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ABSTRACT

This paper analyzes a novel prey-predator model that takes into account the predator’s stage structure, cannibalism
within the predator population, panicky behavior, and the existence of a sanctuary where the prey might hide from
the predator. The Holling type II functional response is used in the predation process. The behavior of the identified
fixed points of the proposed system has been closely analyzed. The analysis focuses on the local stability and potential
bifurcations that could happen close to the system’s fixed points. The Lyapunov function approach is used to investigate
the fixed-point stability zone globally. Numerical simulations were run to confirm the analytical findings as well as to
test the model’s long-term behavior to understand the impact of changing the system’s parameters. It is noted that the
system exhibits a variety of local bifurcations, most notably the Hopf bifurcation, which is calculated numerically for
various parameters.
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1. Introduction

When predators use alternate survival techniques in response to a lack of food resources, the dynamics of
prey-predator interactions receive relatively less attention. The majority of research in mathematical ecology
focuses on prey species that are directly preyed upon. The Lotka-Volterra model, which Lotka and Volterra first
introduced as independent works, is currently used as a framework to clarify the dynamics of prey-predator
relationships [1]. Many living things should be classified as either immature or mature in the real world.
Between these stages, there may be discernible physical and behavioral differences. For instance, young species
lack the ability to reproduce and hunt, and their capacity for survival and defense is minimal. On the other
hand, mature organisms have significant survival and defense abilities in addition to reproductive and predatory
abilities. These will have a significant effect on the population’s dynamic behavior. Studying the prey-predator
model with stage structure is, therefore, more useful. As a result, numerous researchers have examined various
prey-predator systems with stage structure and provided pertinent dynamic analyses [2–9].

Generally speaking, cannibalism refers to the practice of eating a member of the same species for food.
Both marine and land populations exhibit cannibalism, a frequently seen intraspecific interaction [10]. Since
individuals often turn to eating other members of their own species to augment their diet, cannibalism is more
common in areas with poor nutrition. By reducing possible competition for vital resources such as nourishment,
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housing, and territoriality, cannibalism acts as a population control mechanism by making those resources
easier to come by. Despite the possible benefits it might have for an individual, research has shown that
cannibalism is linked to a lower-than-expected survival rate for the group as a whole and a higher risk of eating a
family member. Further negative effects, such as a raised risk of disease transmission, are possible as the number
of interactions between hosts rises. Contrary to popular assumption, cannibalism does not only occur in extreme
cases of food scarcity or unnatural or artificial settings. Numerous species have been found to naturally have it
[11]. A particular species’ prey [12] and predator [9, 13] can both engage in cannibalism. It may be concluded
that there are significant differences between studies focusing on the traditional prey-predator paradigm and
those conducted on various prey-predator interactions. According to Deng et al. [14], prey species with a
high rate of cannibalism have an advantage in their particular settings. Additionally, they discovered that the
main causes of prey extinction are predator species with a higher propensity for cannibalism. According to
Zhang et al. (2019), both cannibalism and the economic benefits of cannibalistic behavior have a significant
impact on the system’s dynamics [15]. As the cannibalism parameter fluctuates towards the coexistence steady
state, the stability of the system experiences numerous variations. A noteworthy finding is that the system
stabilizes the world even when there is significant cannibalism. To clarify the dynamics between predators and
prey, Rayungsari et al. [16] have looked at a mathematical model that incorporates predator cannibalism and
refuge. The Lotka-Volterra kind of functional response was used to explain the food transmission phenomenon.
Predator cannibalism and refuge are included as variables in the mathematical model created and examined by
the authors of past research [13] to fully depict the dynamics of prey-predator interaction. The researchers put
out the theory that the prey population demonstrates traits of both refuge reliance on a predator and predation
fear.

In addition to cannibalistic behavior, the study of prey-predator interactions is fascinating because of
the prey’s propensity to hide from capture and ward off predator attacks. From an ecological standpoint,
the action that was seen can be categorized as sanctuary-seeking. Our understanding of the complex con-
nection between prey and predator has improved as a result of the development of analytical techniques
and computerization. These technological advancements have made it easier to provide more accurate
ecological system representations, which has improved understanding of this dynamic relationship. Prey-
hiding behavior has been recognized as a key component of prey-predator systems, and the impact of this
behavior on system stability has been thoroughly examined in different models [17] and the references
therein.

The term “sanctuary” has historically been used to refer to prey that consistently displays some level of
resistance to predators. The incorporation of sanctuaries by prey species may have a stabilizing influence on
the dynamics of prey-predator interactions, according to some preliminary theoretical analyses. Other models,
however, fail to consistently show this straight tendency [18–22]. A few studies [23–26] have used a prey-
predator model system where the prey sanctuary is distributed equally between both species. But taking into
account the proportionate sanctuary of prey for both species makes our model system seem more realistic. This
is because in some natural systems, both the population sizes of predators and prey may have an impact on the
availability of prey sanctuary.

The impact of a novel predator that doesn’t directly kill prey on prey population sizes has since been the
subject of multiple scientific studies [27–35]. “Prey-induced dread” is a term used to describe the phenomenon
that is characterized by a decline in the birth rate of prey organisms. Predator presence causes panic in prey
species, which makes them avoid open areas and limits their capacity to engage in common behaviors such
as mating. Therefore, they have less reproductive potential as a result of their panic due to predators. As a
contributing cause of a drop in fertility rates, panic should be considered.

Wang et al.’s prey-predator model [27] examined the impact of panic on prey reproductive dynamics.
Additionally, the idea that a higher level of worry can aid in the system’s stabilization by completely
removing the possibility of occasional alterations was clarified. Panday et al. [28] also looked into how
panic affected a Holling type II functional response in a tri-trophic food chain model. It has been deduced
that altering panic parameters may be able to control chaotic oscillations based on the finding that the
system displays chaotic dynamics for lower levels of both variables. The creation of a prey refuge is a
useful tactic for reducing the likelihood of predators overusing the biomass of prey. Panic was covered in
various environmental models recently [29–35], and it was mostly observed that fear has a stabilizing effect
on the dynamic behavior of the model under study. This paper, however, examines cannibalism, predator-
dependent refuge, and fear within the predator population simultaneously, in contrast to the findings indicated
above.
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Table 1. The description of parameters.

Parameter Description

r The birth rate of X in the absence of Z
d1 The mortality rate of X
b The intraspecific competition of X
f ≥ 0 The panic level in X population
a1 The attack rate of Z to X
K1 The half-saturation constant
c ≥ 0 The sanctuary level
µ Maturity rate
a2 = εa1; ε ∈ (0,1) The conversion rate of X into Y biomass
a3 The birth rate due to the cannibalism process
d2 The mortality rate of Y
e The cannibalism rate of Z to Y
K2 The half-saturation constant of Z
m ∈ [0,1] The sanctuary rate of Y from the cannibal Z
d3 The mortality rate of Z

2. Mathematical structure

In this section, the mathematical structure of the interaction between prey and predator, which is divided
into juvenile and adult systems, is built. It is suggested that there is cannibalism, panic, and sanctuary within
the system. As a result of the ferocity of an adult predator and the resulting panic from that ferocity and
aggressiveness, it is assumed that the prey took several safe sanctuaries to protect itself from predation, as
the number of safe sanctuaries is proportional to the density of the community of predators attacking it. The
predator has the property of internal predation (cannibalism) when there is a lack of food available for it to
survive, as previous studies have proven the presence of this property in many animals. Therefore, according
to these hypotheses, the dynamics of such an ecological system can be described mathematically utilizing the
following set of nonlinear differential equations.

dX
dT
=

rX
1+ fZ

− d1X − bX2
−

a1 (1− cZ) XZ
K1 + X (1− cZ)

= F1 (X,Y,Z) ,

dY
dT
=

a2 (1− cZ) XZ
K1 + X (1− cZ)

+ a3Y −
(
d2 + µ

)
Y −

e (1−m)YZ
K2 + (1−m)Y

= F2 (X,Y,Z)

dZ
dT
= µY − d3Z = F3 (X,Y,Z) , , (1)

where X (0) ≥ 0, Y (0) ≥ 0, and Z(0) ≥ 0. System (1)’s interaction functions are clearly continuous and have
continuous derivatives. Thus, since they are Lipschitzian functions, the system (1) has a unique solution. The
parameters of the system are supposed to be nonnegative and have a meaning as given in Table 1.

Theorem 2.1: The positive cone (int . R3
+

) is positively invariant for the system (1).

Proof. Use a justification similar to that stated in lemma (2.1) [36]. If you can demonstrate that for all
T ∈ [0, τ], X (T ) > 0, Y (T ) > 0, and Z(T ) > 0, where τ is any positive real number, then it is enough. Utilizing
a contradiction will therefore result in that.

If the situation were reversed, X (T ) > 0, Y (T ) > 0, and Z(T ) > 0 for every T ∈ [0, τ0], respectively, and at
least one of X (τ0), Y (τ0), and Z(τ0) must disappear when τ0 exists with 0 < τ0 < τ . As a result, system (1)
provides

X (T ) = X (0) e
T
∫
0

(
F1(X,Y,Z)

X

)
dT

Y (T ) = Y (0) e
T
∫
0

(
F2(X,Y,Z)

Y

)
dT

Z (T ) = Z (0) e
T
∫
0

(
F3(X,Y,Z)

Z

)
dT
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Given that Fi(X,Y,Z), i = 1,2,3 are defined on [0, τ0] and are continuous there, L ≥ 0 exists such that for
all T ∈ [0, τ0]

X (T ) = X (0) e
T
∫
0

(
F1(X,Y,Z)

X

)
dT
≥ X (0) exp (−τ0L)

Y (T ) = Y (0) e
T
∫
0

(
F2(X,Y,Z)

Y

)
dT
≥ Y (0) exp (−τ0L)

Z (T ) = Z (0) e
T
∫
0

(
F3(X,Y,Z)

Z

)
dT
≥ Z (0) exp (−τ0L)


Hence as T → τ0, it gets

X (τ0) ≥ X (0) exp (−τ0L)
Y (τ0) ≥ Y (0) exp (−τ0L)
Z (τ0) ≥ Z (0) exp (−τ0L)


The assumption that at least one of X (τ0), Y (τ0), and Z(τ0) must perish is contradicted by this. Since X (t ) > 0,

Y (t ) > 0, and Z(t ) > 0 are all true for every T ∈ [0, τ], the proof is complete.

Theorem 2.2: All system (1) ’s solutions are uniformly bounded.

Proof. From system (1), it is obtained that

dX
dT
≤ X (r − bX ).

Therefore, Using lemma (2.2) of [37], it is obtained that X ≤ r
b as T →∞. Define that N = X + a1

a2
Y + a1

a2
Z, then

compute the derivative of N for T to yield

dN
dT
= X (

r
1+ fZ

− d1 − bX )+
a1

a2
Y (a3 − d2 −

e(1−m)Z
K2 + (1−m)Y

)−
a1

a2
d3Z.

Then it is obtained that

dN
dT
≤ rX −

a1
(
d2 − a3

)
a2

Y −
a1d3

a2
Z ≤ 2

r2

b
− ρN

where ρ = min{r, d2 − a3, d3}. Thus, with the help of lemma (2.1) [37], as T →∞, it is obtained that N ≤ 2r2

ρb .
Therefore, the proof is complete.

3. Stability and bifurcation

In this section, the local behavior of system (1) around its fixed points (FPs) along with bifurcation are
investigated. First, the forms and existence conditions of all possible FPs are determined below.

• The vanishing fixed point (VFP), n0 = (0,0,0), always exists
• The axial fixed point (AFP), n1 = (X̃,0,0), where X̃ = r−d1

b exists under the prey survival condition r − d1 >

0.
• The planar fixed point (PFP), n2 = (0, Ȳ , Z̄), where

Ȳ =
(−µ+ a3 − d2)d3K2

(1−m)(eµ+ µd3 − a3d3 + d2d3)
, Z̄ =

µȲ
d3

(2)

exists provided that

µ+ d2 < a3 <
eµ
d3
+ µ+ d2. (3)
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• The survival fixed point (SFP), n3 = (X̂, Ŷ , Ẑ), where

X̂ =
d3K1[−Ẑ(1−m)(eµ+ (µ− a3 + d2)d3)− (µ− a3 + d2)µK2]

(1− cẐ)[Ẑ(1−m)d3(eµ− µa2 + (µ− a3 + d2)d3)− (µa2 − (µ− a3 + d2)d3)µK2]

Ŷ = d3
µ

Ẑ

 (4)

while Ẑ represents a positive root of the below six-order equation.

M6Z6
+M5Z5

+M4Z4
+M3M3

+M2M2
+M1Z +M0 = 0, (5)

with

M6 = −c2(1−m)2 fa1d2
3[(e− a2)µ+ d3(µ− a3)+ d2d3]2

< 0

M0 = [µa2(r − d1)− d3(µ− a3 + d2)(r − d1 + bK1)]a2µ
3K1K2

2

The formulas for the other coefficients, which were calculated using Mathematica software, are complicated.
As a result, if M0 > 0, the equation (5) has at least one positive root. As a consequence, the SFP occurs solely
if (5) has a single positive root and the following circumstances are true.

−Ẑ (1−m)
(
eµ+

(
µ− a3 + d2

)
d3
)
−
(
µ− a3 + d2

)
µK2 < 0

Ẑ (1−m) d3
(
eµ− µa2 +

(
µ− a3 + d2

)
d3
)
−
(
µa2 −

(
µ− a3 + d2

)
d3
)
µK2 < 0

}
(6)

Or otherwise,

−Ẑ (1−m)
(
eµ+

(
µ− a3 + d2

)
d3
)
−
(
µ− a3 + d2

)
µK2 > 0

Ẑ (1−m) d3
(
eµ− µa2 +

(
µ− a3 + d2

)
d3
)
−
(
µa2 −

(
µ− a3 + d2

)
d3
)
µK2 > 0

}
(7)

In the following theorems, the local behavior near the above FPs is studied.

Theorem 3.1: The VFP in system (1) is a stable node (STN) if the following requirements hold

r < d1 (8)

a3 < µ+ d2 (9)

It becomes unstable and the system encounters a transcritical bifurcation (TB) near VFP when r = d1(≡ rTB).

Proof. The variational matrix (VM) of system (1) at n0 = (0,0,0) is computed as follows:

V (n0) =

r − d1 0 0
0 −µ+ a3 − d2 0
0 µ −d3


Hence, V(n0) has the eigenvalues `10 = r − d1, `20 = −µ+ a3 − d2, and `30 = −d3. Consequently, `10 < 0, `20 <

0 under the conditions (8) and (9), respectively, which leads n0 to become STN. Now when r = rTB, then `10
becomes zero. So, VFP is a non-hyperbolic point for which there is a possibility of having a bifurcation.

Now, direct computation at r = rTB shows that U0 = (1,0,0)T and W0 = (1,0,0)T are the eigenvectors
related to `10 = 0 for V(n0, rTB) and [V(n0, rTB)]T . Also,

W0
T
[

dF
dr

(
n0, rTB)]

= 0, where F = (F1,F2,F3)T

W0
T
[

d
dX

Fr
(
n0, rTB)U0

]
= 1 6= 0

where X = (X,Y,Z)T
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W0
T
[

d2

dX 2F
(
n0, rTB) . (U0,U0)

]
= −2b 6= 0

Thus by Sotomayor’s theorem [38], the TB occurs.

Theorem 3.2: The AFP in system (1) is STN if condition (9) with the following requirement holds

µ a2
(
r − d1

)(
r − d1 + bK1

) < d3
(
µ− a3 + d2

)
(10)

It becomes unstable and the system encounters a TB near AFP when d3 =
µ a2(r−d1)

(r−d1+bK1)(µ−a3+d2) (≡ d3
TB).

Proof. The VM of the system (1) at n1 is computed as follows:

V (n1) =


−(r − d1) 0 −

(r − d1)[ f r(r − d1 + bK1)+ a1]
b2(r − d1 + bK1)

0 −µ+ a3 − d2
a2(r − d1)

(r − d1 + bK1)
0 µ −d3


Therefore, the characteristic equation (CE) of V(n1) can be written as

(−(r − d1)− `1)(`2
1 + (µ− a3 + d2 + d3)`1 + d3(µ− a3 + d2)−

µ a2(r − d1)
(r − d1 + bK1)

) = 0.

Clearly, the first term of CE gives the first negative eigenvalue l∞∞ = −(r − d1) due to the existence condition
of n1. However, the Routh-Hurwitz criterion ensures that the second term of CE has negative real parts roots,
namely `21 and `31, when their coefficients are positive, which are satisfied under the conditions (9) and (10).
Therefore, n1 is the STN point.

Now, for d3 = d3
TB, the absolute limit of the second term of CE becomes zero, which leads to having zero

eigenvalues, say `21 = 0. So, AFP is a nonhyperbolic point.
Now, direct computation at d3 = d3

TB shows that U1 = (θ1, θ2,1)T and W1 = (0, θ3,1)T are the eigenvectors
related to `21 = 0 for V(n1, d3

TB), and [V(n1, d3
TB)]

T
, where

θ1 = −
(r − d1)[ f r(r − d1 + bK1)+ a1]

b2(r − d1 + bK1)(r − d1)
< 0,

θ2 =
a2(r − d1)

(r − d1 + bK1)(µ− a3 + d2)
> 0,

θ3 =
µ

(µ− a3 + d2)
> 0.

Also, it is obtained that

W1
T [

dF
dd3

(n1, d3
TB)] = 0.

W1
T [

d
dX

Fd3 (n1, d3
TB)U1] = −1 6= 0.

W1
T
[

d2

dX 2F
(
n1, d3

TB
)
. (U1,U1)

]
= −

[
2a2K1b

[
c
(
r − d1

)
− bθ1

](
r − d1 + bK1

)2 +
2e (1−m) θ2

K2

]
θ3 < 0

Thus TB occurs.
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Theorem 3.3: The PFP in system (1) is STN if the following requirements hold

r
1+ f Z̄

< d1 +
a1
(
1− cZ̄

)
Z̄

K1
. (11)

a3 < µ+ d2 +
e (1−m) K2Z̄[

(1−m) Ȳ + K2
]2 . (12)

It becomes unstable and the system encounters a TB near PFP when d1 =
r

1+ f Z̄ −
a1(1−cZ̄)Z̄

K1
(≡ d1

TB) if the
following condition is satisfied:

2
[
Z̄
(
1− cZ̄

)2a1 − bK2
1

]
K2

1
− 2

[
f r(

1+ f Z̄
)2 + a1

(
1− 2cZ̄

)
K1

]
θ5 6= 0. (13)

Otherwise, system (1) encounters a pitchfork bifurcation (PB) near PFP provided that

6 f 2rθ2
5(

1+ f Z̄
)3 + 6a1

[
−Z̄
(
1− cZ̄

)3
+
(
1− cZ̄

) (
1− 3cZ̄

)
K1θ5 + cK2

1θ
2
5

]
K3

1
6= 0. (14)

Proof. The VM of system (1) at n2 is computed as follows:

V (n2) =


r

1+ f Z̄
− d1 −

a1
(
1− cZ̄

)
Z̄

K1
0 0

a2
(
1− cZ̄

)
Z̄

K1
−µ+ a3 − d2 −

e (1−m) K2Z̄[
(1−m) Ȳ + K2

]2 −
e (1−m) Ȳ

(1−m) Ȳ + K2

0 µ −d3


Therefore, the CE of V(n2) can be written as(

r
1+ f Z̄

− d1 −
a1(1− cZ̄)Z̄

K1
− `2

)
(`2

2
+ (µ− a3 + d2 +

e(1−m)K2Z̄
[(1−m)Ȳ + K2]2 + d3)`2

+ d3

(
µ− a3 + d2 +

e(1−m)K2Z̄
[(1−m)Ȳ + K2]2 )+

µ e(1−m)Ȳ
(1−m)Ȳ + K2

)
= 0

Clearly, the first term of CE gives the first negative eigenvalue `12 =
r

1+ f Z̄ − d1 −
a1(1−cZ̄)Z̄

K1
due to condition

(11). However, the Routh-Hurwitz criterion ensures that the second term of CE has negative real parts roots,
namely `22, and `32, if their coefficients are positive, which are satisfied under conditions (11) and (12).
Therefore, n1 is the STN point.

Now, for d1 = d1
TB, `12 becomes zero, which means `12 = 0. So, AFP is a non-hyperbolic point.

Now, direct computation at d1 = d1
TB shows that U2 = (1, θ4, θ5)T and W2 = (1,0,0)T are the eigenvectors

related to l∞∈ = 0 for V(n2, d1
TB) and [V(n2, d1

TB)]
T
, where

θ4 =
d3a2

(
1− cZ̄

)
Z̄[

d3

(
µ− a3 + d2 +

e(1−m)K2Z̄
[(1−m)Ȳ+K2]2

)
+

µ e(1−m)Ȳ
(1−m)Ȳ+K2

]
K1

> 0,

θ5 =
µa2(1− cZ̄)Z̄

[d3(µ− a3 + d2 +
e(1−m)K2Z̄

[(1−m)Ȳ+K2]2 )+ µ e(1−m)Ȳ
(1−m)Ȳ+K2

]K1
> 0.
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Also, it is obtained that

WT
2

[
dF
dd1

(
n2, d1

TB)]
= 0

WT
2

[
d
dx

Fd1

(
n2, d1

TB)U2

]
= −1 6= 0

WT
2

[
d2

dx2F
(
n2, d1

TB)
· (U2,U2)

]
=

2
[
Z̄(1− cZ̄)2a1 − bK2

1
]

K2
1

− 2
[

f r
(1+ f Z̄)2

+
a1(1− 2cZ̄)

K1

]
θ5

Therefore, TB arises if condition (13) is satisfied. Consider that condition (13) is now broken. Thus, the result
is:

WT
2

[
d3

dx3F
(
n2, d1

TB)
· (U2,U2,U2)

]
=

6 f 2rθ2
5

(1+ f Z̄)3
+

6a1
[
−Z̄(1− cZ̄)3

+ (1− cZ̄)(1− 3cZ̄)K1θ5 + cK2
1θ

2
5
]

K3
1

Hence, PB takes place due to condition (14).

Theorem 3.4: The SFP in the system (1) is STN if the following requirements hold

Z(1− cẐ)2a1[
X̂ (1− cẐ)+ K1

]2 < b. (15)

a3 < µ+ d2 +
e(1−m)K2Ẑ[

(1−m)Ŷ + K2
]2 . (16)

Ẑ <
1
2c
. (17)

X̂a2
[
X̂ (1− cẐ)2

+ (1− 2cẐ)K1
][

X̂ (1− cẐ)+ K1
]2 <

e(1−m)Ŷ
(1−m)Ŷ + K2

. (18)

− q11q22q33 − q11q23q32 + q13q21q32 > 0 (19)

It becomes unstable and the system encounters a saddle-node bifurcation (SNB) near PFP when b =
1
X̂

[
x̂Ẑ(1−cẑ)2a1

[X̂ (1−cẐ)+K1]2 −
q13q21q32

(q23q32−q22q33)

]
≡
(
bSNB) if the following condition is satisfied.

α11θ8 + α21θ9 6= 0 (20)

where all the unknown symbols are given below.

Proof. The VM of the system (1) at n3 is computed by:

V (n3) =
[
qi j
]
3×3

where

q11 = X̂

(
−b+

Ẑ(1− cẐ)2a1[
X̂ (1− cẐ)+ K1

]2
)
,

q13 = −X̂

(
f r

(1+ f Ẑ)2
+

a1
[
X̂ (1− cẐ)2

+ (1− 2cẐ)K1
][

X̂ (1− cẐ)+ K1
]2

)
,

q21 =
Ẑ(1− cẐ)a2K1[

X̂ (1− cẐ)+ K1
]2 > 0,
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q22 = −µ+ a3 − d2 −
e(1−m)K2Ẑ[

(1−m)Ŷ + K2
]2

q23 =
X̂a2

[
X̂ (1− cẐ)2

+ (1− 2cẐ)K1
][

X̂ (1− cẐ)+ K1
]2 −

e(1−m)Ŷ
(1−m)Ŷ + K2

q32 = µ > 0, q33 = −d3 < 0, q12 = q31 = 0

Direct computation shows that the CE of V (n3) can be represented as

`3
3 + P1`

2
3 + P2`3 + P3 = 0 (21)

where

P1 = − (q11 + q22 + q33)

P2 = q11q22 + q11q33 + q22q33 − q23q32

P3 = q11q23q32 − q11q22q33 − q13q21q32

with

A =P1P2 − P3 = −q11q22 (q11 + q22)− (q11 + q22 + q33) (q22q33 − q23q32)− q11q33 (q11 + q33)− q11q22q33

− q11q23q32 + q13q21q32.

Following the Routh-Hurwitz criterion, all roots of the CE given by (20) have negative real parts when
P1 > 0,P3 > 0 , and A > 0 which are satisfied under the conditions (15)-(19). Thus SFP is an STN.

Now, for the value of b = bSNB, it is easy to verify that P3 = 0. Therefore, SFP becomes non-hyperbolic, which
means one of the eigenvalues equals zero (say, `13 = 0 ), and bifurcation could occur.

Now, direct computation at b = bSNB shows that U3 = (θ6, θ7,1)T and W3 = (θ8, θ9,1)T are the eigenvector
related to `13 = 0 for V

(
n3, bSNB), and

[
V
(
n3, bSNB)]T , where

θ6 = −
q13

q11
, θ7 =

q21q13 − q11q23

q11q22
, θ8 =

q21q32

q11q22
, θ9 = −

q32

q22

Also, it is obtained that

WT
3

[
dF
d b

(
n3, bSNB)]

= −θ8X̂2
6= 0

Moreover, straightforward computation gives that

d2

dX2F
(
n3, bSNB) . (U3,U3) = (αi1)3×1

where

α11 =2X̂

[
f 2r

(1+ f Ẑ)3
+

ca1K1
(
X̂ + K1

)(
X̂ (1− cẐ)+ K1

)3
]
+ 2

[
−

f r
(1+ f Ẑ)2

−
a1K1

(
X̂ (1− cẐ)+ K1 − 2cẐK1

)(
X̂ (1− cẐ)+ K1

)3
]
θ6

−
2
(
bX̂3(1− cẑ)3

+ (1− cẐ)2 (3bX̂2
− Ẑa1

)
K1 + 3bX̂ (1− cẐ)K2

1 + bK3
1
)
θ2

6(
X̂ (1− cẐ)+ K1

)3
α21 =−

2a2K1
[
cX̂
(
X̂ + K1

)
−
(
X̂ (1− cẐ)+ (1− 2cẐ)K1

)
θ6 + Ẑ(1− cẐ)2θ2

6
](

X̂ (1− cẐ)+ K1
)3



198 IRAQI JOURNAL FOR COMPUTER SCIENCE AND MATHEMATICS 2024;5:189–207

−
2e(1−m)K2θ7

[
Ŷ (1−m)+ K2 − (1−m)Ẑθ7

](
(1−m)Ŷ + K2

)3 .

α31 =0.

Thus, by using condition (20), it is obtained that:

WT
3

[
d2

dx2F
(
n3, bSNB)

· (U3,U3)
]
= α11θ8 + α21θ9 6= 0

Therefore, SNB arises near PFP.

4. Global stability

The Lyapunov function, as shown in the following theorems, is used in this part to analyze the global stability
analysis for the fixed points of the system (1).

Theorem 4.1: Assume that condition (8) with the following conditions are satisfied, then the VFP is a global
asymptotic stable (GAS).

a3 < d2. (22)

Proof. Consider the following candidate Lyapunov function

L0 (X,Y,Z) = X +
a1

a2
(Y + Z)

Clearly, L0 : R3
+
→ R is a C1 positive definite function on {(X, Y, Z) ∈ R3

+
: X ≥ 0,Y ≥ 0,Z ≥ 0}. Direct

computation shows that:

dL0

dT
=

rX
1+ fZ

− d1X − bX2
−

a1(1− cZ)XZ
K1 + X (1− cZ)

+
a1

a2

(
µY − d3Z

)
+

a1

a2

(
a21− cZ)XZ

K1 + X (1− cZ)
+ a3Y − (d2 + µ)Y −

e(1−m)YZ
K2 + (1−m)Y

)
Therefore, it is obtained that

dL0

dT
< −

(
d1 − r

)
X −

a1

a2

(
d2 − a3

)
Y −

a1

a2
d3Z

Conditions (8) and (22) lead to the dL0
dT being negative definite. Hence, the VFP is GAS.

Theorem 4.2: Assume that condition (22) with the following condition are satisfied, then the AFP is a GAS.

r f X̄ +
a1X̄
K1

<
a1

a2
d3. (23)

Proof. Consider the following candidate Lyapunov function

L1 (X,Y,Z) =
(

X − X̄ − X̄ ln
X
X̄

)
+

a1

a2
(Y + Z)
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Clearly, L1 : R3
+
→ R is a C1 positive definite function on {(X, Y, Z) ∈ R3

+
: X > 0,Y ≥ 0,Z ≥ 0}. Direct

computation shows that:

dL1

dT
= −

r fXZ
1+ fZ

+
r f X̄Z

1+ fZ
− b

(
X − X̄

)2
+

a1 (1− cZ) X̄Z
K1 + X (1− cZ)

−
a1

a2

(
d2 − a3

)
Y −

a1

a2

e (1−m)YZ
K2 + (1−m)Y

−
a1

a2
d3Z

Therefore, it is determined that

dL1

dT
< −b

(
X − X̄

)2
−

a1

a2

(
d2 − a3

)
Y −

(
a1

a2
d3 − r f X̄ −

a1X̄
K1

)
Z.

Thus, conditions (22) and (23) lead to the dL1
dT being negative definite. Hence, the AFP is a GAS.

Theorem 4.3: The PFP is a GAS if condition (8) with the following conditions are met.

a3 <
e (1−m) Z̄

(K2 + (1−m)YMax)
(
K2 + (1−m) Ȳ

) + d2 + µ. (24)

[
e (1−m)

K2
(
K2 + (1−m) Ȳ

) − µ]2

< 4
1

YMax

[
e (1−m) Z̄

(K2 + (1−m)YMax)
(
K2 + (1−m) Ȳ

) − a3 +
(
d2 + µ

)]
d3. (25)

where YMax is the upper bound for Y .

Proof. Consider the following candidate Lyapunov function

L2 (X,Y,Z) = X +
a1

a2

(
Y − Ȳ − Ȳ ln

Y
Ȳ

)
+

a1

a2

(
Z − Z̄

)2
2

.

Obviously, L3 : R3
+
→ R is a C1 positive definite function on {(X, Y, Z) ∈ R3

+
: X ≥ 0,Y > 0,Z ≥ 0}. Direct

computation shows that:

dL2

dT
=

rX
1+ fZ

− d1X − bX2
−

Ȳ
Y

a1 (1− cZ) XZ
K1 + X (1− cZ)

−
a1

a2
d3
(
Z − Z̄

)2
−

a1

a2

[
e (1−m)

(K2 + (1−m)Y )
(
K2 + (1−m) Ȳ

) − µ] (Y − Ȳ
) (

Z − Z̄
)

−
a1

a2

1
Y

[
e (1−m) Z̄

(K2 + (1−m)Y )
(
K2 + (1−m) Ȳ

) − a3 +
(
d2 + µ

)] (
Y − Ȳ

)2
Therefore, it is result that

dL2

dT
<−

(
d1 − r

)
X −

a1

a2

[
e (1−m)

(K2 + (1−m)Y )
(
K2 + (1−m) Ȳ

) − µ] (Y − Ȳ
) (

Z − Z̄
)

−
a1

a2

1
Y

[
e (1−m) Z̄

(K2 + (1−m)Y )
(
K2 + (1−m) Ȳ

) − a3 +
(
d2 + µ

)] (
Y − Ȳ

)2
−

a1

a2
d3
(
Z − Z̄

)2
Further, simplifying the result.

dL2

dT
< −

(
d1 − r

)
X −

a1

a2

[
p22
(
Y − Ȳ

)2
+ p23

(
Y − Ȳ

) (
Z − Z̄

)
+ p33

(
Z − Z̄

)2]
.
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Clearly, condition (24) guarantees that p22 > 0. Hence using the given conditions it is obtained that:

dL2

dT
< −

(
d1 − r

)
X −

a1

a2

[√
p22

(
Y − Ȳ

)
+
√

p33
(
Z − Z̄

)]2
Moreover, dL2

dT is negative definite due to condition (8). Hence, PFP is a GAS.

Theorem 4.4: The SFP has a basin of attraction that satisfies the following conditions.

a1Ẑ
(
1− cẐ

)
K1
[
K1 + X̂

(
1− cẐ

)] < b. (26)

m12
2 < m11m22. (27)

m13
2 < m11m33. (28)

m23
2 < m22m33. (29)

where all the new symbols are given in the proof.

Proof. Consider the following candidate Lyapunov function

L3 (X,Y,Z) =
(

X − X̂ − X̂ ln
X
X̂

)
+

(
Y − Ŷ

)2
2

+

(
Z − Ẑ

)2
2

.

Obviously, L3 : R3
+
→ R is a C1 positive definite function on {(X, Y, Z) ∈ R3

+
: X > 0,Y > 0,Z > 0}. Direct

computation shows that:

dL3

dT
=−

[
b−

a1Ẑ(1− cZ)(1− cẐ)
[K1 + X (1− cZ)]

[
K1 + X̂ (1− cẐ)

]] (X − X̂ )2
− d3(Z − Ẑ)2

−

[
e(1−m)K2Z

[K2 + (1−m)Y]
[
K2 + (1−m)Ŷ

] − a3 + d2 + µ

]
(Y − Ŷ )2

−

[
r f

(1+ fZ)(1+ fZ)
+

a1
[
K1 + X̂ (1− cZ)

]
(1− cẐ)

[K1 + X (1− cZ)]
[
K1 + X̂ (1− cẐ)

]] (X − X̂ )(Z − Z̃)

+
a2K1(1− cZ)Z

[K1 + X (1− cZ)]
[
K1 + X̂ (1− cẐ)

] (X − X̂ )(Y − Ŷ )

−

[
e(1−m)Ŷ[K2 + (1−m)Y]

[K2 + (1−m)Y][K2 + (1−m)Ŷ]
−

a2X̂ [(K1 + X )(1− cZ)− cZ[K1 + X (1− cZ)]]
[K1 + X (1− cZ)][K1 + X̂ (1− cẐ)]

− µ

]
(Y − Ŷ )(Z − Ẑ)

Further simplifying the result gives

dL3

dT
=−m11

(
X − X̂

)2
−m22

(
Y − Ŷ

)2
−m33

(
Z − Ẑ

)2
+m12

(
X − X̂

) (
Y − Ŷ

)
−m13

(
X − X̂

) (
Z − Z̃

)
−m23

(
Y − Ŷ

) (
Z − Ẑ

)
Note that, condition (26) guarantees that m11 > 0, while condition (9) guarantees that m22 > 0. Further, the

rest of the conditions leads to

dL3

dT
< −

1
2
[√

m11
(
X − X̂

)
−
√

m22
(
Y − Ŷ

)]2
−

1
2
[√

m11
(
X − X̂

)
+
√

m33
(
Z − Ẑ

)]2
−

1
2
[√

m22
(
Y − ŷ

)
+
√

m33
(
z− ẑ

)]2
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Thus, the SFP is a GAS within the region that satisfies the above conditions.

5. Numerical simulation

We will numerically analyze the dynamics of system (1) in this section. The objective is to attain the findings
from the aforementioned sections and ascertain how parameters affect the dynamics of system (1). We will use
the following default parameter settings to begin numerically solving system (1), and we will gradually change
each parameter to see how it affects the system’s dynamic behavior and, if necessary, identify any bifurcation
points.

r = 1, d1 = 0.05, f = 1, b = 0.1, a1 = 0.75, K1 = 1,

c = 0.2, a2 = 0.5, a3 = 0.1, d2 = 0.15, µ = 0.1,

e = 0.2, m = 0.5, K2 = 1, d3 = 0.15. (30)

It is discovered that system (1)’s SFP solution was reached using the set (30) of initial points depicted in
Fig. 1, which indicates that the SFP that is given by n3 = (2.1, 1.55, 1.03) is a sink.

For the ranges r ∈ (0,0.05), r ∈ [0.05,0.15], and r > 0.15 with the rest of the parameters as in (30), system
(1)’s solution approaches n0, n1, and n3, respectively as shown in Fig. 1 for r = 1 and Fig. 2 for two different
values of r in the other ranges. This confirms the obtained results of Theorem 3.1, where r = 0.05 is a TB point
near VFP, as well as those of Theorem 3.4 regarding the existence of an STN of the SFP.

On the other hand, system (1)’s solution approaches to n3 and n1, where d1 ∈ (0,0.86), d1 ∈ [0.86,1) with
the remaining parameters as in (30), respectively as explained in Fig. 1 for d1 in the first range and Fig. 3 for
d1 in the second range. This confirms the result of Theorem 3.3, where d1 = 0.86 represents a TB point.

Now, by using the set of parameters (30) with different values of f , system (1) is solved numerically, and
the obtained trajectories are drawn in Fig. 4. According to Fig. 4, the solutions of system (4) approach the SFP
for different values of f with a decrease in the sizes of all species as the value of f increases.

Moreover, for the values of b in the ranges b ∈ (0,0.08] and b ∈ (0.08,1] with the other values of parameters
as in set (30), the solution of system (1) approaches a periodic attractor and SFP, respectively as given in Fig. 5.
It was noted that the effect of parameters e, c, and K1 on the dynamics of system (1) is similar to the effect
resulting from the change of parameter b with different range sizes for each parameter. Further, increasing the
parameter f or increasing the parameter c when the system approaches a periodic attractor restores stability
to system (1), and the solution approaches the SFP again, as shown in Fig. 5. This indicates that system (1) has
a Hopf bifurcation in addition to other types of local bifurcations given above.

For the ranges a1 ∈ (0,0.88] and a1 > 0.88 keeping the other parameters as in = set (30), the solution of
system (1) goes asymptotically to n3 and periodic attractor, respectively, as shown in Fig. 6. It was obtained
that the effect of parameters m and K2 on the dynamics of system (1) is similar to the influence obtained
from the change of parameter a1 with different range sizes for each parameter. Further, increasing any of

Fig. 1. System (1) approaches SFP using set (30) with different starting points. (a) Phase portrait. (b) Time series of the solution.
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Fig. 2. The solutions of system (1) using set (30) with different starting points. (a) Phase portrait for r = 0.04 approaches VFP. (b) Time
series of the solution for r = 0.04. (c) Phase portrait for r = 0.1 approaches AFP, where n1 = (0.5,0,0). (d) Time series of the solution for
r = 0.1.

Fig. 3. The solutions of system (1) using set (30) with different starting points. (a) Phase portrait for d1 = 0.88 approaches AFP, where
n1 = (1.2,0,0). (b) Time series of the solution for d1 = 0.88.

Fig. 4. The solutions of system (1) using set (30) with different values of f . (a) Time series of the trajectories of X . (b) Time series of the
trajectories of Y . (c) Time series of the trajectories of Z.
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Fig. 5. The solutions of system (1) using set (30). (a) Phase portrait for b = 0.07 approaches periodic attractor. (b) Time series of the solution
for b = 0.07. (c) Phase portrait for b = 0.07 with f = 10 approaches n3 = (1.18,0.47,0.31). (d) Time series of the solution for b = 0.07 with
f = 10. (e) Phase portrait for b = 0.07 with c = 0.3 approaches n3 = (2.78,1.81,1.2). (f) Time series of the solution for b = 0.07 with c = 0.3.
(g) Time series of the solution for b = 0.2 that approaches n3 = (1.69,1.09,0.72) from different initial points.

the parameters f or c in case of system (1) having a periodic attractor restores stability to the system, and
the solution approaches the SFP again, as shown in Fig. 6. This indicates that system (1) undergoes a Hopf
bifurcation as a function of parameters a1, m, and K2 in addition to other types of local bifurcations discussed
in the previous section.

Now, it is observed that the solution of system (1) approaches n3 periodically and n2 when a3 ∈ (0,0.11],
a3 ∈ (0.11,0.3), and a3 ∈ [0.3,1], respectively with the remaining parameters as in set (30), as shown in Fig. 7.
This confirms the results of Theorem 3.3 along with the existence condition of PFP. The existence of a periodic
attractor for the first range indicates the occurrence of Hopf bifurcation as a function of the parameter a3.

Now, for the set of parameters (30) with d2 in the ranges d2 ∈ (0,0.14), d2 ∈ [0.14,0.31), and d2 ∈ (0.31,1),
system (1) approaches asymptotically to the periodic attractor, n3, and n1, respectively as shown in Fig. 8.
Similar behavior occurs in the case of varying the parameters d3 regarding the solution of system (1) as shown
with d2.
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Fig. 6. The solutions of system (1) using set (30) with different initial points. (a) Phase portrait for a1 = 0.5 approaches n3 = (2.35,1.82,1.21).
(b) Time series of the solution for a1 = 0.5. (c) Phase portrait for a1 = 1 approaches the same periodic attractor with different phase angles.
(d) Time series of the solution for a1 = 1. (e) Time series of the solution for a1 = 1 with f = 4 that approaches n3 = (1.33,0.65,0.43). (f)
Time series of the solution for a1 = 1 with c = 0.3 that approaches n3 = (2.17,1.36,0.9).

Fig. 7. The solutions of system (1) using set (30) with different initial points. (a) Time series of the solution for a3 = 0.05 that approaches
n3 = (3.67,1.24,0.83). (b) Time series of the solution for a3 = 0.15 that approaches a periodic attractor with different phase angles. (c)
Time series of the solution for a3 = 0.35 that approaches n3 = (0,6,4).

Finally, for the ranges µ ∈ (0,0.02], µ ∈ (0.02,0.12), and µ ≥ 0.12, the solution of system (1) goes to n1,
n3, and periodic attractor, respectively, as shown in Fig. 9. Similar behavior occurs in the case of varying the
parameters a2 regarding the solution of system (1) as shown with µ.

6. Conclusions

The interaction between prey and predator, which is broken down into juvenile and adult forms, is repre-
sented mathematically. It was believed that the predator population would exhibit cannibalism, while the prey
population would exhibit panic and sanctuary as defensive traits. A group of nonlinear differential equations
were used to model the behavior of such a system. The proposed model’s solution’s entire qualitative features
are investigated. There was a thorough examination of the local stability and bifurcation. The Lyapunov
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Fig. 8. The solutions of system (1) using set (30) with different initial points. (a) Time series of the solution for d2 = 0.05 that approaches a
periodic attractor with different phase angles. (b) Time series of the solution for d2 = 0.2 that approaches n3 = (3.67,1.24,0.83). (c) Time
series of the solution for d2 = 0.4 that approaches n1 = (9.5,0,0).

Fig. 9. The solutions of system (1) using set (30) with different initial points. (a) Time series of the solution for µ = 0.01 that approaches
n1 = (9.5,0,0). (b) Time series of the solution for µ = 0.05 that approaches n3 = (4.62,2,0.66). (c) Time series of the solution for µ = 0.15
that approaches a periodic attractor with different phase angles.

technique was used to research global stability. The system is solved numerically using the fictitious set of
parameters to comprehend how the parameters affect the behavior of the solution to the system. The results
are as follows.

The system is dynamically complex and has a wide variety of bifurcations, including Hopf bifurcations. The
parameters are separated into four aggregates based on how they affect the solution behavior of the system.
The system is stabilized to some extent by the first aggregate, which consists of cannibalistic births and natural
deaths in the predator’s population (immature and mature) before the system loses its ability to persist. The
natural mortality rate of the prey, the rate at which the mature predator attacks the prey, the rate at which the
immature predator seeks refuge from the mature predator’s cannibals, and the mature predator’s half-saturation
constant make up the second aggregate, which has the effect of destabilizing the proposed system. The system
is stabilized by the third aggregate, which consists of the following parameters: the prey’s birth rate, its level
of panic, the predator’s half-saturation constant, its amount of sanctuary, and its cannibalism rate. Finally, the
fourth aggregate, which consists of the rate at which food is transformed from prey to predator and the rate at
which the predator reaches maturity, contributes to the system’s survival but later destabilizes it.
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