

 104

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

Timetabling Problem Solving Based on Improved

Meerkat Clan Algorithm (IMCA)

Mohammed A. Jebur1, Hasanen S. Abdullah2
1,2Department of Computer Science, University of Technology, Baghdad, Iraq

1cs.19.10@grad.uotechnology.edu.iq, 2hasanen.s.abdullah@uotechnology.edu.iq

Abstract— The university courses timetabling problem (UCTP) is a big topic

among academics and institutions since it occurs every academic year. In

general, UCTP is the distribution of events across slots time for each room

based on a list of restrictions provided in one semester, such as (hard constraint

and soft constraint), with the objective of avoiding conflicts in such

assignments. Hard constraints should never be breached when striving to

satisfy as many soft constraints as possible. There are many different methods

used in automating the problems of the university timetabling course in higher

education institutions. This paper presents an improved algorithm for the

Meerkat Clan to solve the UCTP. This is done by studying the behavior of the

Meerkat Clan Algorithm and Specifying the points that are able to improve

without changing the main behavior of the Meerkat Clan Algorithm. And by

testing with four datasets of different sizes, good results were obtained by

optimizing this algorithm.

Index Terms— University Courses Timetabling Problem UCTP, Meerkat Clan Algorithm MCA,

Meta-Heuristics Search.

I. INTRODUCTION

It requires proper coordination and communication between several groups to prepare

the schedule and timetable in universities as it is a multiphase process. Mostly, planning

groups often consist of education administrators, department heads, teachers, and students

[1]. What is challenging for educational institutions is including a set of events e.g., training

courses that have to be allocated to specific rooms and time periods while adhering to a set

of constraints [2]. Constraints vary in the university course timetabling problem (UCTP)

that determent by the educational institution [3]. Some of these constraints, which are called

hard constraints, must necessarily be met. Another class of constraints is soft constraints to

assist improve schedule quality [4]. As a result, the best way to find the best solution is to

follow the soft constraints. There are unique hard and soft constraints that most institutions

define based on their facilities and resources. Previously, university schedules were

manually formed. Manually setting up a course timetable is a complex and time

immoderate task. Often it is not able to establish a timetable without conflict even after

several iterations of repair. UCTP has been proved as an NP-hard [5]. The variety of

requirements of different institutions increases the complexity of UCTP. That, suggesting

different new methods to process the problem for its importance [6,7]. A well-known

problem in the educational institution is the UCTP and is considered a classic in the area of

optimization problems. The objective of the problem is to match the number of activities,

such as courses, with the number of timeslots and rooms available. This UCTP is

summarized by creating a number of preset time slots that are scheduled for a group of

https://doi.org/10.33103/uot.ijccce.21.4.10

 105

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

events, a group-rooms that events can happen, a group-students present at each event, and a

group-constraints that must meet [5]. This means a group of Ne events E {e1, e2, …, eNe}

arranged in a group of 20 timeslots T = {t1, t2, …, t20} (There are five days in a week and

four timeslots per day.), and a group of Nr rooms R {r1, r2, …, rNr}, in which events can

happen.

This study only used one type of constraint: the Hard-Constraint, according to previous

research [8]. A hard constraint is a requirement that must be met. Soft-Constraints may be

considered, but they are not taken into account due to the scope of this study. The problem

is considered solved when all events are given a time slot while not violating any of the

hard constraints. When all of the following hard constraints are met, a solution (timetable)

is considered acceptable:

• Each event in each course is assigned a time slot.

• No student group can hold two events at once.

• No lecturer should be conducting two events at the same time.

• The proper room is used for all activities.

• No two events in the same room happen at the same time.

• No event is held in a room that is smaller than the expected number of students.

In this paper, the improved MCA is used to solve UCTP. The rest of the paper is

divided into six sections, as follows: The related work is shown in Section 2. The MCA is

shown in Section 3. The IMCA is shown in Section 4. Section 5 shows the results of the

testing as well as how it was carried out. Finally, but certainly not least. Section 6 discusses

the conclusion and offers suggestions for future research.

II. RELATED WORKS

Studies have included a lot of evolution-based optimization methods, the Genetic

Algorithm (GA) is highly common and many strategies based on GA have been tested for

University Courses Timetabling Problem (UCTP). To solve the UCTP, A hybrid local

search algorithm was used by Goh et al. [9] that combined Tabu Search (TS) and Simulated

Annealing Reheating (SAR). For solving the UCTP, Chen et al. [10] devised a controlled

randomization TS algorithm. To accommodate later algorithm creation, a random

acceptance technique with a threshold mechanism is proposed. To address the

disadvantages of metaheuristic optimization approaches, one of these problems is non-

deterministic polynomials. Muklason et al. [11] presented Tabu-Variable Neighborhood

Search. Instead of solving the problem directly, their solution used heuristics at each

decision point. Goh et al. [12] used a highly tuned Simulated Annealing (SA) and reported

superior results. Mazlan et al. [13] have used Ant Colony Optimization (ACO) lately. Their

approach has produced more reliable findings. Sarin and Wang [14] presented an integer

model for a UCTP with the aim of minimizing the traveled distance between classes by the

lecturers. Then, they employed the problem for a university in Virginia Tech and solved it

by applying Bender’s partitioning. In this article, we try to improve the Meerkat Clan

Algorithm (MCA) for solving the UCTP.

III. MEERKAT CLAN ALGORITHM (MCA)

This algorithm is inspired by the behavior of meerkats. Meerkats live socially together

in colonies of 5 to 30 individuals. They share parental and caring duties as social beings.

Each clan has a leader who can be male or female. Where a clan has its own territory, they

move through sometimes if no food is found or when a more ruthless clan forces them. In

https://doi.org/10.33103/uot.ijccce.21.4.10

 106

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

the event that a tougher clan forces them, weaker clans will try to grow in some other

manner or stay until they get stronger and regain their lost vulnerabilities. There is a so-

called 'sentry' for every clan which means who is guarding a clan and when to detect danger

and inform other members if there is danger. The task of the sentry is watching from (the

ground, climbing a tree, the bush). The sentry makes a loud beep when it notices danger,

then the clan will quickly move into their hiding holes. These being the general stages for

MCA; they can be modified based on the type of problem [15].

1- Initial: Set the parameters for size of clan, size of foraging, size of care, and rate of

worst foraging and rate of care by generating a clan of individuals at random.

2- Calculate the clan's fitness.

3- Like a 'sentry' I chose the best one.

4- Split up into two parts (foraging & care) from the clan.

5- For a foraging group, create neighbors.

6- Select the worst members of the foraging group and replace them with the best

members of the care group.

7- Remove the worst members of the care group and generate a new one at random.

8- Supplant the best forager with a sentry if the best option.

Fig. 1 shows the pseudocode MCA.

FIG. 1. PSEUDOCODE MCA [15].

https://doi.org/10.33103/uot.ijccce.21.4.10

 107

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

This MCA contains many parameters that affect the performance of the algorithm. The

first parameter is the size of the clan (n), it represents the number of solutions in the clan or

population size of the problem. The performance of the algorithm is influenced by the

parameter (n), especially when it is set to a large value, which causes the algorithm to run

slowly. It is preferable to choose (n) between 30 and 50 solutions. It does not affair if you

choose (n) more than 50 in special cases depending on the needs of the problem. As for

what is a parameter for the size of the foraging group (m). The number of solutions from

the clan is the parameter (m). It is necessary to make an informed decision because it

represents the clan's best options. A large value causes some bad solutions to be added to

the foraging group, potentially causing the algorithm to reach a delayed best solution. As a

result, (m) must be carefully chosen. The size of the care group is a parameter (c). After

division, this is the number of rest solutions in the clan. In the care group, the best options

are switched for the bad ones in the foraging group, also the worst options are discarded.

The care group is created and random options are added. The worst foraging rate (Fr) is a

parameter that represents the percentage of foraging solutions that were swapped with the

best solutions in the care group. This rate has an impact in terms of performance,

particularly when the foraging group has a lot of good options. The worst care rate (Cr) is a

parameter. In the care group, the rate of worst solutions decreased. The crucial parameter is

(K), which indicates the total number of generated neighbors. This parameter allows the

algorithm to choose the next step with more variety. Height diversity is not always

appropriate for some problems, so it must be carefully chosen.

IV. IMPROVED MEERKAT CLAN ALGORITHM (IMCA)

The new solutions generative resulting from the current solution are divided into two

classes of solution. The first class has desired values that are replaced by the current

solution. The second class has undesirable values that are compared to previous solutions

and replaced. IMCA relies on exploiting the second class of new solutions, which can be

replaced by some of the current worst solutions in the foraging group by random selection.

On the other hand, undesirable solutions that give fitness to the best value from the current

solutions. In detail, IMCA improved the basic MCA by the solution (x) generated from the

neighbor_generat function. In addition, choose one solution (y) from the foraging group at

random. If the solution (x) is better than solutions (y) then replace it. The pseudocode of

the IMCA is shown in Fig. 2. The basic MCA ignores the undesirable solutions, while the

IMCA algorithm exploited the undesirable solutions to be a substitute for weak solutions in

the foraging group. The test results indicated that the IMCA advantage in performance

compared to the basic MCA.

V. EXPERIMENTAL RESULTS

The datasets, as well as their most notable features, are described in this section of the

paper. It has been shown how to set up parameters for IMCA. After that, the results will be

discussed and analyzed.

A. Dataset Description

The Royal Institute of Technology KTH [8] provided the dataset's input data. The

number of student groups, courses, and classes in each of the four input data files varies.

Each student group has two courses to complete, each with one to three events to plan.

Divide the number of events by the number of timeslots to get the event density. The

https://doi.org/10.33103/uot.ijccce.21.4.10

 108

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

datasets are divided into four categories based on event density (S, M, L, and XL). The

classified datasets are summarized in Table 1.

Parameter

n = size of clan

m = size of foraging where m < n

c = size of care n-m-1

Fr = rate of worst foraging

Cr = rate of worst care

k = neighbor option

Start

Create a clan(n) of options at random

Calculate clan fitness options

Sentry = clan's best option

Split up into two parts (foraging & care) from the clan.

While not termination condition Do

For i=1 to m

Call neighbor_generat (k, Sentry, foraging(i), best_one)

If best_one is better than foraging(i)

foraging(i) = best_one;

Else

 Let solution(x) = best_one;

Select randomly solution(y) from foraging group;

If solution(x) is better than solution(y);

 solution(y)  solution(x);

end for

In the foraging group, exchange the worst option for Fr with the best option in the care

group;

Remove the worst Cr option from the care group and create an option at random;

Choose the best foraging option and name it best_forg;

If best_forg <= Sentry then

Sentry  best_forg

end if

end while

End

Function of neighbor_generated
In : K, Sentry, foraging(i)
Out : best_one
Start

Obtain k neighbors by foraging;
Calculate k's fitness.
If there is no one best than foraging(i) then

Obtain k neighbors by Sentry;
Else

best one is the better one of neighbor for both foraging and Sentry;
end if

End

FIG. 2. IMPROVED MEERKAT CLAN ALGORITHM (IMCA) ALGORITHM PSEUDOCODE.

Lecture, lesson, and lab are the three types of rooms. A week is divided into five

weekdays, from Sunday to Thursday, with each weekday divided into four two-hour

timeslots. This equates to a total of 20 timeslots in each room. For example, if there are

eight rooms on the schedule, the total time slots are 8x20=160.

https://doi.org/10.33103/uot.ijccce.21.4.10

 109

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

TABLE 1. SUMMARY OF THE DIFFERENT TEST DATA SETS [8]

Input Data File kth_S kth_M kth_L kth_XL

Lecture Rooms 2 2 3 6

Lesson Rooms 3 5 6 10

Lab Rooms 3 5 7 11

Courses 12 15 21 29

Lecturers 9 12 15 21

Student Groups 6 8 12 21

Total Events 70 115 159 293

Total Time Slots 160 240 320 540

Event Density 0.44 0.48 0.50 0.54

B. Parameter setting

Several tests were carried out to determine the proper parameter values for the

examination and to compare the IMC and MC algorithms. The values of the parameters

considered are listed in Table 2.

TABLE 2. USED PARAMETER FOR TESTING

Parameter No. Parameter Name kth_S kth_M kth_L kth_XL

1 Clan Size 30 40 50 60

2 Foraging Size 18 24 30 36

3 Care Size 11 15 19 23

4 Iteration 60 80 100 120

5 Worst foraging rate 0.25 0.25 0.25 0.25

6 Worst care rate 0.25 0.25 0.25 0.25

7 Neighbor solution 6 8 10 12

1-Clan Size: The size of the population or the number of meerkats, which ranges from

30 to 60 with an increment of 10.

2-Foraging Size: Equals (clan size multiplied by 0.6), which ranges from 10 to 36

depending on the clan size.

3-Care Size: Equal (clan size minus foraging size minus 1), which ranges from 11 to 23

depending on the clan size and the foraging size.

4-Iteration: The number of iterations (60, 80, 100, and 120) is determined by the size of

the dataset.

5-Worst foraging rate: probability with a value of 0.25.

6-Worst care rate: probability with a value of 0.25.

7-Neighbor solution: Equals (clan size multiplied by 0.2), which ranges from 6 to 12

depending on the clan size.

https://doi.org/10.33103/uot.ijccce.21.4.10

 110

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

C. Discussion and analysis of the results

Several experiments were performed according to the parameters listed in Table 2. It

uses C# programming language and computer specification (CPU Core i5, RAM 8MB, OS

Windows 10 64-bit, HDD 512GB).

A fitness level function is used to grade the solution by calculating the number of hard

constraints that were violated as shown In the formula:

fitness(timetable) = (HC1 + HC2 + HC3 + HC4)

where HC1, HC2, HC3, and HC4 are as follows:

CH1 is the number of double-booked student groups.

CH2 is the number of double-booked lecturers.

CH3 is the number of room capacity breaches.

CH4 is the number of room-type breaches.

This is achieved by taking ten readings of the average fitness values on each iteration.

Also calculating the ratio of change for the average fitness values for each iteration by

formula:

𝑟𝑎𝑡𝑒 =
𝑓(𝐵) − 𝑓(𝐴)

𝑓(𝐴)

Where f(B) is the average fitness value of ten readings on each iteration for IMCA, also

f(A) is the average value of fitness for MCA for the same number of readings. In other

words, the f(A) and f(B) values are average fitness values in the same iterations for

calculating the difference of increase or decrease to average fitness. The rate value may be

positive or negative depending on the difference in fitness value. The negative value refers

to improvement in performance. And vice versa. The obtained test results are shown in

Table 3, Table 4, Table 5, and Table 6 by datasets.

TABLE 3: RESULTS OF TESTING FOR KTH_S DATASET.

Iterations 𝒇(𝑨) 𝒇(𝑩) 𝒇(𝑩) − 𝒇(𝑨)
𝒇(𝑩) − 𝒇(𝑨)

𝒇(𝑨)

1 55.5 55.5 0 0.00%

4 49.2 47.5 -1.7 -3.46%

7 42.7 42.9 0.2 0.47%

10 37.7 38.9 1.2 3.18%

13 32.7 32.9 0.2 0.61%

16 29.5 26.4 -3.1 -10.51%

19 25.2 24 -1.2 -4.76%

22 21.4 20.7 -0.7 -3.27%

25 17.5 16.3 -1.2 -6.86%

28 14.6 15.1 0.5 3.42%

31 10.5 10.8 0.3 2.86%

34 9.6 7.9 -1.7 -17.71%

37 7.8 6 -1.8 -23.08%

40 5.5 4.2 -1.3 -23.64%

43 5.1 3.8 -1.3 -25.49%

46 3.3 3 -0.3 -9.09%

49 2.6 1.4 -1.2 -46.15%

52 2.5 0.6 -1.9 -76.00%

51 1.4 0.5 -0.9 -64.29%

58 1.2 0.6 -0.6 -50.00%

TABLE 4: RESULTS OF TESTING FOR KTH_M DATASET.

Iterations 𝒇(𝑨) 𝒇(𝑩) 𝒇(𝑩) − 𝒇(𝑨)
𝒇(𝑩) − 𝒇(𝑨)

𝒇(𝑨)

1 100.3 102.1 1.8 1.79%

5 92.8 90.6 -2.2 -2.37%

9 82.3 80.8 -1.5 -1.82%

13 73.7 73.2 -0.5 -0.68%

17 66.1 67.2 1.1 1.66%

21 59 57.5 -1.5 -2.54%

25 53.5 52.4 -1.1 -2.06%

29 46.4 43.3 -3.1 -6.68%

33 40.7 39.6 -1.1 -2.70%

37 35.6 34.1 -1.5 -4.21%

41 30.3 28.3 -2 -6.60%

45 26.9 23.3 -3.6 -13.38%

49 20.7 19.1 -1.6 -7.73%

53 18.3 14.6 -3.7 -20.22%

57 16.2 12.5 -3.7 -22.84%

61 10.5 9.4 -1.1 -10.48%

65 8.7 6.4 -2.3 -26.44%

69 8.7 5.1 -3.6 -41.38%

73 5.1 2.9 -2.2 -43.14%

77 3.6 2.1 -1.5 -41.67%

https://doi.org/10.33103/uot.ijccce.21.4.10

 111

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

TABLE 5: RESULTS OF TESTING FOR KTH_L DATASET.

Iterations 𝒇(𝑨) 𝒇(𝑩) 𝒇(𝑩) − 𝒇(𝑨)
𝒇(𝑩) − 𝒇(𝑨)

𝒇(𝑨)

1 147 148 1 0.68%

6 131.2 132.7 1.5 1.14%

11 122.3 120.2 -2.1 -1.72%

16 108.8 108.5 -0.3 -0.28%

21 98.9 100.9 2 2.02%

26 88.6 86.8 -1.8 -2.03%

31 76 76.4 0.4 0.53%

36 69.4 67.5 -1.9 -2.74%

41 59.7 56.9 -2.8 -4.69%

46 49.7 50.5 0.8 1.61%

51 47 42.8 -4.2 -8.94%

56 39.1 37.5 -1.6 -4.09%

61 34.3 31.3 -3 -8.75%

66 26 25.2 -0.8 -3.08%

71 22.7 19.7 -3 -13.22%

76 17.8 14.1 -3.7 -20.79%

81 12.5 9.3 -3.2 -25.60%

86 8.7 6.6 -2.1 -24.14%

91 6.7 5 -1.7 -25.37%

96 5.2 2.7 -2.5 -48.08%

TABLE 6: RESULTS OF TESTING FOR KTH_XL DATASET.

Iterations 𝒇(𝑨) 𝒇(𝑩) 𝒇(𝑩) − 𝒇(𝑨)
𝒇(𝑩) − 𝒇(𝑨)

𝒇(𝑨)

1 296.9 299.9 3 1.01%

7 284.3 287.8 3.5 1.23%

13 264.2 264.6 0.4 0.15%

19 247.9 253.1 5.2 2.10%

25 235.6 234.1 -1.5 -0.64%

31 215.8 217.1 1.3 0.60%

37 200.6 204.1 3.5 1.74%

43 186.6 186.8 0.2 0.11%

49 178.3 174 -4.3 -2.41%

55 160.5 161.4 0.9 0.56%

61 150 150.2 0.2 0.13%

67 136.1 135.2 -0.9 -0.66%

73 125.3 124.2 -1.1 -0.88%

79 113.5 113.4 -0.1 -0.09%

85 104.9 101.8 -3.1 -2.96%

91 98.5 95.7 -2.8 -2.84%

97 89.3 84.6 -4.7 -5.26%

103 77.1 81.6 4.5 5.84%

109 76.3 74.3 -2 -2.62%

115 65.1 63.8 -1.3 -2.00%

IMCA accelerates to the optimal solution from MCA because do does not ignore

undesirable solutions. The result has shown the performance of IMCA over MCA by a

small difference because MCA has a high-performance exploitative behavior. The

performance difference between MCA and IMCA is clearly illustrated in Fig. 3 (a, b, c, and

d).

Where (a) included testing with the kth-S dataset and the rate of average fitness value

refers to up to (-76%) with an average (-17.69%). And (b) included testing with the kth-M

dataset and the rate of average fitness value is refers to up to (-43%) with an average (-

12.67%). Also, (c) and (d) was the test with the kth-L and kth-XL datasets were rate of

average fitness value for both refer to up to (-48% and -5%) with an average (-9.38% and -

0.34%).

https://doi.org/10.33103/uot.ijccce.21.4.10

 112

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

FIG. 3. AVERAGE FITNESS VALUE VERSUS ITERATIONS AND THE RATE OF INCREASE OR DECREASE.

VI. CONCLUSION

An academic, fascinating, and challenging subject is the University Course timetabling

problem (UCTP). The researcher in this field should focus on improving techniques for

solving UCTP. The Improved Meerkat Clan Algorithm (IMCA) is presented in this research

(a)

(b)

(c)

(d)

https://doi.org/10.33103/uot.ijccce.21.4.10

 113

 Received 11/8/2021; Accepted 27l8l2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021

@ 2017 University of Technology, Iraq ISSN (Print) 1811-9212 ISSN (Online) 2617-3352

DOI: https://doi.org/10.33103/uot.ijccce.21.4.10

to solve the UCTP. The improvement idea is that finding a new subroutine for Meerkat

Clan Algorithm MCA to get the best results. And that by studying the behavior of MCA

and Specifying the points that are able to improve without changing the main behavior of

MCA. Therefore, the focus was on exploiting solutions that were ignored. The weak

solutions in the foraging group are randomly replaced with it. The IMCA's experimental

findings are encouraging. Despite the problem's great complexity and NP-hard, the

performance of the IMCA is good. Within a processing period, good results were in the

range of -17.69% to -0.34% of the average rate depending on the scale of the dataset. The

percentage decreases as the dataset grows. Therefore, it is recommended to use it with low-

complexity datasets to get a good result. In this sense, other ways should be studied as well,

despite the IMCA's strong performance. As a result, in the second supplement of this study,

we would want to develop and experiment with different heuristic strategies in order to

compare their performance.

REFERENCES

[1] A. M. Hambali, Y. A. Olasupo, and M. Dalhatu, “Automated university lecture timetable using heuristic approach,”

Nigerian Journal of Technology, vol. 39, no. 1, pp. 1–14, 2020.

[2] E. K. Burke, B. Mccollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-based hyper-heuristic for educational

timetabling problems,” European Journal of Operational Research, vol. 176, no. 1, pp. 177–192, 2007.

[3] A. Abuhamdah, M. Ayob, G. Kendall, and N. R. Sabar, “Population based Local Search for university course

timetabling problems,” Applied Intelligence, vol. 40, no. 1, pp. 44–53, 2013.

[4] C. Akkan and A. Gülcü, “A bi-criteria hybrid Genetic Algorithm with robustness objective for the course timetabling

problem,” Computers & Operations Research, vol. 90, pp. 22–32, 2018.

[5] A. A. Gozali, S. Fujimura, “Solving University Course Timetabling Problem Using Multi-Depth Genetic Algorithm”,

SHS Web of Conferences, vol. 77, pp. 01001, 2020.

[6] H. Babaei, J. Karimpour, and A. Hadidi, “Applying Hybrid Fuzzy Multi-Criteria Decision-Making Approach to Find

the Best Ranking for the Soft Constraint Weights of Lecturers in UCTP,” International Journal of Fuzzy Systems, vol.

20, no. 1, pp. 62–77, 2017.

[7] T. L. June, J. H. Obit, Y.-B. Leau, J. Bolongkikit, and R. Alfred, “Sequential Constructive Algorithm incorporate with

Fuzzy Logic for Solving Real World Course Timetabling Problem,” Lecture Notes in Electrical Engineering

Computational Science and Technology, pp. 257–267, 2020.

[8] A. Salman, R. Hanna, “A Comparative Study between Genetic Algorithm, Simulated Annealing and a Hybrid

Algorithm for solving a University Course Timetabling Problem,” Degree Project in Computer Science, KTH,

Stockholm, Sweden (2018).

[9] S. L. Goh, G. Kendall, N. R. Sabar, and S. Abdullah, “An effective hybrid local search approach for the post enrolment

course timetabling problem,” Opsearch, vol. 57, no. 4, pp. 1131–1163, 2020.

[10] M. Chen, X. Tang, T. Song, C. Wu, S. Liu, and X. Peng, “A Tabu search algorithm with controlled randomization for

constructing feasible university course timetables,” Computers & Operations Research, vol. 123, p. 105007, 2020.

[11] A. Muklason, R. G. Irianti, and A. Marom, “Automated Course Timetabling Optimization Using Tabu-Variable

Neighborhood Search Based Hyper-Heuristic Algorithm,” Procedia Computer Science, vol. 161, pp. 656–664, 2019.

[12] S. L. Goh, G. Kendall, and N. R. Sabar, “Simulated annealing with improved reheating and learning for the post

enrolment course timetabling problem,” Journal of the Operational Research Society, vol. 70, no. 6, pp. 873–888, 2018.

[13] M. Mazlan, M. Makhtar, A. F. K. A. Khairi, and M. A. Mohamed, “University course timetabling model using ant

colony optimization algorithm approach,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13,

no. 1, p. 72, 2019.

[14] S. C. Sarin, Y. Wang, and A. Varadarajan, “A university-timetabling problem and its solution using Benders’

partitioning—a case study,” Journal of Scheduling, vol. 13, no. 2, pp. 131–141, 2009.

[15] A. T. S. Al-Obaidi, H. S. Abdullah, and Z. O. Ahmed, “Meerkat Clan Algorithm: A New Swarm Intelligence

Algorithm,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 10, no. 1, p. 354, 2018.

https://doi.org/10.33103/uot.ijccce.21.4.10

