral condition of stable mixed-traffic flow is devised,
taking platoon size and CAV density into account.
This method enhances the influence of the charac-
teristics of the CAV platoon on stability. In [22], the
impact of the maximum platoon size of CAVs on traf-
fic safety in mixed-mode traffic is investigated. The
intelligent driver model (IDM), gap-regulating model,
coordinated adaptive cruise control (CACC), and
Adaptive Cruise Control (ACC) models represent the
four vehicle-following modes. CAV entry rate affects
the effect of platoon size on mixed traffic flow safety.
In [23], a combined receding horizon framework
control framework for traffic signal optimization is
developed, and CAV nanoscale control at an isolated
signalized junction to reduce fuel usage and enhance
transportation sustainability. The combined traffic
control system can boost traffic and energy economy.

[24] provided an accurate and stable iterated split co-
variance intersection filter (Iterated Split CIF)-based
cooperative localization approach with a decentral-
ized structure that can assure efficiency when data
sources have multiple error types. Using neighbour
vehicle information, we use an efficient point cloud
registration method to estimate cooperative relative
pose.

[25] developed an Extended Kalman Filter-based
joint tracking method to handle inaccurate GPS po-
sition data. It centralizes and distributes multi-modal
fusion is developed. The graph Laplacian operator
encodes range and GPS data linearly using the net-
work layout of working vehicles. The expanded trial
assessment using realistic vehicle paths derived by
VEHICLELA automated driving software shows sub-
stantial GPS error reduction under natural conditions.
[26] presented a cooperative localization method that
conducts multi-modal-fusion between linked vehicles
by modelling a fleet of connected vehicles as an undi-
rected graph, storing each vehicle location relative
to its neighbours. This method uses Laplacian Pro-
cessing and temporal coherence from vehicle motion
patterns. This reduces the GPS MSLE. [27] proposed
a joint localization method using relative DOA and
RD to enhance CAV localization accuracy in multive-
hicle environments, which improves vehicle location
accuracy.

3. Proposed SHTDR-EPP approach

To achieve precise CAV and HDV localization,
the proposed SHTDR-EPP model employs a robust
localization model that incorporates GPS measure-
ments and Gaussian noise measurement, while also
providing an efficient Markov decision-based DRL
approach to reduce noise and improve communica-
tion efficiency. The implementation of EPP through
EDA promotes better vehicle trajectories and reduces
cost functions to facilitate efficient data transmission.
Dynamic mobility analysis is used to continuously
evaluate trajectories, aiding in efficient route plan-
ning, and increasing communication stability and
reliability between vehicles by evaluating trust points
based on cost efficiency and optimal costs. The work-
flow of the proposed approach is illustrated in Fig. 2.

At the initial condition, the three-dimensional po-
sitioning error model is developed in the place of the
host vehicle, which collects the data of the neigh-
bor vehicles by considering the azimuth angle and
pitch angle, including the inter-vehicular distance at
the time of establishment of vehicle-to-vehicle data
transmission. Then, deep reinforcement learning is
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Fig. 2. Workflow of the proposed approach.

the process of creating a new control strategy us-
ing the Markov Decision Process (MDP) to neglect
the disturbances during data transmission among the
CAVs and HDVs. To achieve effective communication
among the vehicles, the generation of a short-term
path becomes essential, and for that purpose, an
Extended Direction algorithm (EDA) algorithm is
developed to ensure high-quality communication
among the vehicles. The EDA model is a MAC-based
approach mainly concentrating on the link layer. Re-
garding heterogeneous traffic flow among the CAVs
and HDVs, the communication among various vehi-
cles is handled in the following cases. There are: (i)
communication between two CAVs, in which the CAV
follows another CAV for data exchange; (ii) communi-
cation between CAVs to HDVs where the CAVs follow
the HDV for data exchange; (iii) the communication
between the HDVs where the HDV follow another
HAV to exchange the data and (iv) the communica-
tion between HDV to CAVs where the HDV follows
CAVs to exchange the information. Finally, the ratio
of the different vehicle types is analyzed using the
probabilistic theory. Algorithm 1, Effective Commu-
nication and Path Generation in CAVs and HDVs.

3.1. Stable localization model

At each instant of time t (t = 1, . .T ), e set taken
for vehicular network analysis G(t ) := {G(t )

1 , . . . ,G(t )
v }.

The number of CAVs considered is represented as v
in a certain group of vehicles called cluster. Inside
the cluster |G(t )

v | where its value is 3, the CAVs and
HDVs are resent here, and it perform an exchange of
information. The present state of the v-th Vehicular
with the time of t is represented as p(t )

i = [x(t )
i y(t )

i ]T
∈

R2 where the distance is measured according to the

following expression (1), which is equal to z(t )
d,i, j =

‖p(t )
i − p(t )

j ‖.

z(t )
az,v1,v2 =


λπ + arctan

∣∣∣x(t )
v2−x(t )

v1

∣∣∣∣∣∣y(t )
v2−y(t )

v1

∣∣∣ , λ = 0,1

π + arctan
∣∣∣y(t )

j −y(t )
i

∣∣∣∣∣∣x(t )
v2−x(t )

v1

∣∣∣ , λ = 1
2 ,

3
2

(1)

The CAVs and HDVs are equipped with GPS to
provide their location and other vehicle measure-
ments, which are performed using the Gaussian
measurement noise. Following that, three measures
are calculated for all the vehicles they are with
ζ (µ,6) as the Gaussian distribution and µ,6 its
mean and covariance, 6p. Is a diagonal matrix equal
to diag(σ 2

x , σ
2
y ). The considered measurements are

given in Table 1.
Furthermore, the Laplacian matrix is considered to

locate the vehicle L(t )
∈ R|G

(t )
v1 |×|G

(t )
v1 |s L(t )

= D(t )
− A(t ),

where D(t ) and A(t ) are the degree and the adjacent
side of the vehicle. The differential coordinates ac-
cording to the vehicle location are represented as
δ

(t )
i = [δ(t,x)

v1 δ
(t,y)
v1 ] ∈ R2 are equal to δ

(t,x)
v1 and δ

(t,y)
v1

as well the mathematical expression for those values
is given in Eqs. (2) and (3).

δ
(t,x)
v1 =

1∣∣∣N(t )
v1

∣∣∣− 1

∑
j∈N(t )

v1

(
−̃z(t )

d,v1v2 sin z̃(t )
az,v1v2

)
(2)

δ
(t,x)
v1 =

1∣∣∣N(t )
v1

∣∣∣− 1

∑
j∈N(t )

v1

(
−̃z(t )

d,v1v2 cos z̃(t )
az,v1v2

)
(3)

where N(t )
v1 implies the current vehicle neighbour with

cardinality N(t )
v . The Laplacian matrix is expressed
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Algorithm 1. Focuses on communication and path creation in CAV and HDV.

Step 1. Initialization includes the gathering of initial data, 3D position information for the host vehicle, and information about nearby
vehicles such as their azimuth angle, elevation perspective, or vehicle distance. Additionally, physical measurements are taken.

Step 2. Produce a positioning error model and construct another 3D positioning error model for the host vehicle’s location,
considering both its azimuth angle and elevation angle information, and adding up to calculate how many miles are between
vehicles in this error modeling method.

Step 3. Commence V2V communication based on the positioning error model.
Step 4. Utilize Deep Reinforcement Learning and DRL to create a novel control strategy and implement Markov Decision. A process

(MDP) that deals with interference during data transmission between CAV and HDV devices.
Step 5. Formulate a short-term trajectory devise an EDA to guarantee excellent vehicle communication, and facilitate the EDA model

as a MAC-based approach that focuses on the link layer.
Step 6. Handle heterogeneous traffic flow, and handle communication in the following situations:

Case 1: CAV-CAV communication, CAV follows another CAV communication.
Case 2: CAV-HDV communication, CAV follows HDV in communication.
Case 3: Data transfer from HDV to HDV, HDV follows another HDV in data exchange.
Case 4: HDV-CAV communication, HDV follows CAV in communication.

Step 7. Evaluate the proportions of different vehicle types (CAV and HDV) using probability theory.
Step 8. Emphasize superior communications quality, optimize data transfer, and constantly adjust the EDA system to ensure efficient

communication between vehicles.
Step 9. This is the end of the algorithm.

Table 1. Measurements and expression.

Measurement Expressions

Absolute position z̃(t )
p,v1 = p(t )

v1 + n(t )
p , n(t )

p ∼ ζ (0, 6p)
measurement

Distance measurement z̃(t )
az.v1v2 = z(t )

az.v1v2 + n(t )
az , n

(t )
az ∼ ζ

(
0, σ 2

az
)

Azimuth Angle z̃(t )
az.v1v2 = z(t )

az.v1v2 + n(t )
az , n

(t )
az ∼ ζ

(
0, σ 2

az
)

measurement

as L(t )
∈ R2|G(t )

v1 ||G
(t )
v1 | with the vector bt,x

∈ R2|G(t )
v1 |s bt,x

=

[D(t )g(t,x)

z̃(t,x)
p

]. ere δ(t,x)
∈ R|G

(t )
v1 |. To consider the vehicles,

positions bt,x s calculated, and it is expressed as equa-
tion below (4).

L(t )x(t )
= b(t,x). (4)

According to these calculations, the x and y po-
sitions of the CAVs and HDVs are identified, which
helps to achieve effective localization among the ve-
hicles.

3.2. Deep Reinforcement Learning (DRL) methods

Mainly to reduce the noise factor that is created
at the time of communication between the CAVs
and HDVs, this DRL method is created, which is de-
signed based on the Markov Decision Method (MDM).
This method contains four different factors for the
analysis: location (L), activity (A), principles (P),
and rewards (R). Here, the term location implies
the vehicle data fusion, which includes the weighted
deviations among the distance (1Dist

v) and vehi-
cle mobility (1spt

v), and the location calculation is
mathematically expressed as Lt

v = [1Dist
v,1spt

v]. The
location calculation is performed at each instant of

time as per the movements of the CAVs and HDVs.
The principles for communication are created accord-
ing to an implicit function related to the location
and activities so that it becomes P(A|L), which is up-
dated periodically to achieve effective performance
among the vehicles. Finally, rewards are determined
where the vehicle follows controlled efficiency that
treats the CAVs in a trained equilibrium state to
achieve highly flexible communication. According to
these parameters, the cost efficiency of the vehicle
is decided, which is mathematically expressed in the
equation below.

CEt
v =

(
Lt

v
)T Mv ∗ Lt

v (5)

In the above equation, the term Mv plies the matrix
in diagonal coefficient where Mv s mathematically
expressed below.

Mv = [aL,v az,v] (6)

In Eq. (6), the weights of a1,v0 and a2,v > 0. This
finally results in the optimal cost, which is mainly
designed to improve the vehicle stability, is expressed
in Eq. (7).

OCt
v = az,v

(
at

v
)2 (7)

In Eq. (7) the term a3,v plies the weight of vehicle
handling, calculated among the CAVs and HDVs. The
final trust score is measured using the vehicle’s cost
efficiency and optimal cost, and the mathematical
expression for the trust value is given in Eq. (8).

T t
v = CEt

v + OCt
v. (8)
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According to this trust calculation process, the
data transmission among the vehicles is effectively
handled, leading to improving the communication
stability of the vehicles.

3.3. Effective Path Planning (EPP) model

The algorithm that is used for the process of EPP
is Extended Direction Analysis (EDA), which mainly
concentrates on reducing the vehicles’ cost func-
tions. At the initial stage, the vehicles’ trajectories
are analyzed where T (v), v = 0 . . . , (v− 1).,nd kept
in correspondence with the cost function. Currently,
the extended directional equation is mathematically
expressed in the equation below.

EDAv =

[
δCF
δT (v)

]
ρ (v+ 1)+

δϕ

δT (v)
(9)

According to this equation, the control space is
achieved among the dynamic mobility-based vehi-
cles. This calculation is performed at each instant of
time to select the effective path among the vehicles to
transmit the data between the sources to the destina-
tion. Table 2, shows the difference between the three
proposed models.

4. Simulation evaluations

This section evaluates the effectiveness of the pro-
posed SHTDR-EPP approach, where the implemen-
tation and evaluation are conducted using NS3 and
SUMO mobility generators, which are open-source,
highly flexible simulators. SUMO is mainly chosen to
identify the vehicle communication model and lane-
changing process. The parameters that are concen-
trated to analyze the performance are vehicle delay,
vehicle energy, and vehicle safety measurements. The
calculated results are compared with the earlier meth-
ods like OPP-CAVs [18] and ROC-CAVs [19].

4.1. Vehicle delay calculation

Vehicle delay is defined as the extra time taken to
transmit the data from one place to another among
the CAVs and HDVs. Generating a lower range of de-
lay leads to better performance in vehicular networks.
In Fig. 3, the vehicle’s delay analysis is graphically
represented, where the performances of OPP-CAVs,
ROC-CAVs, and SHTDR-EPP approach are given. With
the help of effective localization and path selection
process using the DRL method, the performance of
the proposed SHTDR-EPP approach is better than the
others.

Table 2. Explanation of differences between the three proposed models.

Feature/Aspect Stable localization Model Deep Reinforcement Learning Methods Effective Path Planning Model

Primary Objective Precise localization of CAVs
and HDVs

Reduce communication noise and
improve decision-making for
efficient communication.

Optimize vehicle trajectories and
reduce cost functions for efficient
data transmission.

Core Components GPS measurements, Gaussian
noise measurement,
Laplacian matrix

MDP, location (L), activity (A),
principles (P), rewards (R)

EDA, dynamic mobility analysis

Measurement
Techniques

Absolute position, distance,
azimuth angle
measurements

Weighted deviations, vehicle mobility,
implicit functions for principles

Trajectory analysis, dynamic
mobility, control space
calculations

Mathematical
Models Used

Gaussian distribution,
Laplacian matrix,
differential coordinates

MDP, cost-efficient, optimal cost, trust
score

Extended directional equation, cost
function correspondence

Communication
Efficiency

Enhances communication
stability and reliability

Improves communication by reducing
noise and optimizing
decision-making

Focuses on efficient data
transmission through optimal
path selection

Data Handling Incorporates real-time GPS
data and physical
measurements

Fusion of vehicle data considering
location and activity

Trajectories analyzed in real-time to
determine effective data paths

Trust Evaluation Based on Cost efficiency and
optimal cost

Archived through a reward system and
trained equilibrium states

Not specifically focused on trust
evaluation but on trajectory and
cost optimization

Implementation
Complexity

Moderate (requires integration
of GPS and noise
measurement systems)

High (involves complex DRL
algorithms and continuous learning)

Moderate (focuses on trajectory
analysis and optimization,
requires EDA implementation)

Key Benefit Accurate localization of
vehicles for better
communication

Enhanced communication efficiency
and noise reduction

Efficient data transmission with
optimized paths and reduced costs
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Fig. 3. Vehicle delay calculation.

4.2. Vehicle energy calculation

The vehicle’s energy is measured in the way that
the remaining energy is stored at the end of the sim-
ulation, and if the percentage of energy stored in the
vehicles is high, that leads to an increase in the overall
energy efficiency of the network. In Fig. 4, the vehi-
cle’s energy of the proposed SHTDR-EPP approach is
calculated and compared to the earlier methods like
OPP-CAVs and ROC-CAVs. The power utilization is
highly reduced in the proposed SHTDR-EPP, which is
achieved with the help of effective path selection and
localization processes among the vehicles.

4.3. Vehicle safety measurements calculation

The vehicles are allowed to communicate with
other CAVs and HDVs, so it needs to concentrate more
on data confidentiality. To achieve effective commu-
nication, attaining a maximum percentage of vehicle
safety is indispensable. In Fig. 5, the calculation of
vehicle safety is performed among the methods like
OPP-CAVs, ROC-CAVs, and SHTDR-EPP from that the
proposed SHTDR-EPP achieved better performance
with the help of the induced ideas like effective path
selection and noise reduction.

Fig. 4. Vehicle energy calculation.

Fig. 5. Vehicle safety measurements calculation.

Table 3. Results analysis and measurements.

Parameters/Methods OPP-CAVs ROC-CAVs SHTDR-EPP

Vehicle Delay 153.26 ms 131.75 ms 102.48 ms
Vehicle Energy 186.28 Joules 225.17 Joules 423.28 Joules
Vehicle Safety 83.23% 85.23% 89.85%

Table 3 provides the performance analysis of the
considered methods like OPP-CAVs, ROC-CAVs, and
SHTDR-EPP in terms of vehicle delay, vehicle en-
ergy, and vehicle safety measurements. The vehicle
delay proposed by the earlier methods OPP-CAVs
and ROC-CAVs are 153.26 ms and 131.75 ms, re-
spectively, but the proffered SHTDR-EPP produced
around 100 ms, which is 30 ms to 50 ms lower than
the earlier methods. The vehicle’s energy attained
by the OPP-CAVs and ROC-CAVs are 186.28 Joules
and 225.17 Joules, whereas the proffered SHTDR-EPP
attained 423.28 Joules, which is 200 to 250 joules
higher than the earlier methods. In terms of vehicle
safety measures, the proposed SHTDR-EPP attained
89.85%, but the earlier methods, OPP-CAVs, and
ROC-CAVs, attained 83.23% and 85.23%, respec-
tively. So, the vehicle safety achieved by the proposed
work is 4% to 6% higher than the earlier methods.
Ideas like effective path selection among the CAVs
and HDVs, noise avoidance, and effective localization
in the proposed SHTDR-EPP lead to achieving better
performance among the vehicular networks.

5. Conclusion

A novel approach is developed to improve the lo-
calization and communication among the CAVs and
HDVs, namely the SHTDR-EPP, which helps achieve
intelligent communication. This proposed method
combines certain processes like the stable localiza-
tion model, DRL method, and effective path planning
model. This method allows noise reduction and delay
reduction among the vehicles. The implementation of
the proposed SHTDR-EPP is done in NS3 and SUMO,
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as the output values are calculated for parameters
like vehicle delay, vehicle energy, and vehicle safety
measurements, where it gets compared with the pre-
vious research like OPP-CAVs and ROC-CAVs. The
results show that the proposed SHTDR-EPP achieved
a 6% high vehicle safety ratio, 250 joules, high energy
efficiency, and around 50 ms minimum vehicle delay
compared with the earlier methods. In the future
direction, drones will be involved to enhance the
network density and vehicle coverage.
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