IHJPAS. 36(1)2023

Ibn Al-Haitham Journal for Pure and Applied Sciences

Journal homepage: jih.uobaghdad.edu.iq

On the Stability and Acceleration of Projection Algorithms

Zena Hussein Maibed Noor Nabil Salem
Department of Mathematics , College of Education Department of Mathematics , College of Education
for Pure Sciences,Ibn Al —Haitham/ University of for Pure Sciences,Ibn Al —Haitham/ University of
Baghdad- Iraq. Baghdad- Iraq.

Nour.Nabeel1203a@ihcoedu.uobaghdad.edu.ig

mrs zena.hussein@yahoo.com

Article history: Received 29 June 2022, Accepted 21 Augest 2022, Published in January 2023.

doi,org/10.30526/36.1.2923

Abstract

The focus of this paper is the presentation of a new type of mapping called projection Jungck
zn- Suzuki generalized and also defining new algorithms of various types (one-step and two-step
algorithms) (projection Jungck-normal N algorithm, projection Jungck-Picard algorithm,
projection Jungck-Krasnoselskii algorithm, and projection Jungck-Thianwan algorithm). The
convergence of these algorithms has been studied, and it was discovered that they all converge to
a fixed point. Furthermore, using the previous three conditions for the lemma, we demonstrated
that the difference between any two sequences is zero. These algorithms' stability was
demonstrated using projection Jungck Suzuki generalized mapping. In contrast, the rate of
convergence of these algorithms was demonstrated by contrasting the rates of convergence of the
various algorithms, leading us to conclude that the projection Jungck-normal NV algorithm is the
fastest of all the algorithms mentioned above.

Keywords: metric projection, Jungck-Picard algorithm, Jungck-normal &V algorithm, Jungck-
Thianwan algorithm, Jungck-Krasnoselskii algorithm, Fixed Point.

1.Introduction and Preliminary

There are a lot of published studies that included new algorithms and studied their strong
convergence and stability. In addition, they proved the rate of convergence of these algorithms,
see [1-9]. These algorithms are valuable tools used to find the value of the fixed point and to
resolve some problems. For example, they were used in solving nonlinear differential equations,
integration problems, etc.
The algorithms presented by the authors are varied (one-step, two-step, etc.). In 1967[10], scientist
Jungck introduced a new algorithm called Jungck Picard algorithm, but sometimes it is called
Jungck algorithm, as it consists of one step
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Yk,i1 = Tk, ,where ky € C,n € N. In 2011[11], the author Alfred Olufemi Bosede presented
an algorithm called Jungck-krasnoselskii. This algorithm is a special case of Jungck-Mann. The
Jungck-Krasnoselskii algorithm is defined as follows:
Yn,y, =(1- 8)¥Yn,+6Tn, , where npeC,neN, and § € (0,1).He also proved the
stability of Jungck-Mann and Jungck-Krasnoselskii algorithms. On the other hand, V. Brined
proved in 2004[12] that the Picard algorithm converges faster than the Mann algorithm. In 2008,
[13] presented a new two-step algorithm named after him. The Thianwan algorithm is defined as
follows:
Zpp1 = (1= a1+ a, Ty

1 =(1—= Bp)zn+ Pn T2, ,where 3, € C,n €N,
and {ay, }o—o and {f,}n—, are the real sequence in [0,1].
In addition, it has been proven the strong and weak convergence of this algorithm in the uniformly
convex Banach space. Now, we will mention some of the priorities we need:
Definition (1.1):[12] Let {m,};—,, {nn}ur, are two sequence lies in R such that {m,},_,

. —m
converge to m, {7,},_, converge to 72, and W = lim [ 7]
n—oo |np—n|

1. If W = 0 — the sequence {1, }+_,1s converge to n faster then {7, };_, converge to 7.

221 0<W <00 — {myu}a_,and {n,},, have the same rate of convergence.

Lemma (1.2):[14] Let U be a uniformly convex Banach space and {m,, },,_, be any sequence such
that 0 < p < @, < q < 1, for some p,g € R* and for all n > 1. Let {m,}>>_,and {n,}>_, are
two sequences of ‘U such that:

lim sup|lm,|l < ¢, lim suplin,|| < c and

lim sup||a,m, + (1 — @, )n,|| = ¢ for some ¢ = 0 Then
n—co

lim |[m2, — 7| =0

n—co

Definition (1.3): [15] Let W,T : C — C such that T(C) c¥(C) and p a coincidence point of ¥’
and T, that is, Wp = Tp = p. For any ¢, € C, let the sequence {Y'm,,}r_, generated by the
algorithm procedure Wm,, = f(T,m, ) n = 0 converge to p. Let {Y¢,}n—o < C be an
arbitrary sequence and set

en = d(PYns1, f(T,4,)),m = 0,1, --. Then, the algorithm Wc,, will be called (¥, T) —
stable if and only if il_)ngo €, = 0 implies that il_)ngo Yy, =p.

Lemma (1.4): [12] If 7 is a real number such that 0 < n < 1 and {€,,};—, 1S a sequence of

positive numbers, such that lim €, = 0 then, for any sequence of positive numbers {72, }r—o
n—oo

satisfying m,,,, < nm, + €,
Definition (1.5): [16] the mapping T: C — C 1s said Suzuki if satisfying the following
condition:

1
Sllm =Tm)ll < llm —nll = [IT(m) =T()|l < [lm —=nl,vm,n € C

2 .Main Results

We introduce a new type of mapping called projection Jungck zn-Suzuki generalized and by using
this type of mapping, we will propose new algorithms and analyse their convergence and rate of
convergence.

Definition (2.1):

Let X be a normed space, C be a nonempty closed convex subset of X. A mapping T,YV:C —

C and P, are called projection Jungck zn-Suzuki generalized mapping if

%llx —T(2)|l < ||¥x — Wy|| Implies that
||T(x) _ T(y)ll < Lllll’x _ ‘l’yII + @I|2c=Pe (20 ||+l c—"Fx]))

1+max {|Fe () —Fe W) I¥x—¥yl}
¢: R - R* is a monotone increasing function such that ¢(0) = 0

and L < 1.
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Definition (2.2):

The projection Jungck-Picard algorithm is defined as follows:

Ykpi1 = P.Tky, ko €C.

Definition (2.3):

The projection Jungck-Krasnoselskii 1s defined as follows:

Un,y, = (1 - 8)YP.(n,) + 6F.Tn, ,n, € C where P, is metric projection
and & € (0,1).

Definition (2.4):

The projection Jungck-normal V' algorithm is defined as follows:
Wiy, = PT((1 — ap)VYuy, + anPe(uy)) o € C where a,, € [0,1]
and Y’ has property NV, i.e., Y¥(x) < ¥(x), x € C & ¥ is a linear map
Definition (2.5):

The projection Jungck-Thianwan algorithm is defined as follows:
Yzp41 = (1 — a) VP, (17) + ayPeT 1y

Yy = (1 = Bp)VP:(20) + PnP.TZn 20 € C.

And this mapping is commute if VP, (x,) = P,V (x,).
Now, we talk about convergence, stability and rate of convergence.

Lemma (2.6):

Let C be a non-empty closed convex subset of a uniformly convex Banach space U. The mappings

T,¥:C - C are a projection Jungck zn-Suzuki generalized if {Y'u,} generated by projection

Jungck-normal V" algorithm, such that

1. lim ||Yu,, — p|| exists forall p € CF(P,, T, V), where CF (P, T, ) is the family of a common
n—co

fixed point.

2. lim ||[YYu, — Y2.(u,)|| =0
n—co

Proof:

Letp € CF (R, T, V),

”qjun+1 - p” = ”:ch((l - an)qjun + an:pc(un)) - p”

< ||T((1 - a,)Yu, + an?’c(un)) — p||

= L”"{J((l - an)qlun + anipc(ufn)) - p” +

¢(lp—-F @ +Ilp—¥rl)
1+max{||P.(p)—P.((1—ap) Pup +anP.(un)) | | ¥r— ¥ ((1—an) Wup+anP.(uyn))||}
= [(1 - an)”lpq'un - p” + an”qjjjc(un) - p”]

= [(1 - an)”lpun - p” + an”?cql(un) - p”]

< [Yu, —pll
So, we have
Yupyy —pll < IV, —plI (2.1)

< Yup—q —pll

< [[Yuo —pll (2.2)
From (2.1) and (2.2) lim ||Yu,, — p|| is exist
n—oo

Now to prove
lim ||YYu,, — YP,(u,)|l =0
n—co

Since, lim ||Yu, —p|l =c¢
T—0o0
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= li_)m sup||Yu, —pll =c

Nov;: N

lim sup ||V, —pl|

< lim sup [V, —pll = ¢

Soai_)ngo sup [[YYu, —pll < c (2.3)
To proof li_r)rolo sup [[YP(uw,) —pll < ¢

lim sup II?:I'S%(un) md

< lim sup [|2,9(u,) = p

< Jim sup|[Wu, — pl = ¢

So, lim sup [[W%,(,) — Il < ¢ (24)
Since ¢ = ?11_1){)10 sup||WYu,+, — pll

lim sup|[P.T((1 — an) Wiy + anP.(un)) =

Ai_r)gosup”T((l —a,)Vu, + an?’c(un)) — p||

lim supl|(1 — an) (P¥uy = p) + an(VF(un) = ) (2.5)
lim sup[(1 — ap) [V = pll + anllF¥ (un) = plI]

lim sup[(1 — ) [[Vuy = pll + anl[Vu, = pll]

= li_r){)losupllll’un —-pll=c

So. lim supll(1 = @) (P, — p) + @ (PP.r) — )| = ¢

From (2.3), (2.4), (2.5) and by using lemma (1.2) we get

lim (|99, — WP ()| = 0.

iemma 2.7):

Let T,¥:C - C are a projection Jungck zn-Suzuki generalized if {Wk,} generated by the

projection Jungck-Picard algorithm, such that
lim ||Yk,, — p|| exists for all p € CF(P,, T, V)
n—co

Proof: Let, p € CF(F., T, V)
Wky iy —pll = 1P Tk, — pll

< ITkyn = pll

< LYk, —pll +

AN AT

IA

@)l +llp—¥plD)
1+max{||7(p)-Fe(kn) . ¥p—¥knll}

< Yk, — pl|
So, we have
Yky,i1 —pll < Ik, —pll = {¥k,,} is non-increasing sequence (2.6)
< |[Wky—q —pll
< |[Yky, —pll = {Wk,} is bounded sequence (2.7)
From (2.6) and (2.7) the lim ||Wk,, — p|| is exist.
n—co
Lemma (2.8):

Let T,¥: C — C be a projection Jungck zn-Suzuki generalized mapping if {¥n,,} is generated by
the projection Jungck-Krasnoselskii algorithm, such that
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l. lim ||Wn, — p|| exists for all p € CF(P,, T, V)
n—co

2. lim [P, (ny,) — PTn,ll = 0
n—co

Proof: By following the same steps for the proof of theorem (2.6), we get the wanted results.

Lemma (2.9):

Let T,¥:C — C are a projection Jungck zn-Suzuki generalized mapping if {¥'z,,} is generated
by the projection Jungck-Thianwan algorithm, such that:

1. Tlli_{&I|Q'zn — p|| exists for all p € CF (R, T, V)

2. lim ||WP,(13) — P.T(13)] =0
n—oo

Proof:
Proof in the same way as lemma proof (2.6)
Theorem (2.10): Let T,¥: C — C are a projection Jungck zn-Suzuki generalized mapping with

L € (0,1). Let {Yn,,} be projection Jungck-Krasnoselskii algorithm converging to p where § €
(0,1). Then, the projection Jungck-Krasnoselskii algorithm i1s (W, T, P,)-stable.
Proof:

Let {y,} c Cand &, = [Yynss — (T, »o)ll
= |Vyns1 — (1 = OYP(yn) + SP.Tynll
Soa En = ||ql’y'n+1 - (1 - 6)111330(@71) + 6?01“'9‘11”

If limeg,=0,weget limYy,,;, =p
n—00 n—co

Then, the projection Jungck-Krasnoselskii algorithm 1s (W, T, P, )-stable.
Theorem (2.11): Let T,¥: C — C are a projection Jungck zn-Suzuki generalized mapping with
L € (0,1). Let {Yu,,} be a projection Jungck-normal V" algorithm converging to p, where {a,}
are sequences in [0,1], such that 0 < a < a,,. Then, the projection Jungck-normal V' algorithm
1s (W, T, P,)-stable.
Proof:
Let {y,} c Cand &, = |[Yyni1 — F(T, yn)ll

= ”l{lyn—i-l - :R:T((l - a’n)qjy‘n + an?c(y‘n))”

So, &, = ||ql’y'n+1 - SPGT((l — ay)Vy, + an:pc(%n))”
If Tlll_r& &, = 0, we get Al—{& YYyni1 =P
Then, the projection Jungck-normal V' algorithm is (W, T, F.)-stable.
Theorem (2.12): Let T,¥: C — C are projection Jungck zn-Suzuki generalized mapping with L €
(0,1). Let {Wk,} be a projection Jungck-Picard algorithm converging to p, where {a,} are
sequences in [0,1]. Then, the projection Jungck-Picard algorithm 1s (W, T, F,)-stable.
Theorem (2.13): Let T,¥: C — C are projection Jungck zn-Suzuki generalized mapping with L €
(0,1). Let {Y'z,,} be a projection Jungck- Thianwan algorithm converging to p, where {a,} and
{B,} are sequencesin [0,1] suchthat 0 < @ < a,, and, 0 < B < fB,, then, the projection Jungck-
Thianwan algorithm is (¥, T, . )-stable.
Proof: By following the same steps of the proof of theorem (2.9), we get the wanted results.
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Theorem (2.14): Let T,Y¥ are projection Jungck zn-Suzuki generalized mapping and
CF(P., T,¥) # ¢. Then, the projection Jungck-Picard algorithm converges faster than projection
Jungck-Krasnoselskii algorithm.

Proof:
For projection Jungck-Picard algorithm
IWkn1 —pll = 1P.Tky = pll

< Tk, —pll

< L||Vk, —pll + ¢ (lp—F-(0)ll+Ilp—pl))

1+max{||F(p)—Fe(kn) L 1¥p—Pknll}

< L'|Wko —plI
Put P.J.P. A = L"|Yk, — pl|
For projection Jungck-Krasnoselskii algorithm.
Y141 = pll = I(1 = 8)WF.(ny) + 6F. T, — pl
< (1= 9IYF(ny) —pll + 6P Tny, —pli
=1 - 9IFY () —pll + 6P Tn, —pli olorol ool
p—P:(p)l+llp—¥p
< (1= 0)¥np = pll + LONTnn = pll + S 12 5 2 o -
< (1-6(1 - L)I¥n, - pll

< [1 - 8(1 = L)"lwn, — pll

Put:

P.J.K.A=[1-61-L)]"[Yn, —pll
Now since:

PJPA _ L|[Wko—p||

=0 asn — oo,

PIKA  [1-8(1-L)]*|¥no—p|
Hence, the projection Jungck-Picard algorithm converges to p faster than the projection Jungck-
Krasnoselskii algorithm.

Theorem (2.15): LetT,¥ be a projection Jungck zn-Suzuki generalized mapping and
CF(P., T,¥) # ¢. Then, the projection Jungck-normal V' algorithm converges faster than the
projection Jungck- Picard algorithm.
Proof: Let p € CF (P, T,¥) and suppose that there exists £;0 < A< a, <1
For projection Jungck —Picard algorithm
We have,

P.J.P.A = L"|Wky — pll
From projection Jungck-normal NV algorithm
”qjun+1 - p” = ”:ch((l - an)qjun + an:pc(un)) - p”
< ||T((1 - a,)Yu, + an?’c(un)) — p||
= L”"{J((l - an)qlun + anipc(ufn)) - p” +

P +Ilp—¥pl)

1+max{||P(0)-P.((1—an) Pun+anP:(un)) || ¥o—-¥((1—an) Pun+anP:(un)) |}
= L”"{J((l - an)qlun + anipc(ufn)) - p”
= L”(l - a'n)l{ﬂl'un + anqujc(un) - (1 —an+ an)p”
= L"(l - an) (lI"{Jun - p) + an(qw}c(un) - p)”
= L[(l - an)”l{llllun - p” + an”l{J‘Pc(un) - p”]
< L[(1 = ap)Yun — pll + anllVP.(un) — pll]
= L[(1 = ap)|[Wun — pll + anllPY (un) — pll]
< L[(1 = ap)[Wup — pll + an|[Vuy, —pll]
< L[1 -4 - DIlYu, —pl
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< M1 = 2(1 = D]"[Yuo = pll

Let,

P.JN.A =M1 - AL - D)MW —pll
Now, since:

P.IN.A — L"1—-a,(1—-L)]™|Pue—p|| -0 asn — oo
P.JP.A L[Wko—pl|

Hence, the projection Jungck-normal N algorithm converges to p faster than the projection
Jungck-Picard algorithm.

Theorem (2.16)
Let X be a normed space and C be a nonempty closed convex subset of X if T is a projection
Jungck zn-Suzuki generalized mapping and CF (P, T,¥) # ¢. Then, the projection Jungck-
normal NV algorithm converges faster than the projection Jungck-Thianwan algorithm.

Proof: Let p € CF(F., T,¥)and suppose that there exists £,0 <L < f,,a, <1

For projection Jungck Thianwan-algorithm

Wzni1 —pll = |(1 = @) VP.(17) + @qPTry — (1 — an + an)pll

= (1 - an)”qjjjc('rn) - p” + an”?cT"”n - p”

= (1 = a)IPYV(r7) = pll + a,l|P. T —pll

= (1 - a'n)”qj'rn - p” + an”T'rn - p”

< (1= @7 = pll + el = pll + R e e

< (1= ap(1 = L)W, — pl (2.8)

Now,

”111,,/-?1 - p” = ”(1 - ﬁn)l{’j‘?G(zn) + ﬁnPcTZn - (1 - ﬁn + ﬁn)p”

= (1 - ﬁn)”qjjjc(zn) - p” + ﬁn”?cTzn - p”

= (1 - ﬁn)”fpcql(zn) - p” + ﬁn”?cTzn - p”

< (1= B)lVzy, — pll + BullTz, — Pl

< (1= B)l¥z, —pll + LBn Yz, — pll +

= (1= 4.1 - D)IVz, -l

< (1-201-1D)lI¥z, —pll (2.9)
Substitute Equation (2.9) in to Equation (2.8)

W20 = pll < (1= @n(1 = L)[(1 = 201 = L)) 192, = pll]

=[1-21-L) - ay(1 - L) + a,A(1 = )]z, — pll
<[1-21-L)-A1-L)+22(1 - D]|I¥z, — pll

<[1-22(1-10) + (1 - D]lI¥z, - pll

<[1-2(1-DPII¥z, —pl

¢(lp—F.()I+|lp—¥pl)
1+max{||P(p)—F:(z) ILI¥p—¥2nll}

< [1-2(1 - D)"Yz, — pli

Put:

P.J.T.A=[1-21-L)"¥3z, - pll
From projection Jungck-normal NV algorithm
P.J.N.A = "1 - A1 - L)]" [P — p|

Now since:
PIN.A  LM1-A1-D)]"|Puy—

J _ [1-A(1—1)]™| "p'Iasn—)oo
P.IJT.A [1-A(1-L)]2"||Wze—p||

Hence, the projection Jungck-normal V' algorithm converges to p is faster than the projection
Jungck- Thianwan algorithm.
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3. Conclusion

This paper offered a new type of mapping as well as introduced new algorithms and
demonstrated their convergence and stability. On the other hand, the acceleration and stability
were examined. We discovered that the projection Jungck-normal algorithm 1s quicker than the
techniques stated in this paper to achieve the fixed point.
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