Some results on IS-algebras النتائج حول جبور

Assistant lecturer Sundus Najah Jabir Faculty of Education /Kufa university

Abstract

In this paper we study IS- algebra , subIS- algebra , IS-algebra homomorphism and congruence relations on IS-algebra , and prove some results about this .

المستخلص

1.Introduction

The notion of BCK-algebras was proposed by Y.Imai and K.Iseki [1] in 1966 in the same year K.Iseki [2] introduced the notion of a BCI- algebras which is a generalization of a BCK-algebras for the general development of BCK / BCI- algebras , the ideal theory plays an important role in 1993 Y.B.Jun et al. [6] introduced a new class of algebras related to BCI- algebras and semigroups called a BCI- semigroup . from now on, we rename it as an IS- algebra for the convenience of study .

2. preliminary

we review some definitions and properties that will be useful in our results.

Definition 2.1 A **Semigroup** is an ordered pair (X, \cdot) , where X is a non empty set and "." is an associative binary operation on X. [3]

Definition 2.2 A *BCI- algebra* is triple (X, *, 0) where X is a non empty set "*" is binary operation on X, $0 \in X$ is an element such that the following axioms are satisfied for all $x, y, z \in X$:

- 1) ((x * y) * (x * z)) * (z * y) = 0,
- 2) (x * (x * y)) * y = 0,
- 3) x * x = 0,
- **4**) 0 * x = 0

if
$$x * y = 0$$
 and $y * x = 0$ then $x = y$, $\forall x, y, z \in X$.[11]

Definition 2.3 An **IS-algebra** is a non empty set with two binary operation "*" and "." and constant 0 satisfying the axioms:

- **1.** (X, *, 0) is a *BCI-algebra*.
- **2.** (X, .) is a semigroup,

3.
$$x.(y*z) = (x.y)*(x.z)$$
 and $(x*y).z = (x.z)*(y.z)$, for all $x, y, z \in X$. [9]

Example 2.4 let X={0,a,b,c} define "*" operation and multiplication "." by the following tables:

*	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
С	С	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	a	b	c
c	0	0	0	0

Then by routine calculations we can see that X is an *IS-algebra*.

Example 2.5 let $X=\{0,a,b,c\}$ define "*" operation and multiplication "." by the following tables:

*	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
С	c	c	b	0

•	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	b	c
c	0	0	c	b

Then by routine calculations we can see that X is an *IS-algebra*.

Example 2.6 let X={0,a,b,c} define "*" operation and multiplication "." by the following tables:

- 1					
	*	0	a	b	c
	0	0	0	b	b
	a	a	0	c	b
	b	b	b	0	0
	c	С	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	c	b

It is easy to prove that X is an *IS-algebra*.

Example 2.7 let $X=\{0,a,b,c\}$ define "*" operation and multiplication "." by the following tables:

*	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

•	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	0	b	c

Then by routine calculations we can see that X is an *IS-algebra*.

Example 2.8 let X={0,a,b,c} define "*" operation and multiplication "." by the following tables:

*	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	a	0
b	b	b	0	0	0
c	c	c	c	0	0
d	d	d	d	d	0

•	0	a	b	c	d
0	0	0	0	0	0
a	0	0	0	0	0
b	0	0	0	0	b
С	0	0	0	b	c
d	0	a	b	c	d

Then X is an *IS-algebra*.

Remark 2.9 let X be an IS-algebra then we have

- 1) 0x = x0 = 0
- 2) $x \le y$ implies that $xz \le yz$ and $zx \le zy \ \forall x, y, z \in X$.

Definition 2.10 let (S, \cdot) be a semigroup P a non empty set proper subset of S is said to be a **subsemigroup** if (P, \cdot) is semigroup.[3]

Definition 2.11 A non empty subset S of X with binary operation "*" and "." is called **subIS-algebra** of X if it satisfies the following condition:

- 1) $x * y \in S \quad \forall x, y \in S$.
- 2) $xy \in S$ $\forall x, y \in S$.

Definition 2.12 Let X and Y be IS-algebra a mapping $f: X \to Y$ is called a **IS-algebra homomorphism** (briefly **homomorphism**) if f(x * y) = f(x) * f(y) and f(xy) = f(x)f(y) for all $x, y \in X$.

Let $f: X \to Y$ IS-algebra homomorphism . then the set $\{x \in X : f(x) = 0\}$ is called *the kernel of f*, and denote by ker f. moreover, the set $\{f(x) \in Y : x \in X\}$ is called *the image of f* and denote by Im f.

Definition 2.13 Let X,Y be a IS-algebra and $f: X \to Y$ IS-algebra homomorphism then:

- 1) f is a monomorphism iff one to one homomorphism.
- 2) f is an **epimorphism** iff onto homomorphism.
- 3) f is an *isomorphism* iff bijective homomorphism.

Definition 2.14 A BCI algebra is said to be commutative if $x*(x*y) = y*(y*x) \quad \forall x, y \in X$.

Definition 2.15 Let X be a IS-algebra and let ρ be binary relation on X then:

1) ρ is right (left) compatible if when every $(x, y) \in \rho$ then $(x * z, y * z) \in \rho$ $[(z * x, z * y) \in \rho]$ and $(x \cdot z, y \cdot z) \in \rho$ $[(z \cdot x, z \cdot y) \in \rho]$

 $\forall x, y, z \in X$.

- 2) ρ is compatible if $(x, y) \in \rho$ and $(u, v) \in \rho$ imply $(x * u, y * v) \in \rho$ and $(x \cdot u, y \cdot v) \in \rho \ \forall x, y, u, v \in X$.
- 3) A compatible equivalence relation is called a congruence relation .[10]

Remark 2.16

$$x\rho = \{y \in X : (x, y) \in \rho\} \text{ and } X / \rho = \{x\rho : x \in X\}$$
.

3. Main Results

In this section , we find some results about subIS-algebra , IS-algebra homomorphism and congruence relation on IS-algebra .

Proposition 3.1 Let A and B are subIS-algebra of X then $A \cap B$ is subIS-algebra of X.

Proof:

Let A and B be subIS-algebra of X,

and let $x, y \in A \cap B$. Then

 $x, y \in A$ and $x, y \in B$

so $x * y \in A$ and $x * y \in B$ [since A, B are subIS-algebra]

then $x * y \in A \cap B$

Now, *let* $x, y \in A \cap B$

then $x, y \in A$ and $x, y \in B$

so $xy \in A$ and $xy \in B$ [since A, B are subIS-algebra]

therefore $xy \in A \cap B$

Hence $A \cap B$ is a subIS-algebra.

Proposition 3.2 Let A and B are subIS-algebra of X then $A \cup B$ is a subIS-algebra If $A \subseteq B$ or $B \subseteq A$.

Proof:

Suppose that A and B are subIS-algebra of X, and $x, y \in A \cup B$

if $A \subseteq B$ then $A \cup B = B$

so $A \cup B$ is a subIS-algebra. [since B is a subIS-algebra]

if $B \subseteq A$ then $A \cup B = A$

so $A \cup B$ is a subIS-algebra. [since A is a subIS-algebra]

Lemma 3.3 Let $f: X \to Y$ be a IS-algebra homomorphism then ker f is a subIS-algebra.

Proof:

Let $x, y \in \ker f$. Then f(x) = 0 and f(y) = 0

f(x * y) = f(x) * f(y) = 0 * 0 = 0 [since f is a homomorphism]

 $so \ x * y \in \ker f$, also

f(xy) = f(x)f(y) = 0 ,

Therefore $xy \in \ker f$

Hence ker f is a subIS-algebra.

Lemma 3.4 Let $f: X \to Y$ be a IS-algebra homomorphism then:

- 1) f(0) = 0
- 2) if $x \le y$ then $f(x) \le f(y)$
- 3) if $x \wedge y = x * (x * y)$ then $f(x \wedge y) = f(x) \wedge f(y)$.

Proof:

- 1) let $x \in X$ f(0) = f(x * x) = f(x) * f(x) = 0.
- 2) let $x \le y \to x * y = 0$ then f(x * y) = f(0) = 0 $f(x * y) = 0 \to f(x) * f(y) = 0 \Rightarrow f(x) \le f(y)$.
- 3) let $x, y \in X$ and $x \wedge y = x^*(x^*y) \Rightarrow f(x \wedge y) = f(x^*(x^*y))$ = $f(x)^*(f(x)^*f(y)) = f(x) \wedge f(y)$

Proposition 3.5 Let $f: X \to Y$ and $g: Y \to Z$ are IS-algebra homomorphism then $g \circ f: X \to Z$ is a IS-algebra homomorphism.

Proof:

Let $f: X \to Y$ and $g: Y \to Z$ are a IS-algebra homomorphism

Now.

$$(g \circ f)(xy) = g(f(xy))$$

$$= g(f(x).f(y))$$

$$= g(f(x)).g(f(y))$$

$$= g \circ f(x).g \circ f(y)$$

And

$$(g \circ f)(x * y) = g(f(x * y))$$

= $g(f(x) * f(y))$
= $g(f(x)) * g(f(y))$
= $g \circ f(x) * g \circ f(y)$

Hence $g \circ f$ is a IS-algebra homomorphism.

Proposition 3.6 Let $f: X \to Y$ be a IS-algebra homomorphism and $A \subseteq X$ is subIS-algebra then f(A) is subIS-algebra.

Proof:

Let
$$a'$$
, $b' \in f(A)$ $\exists a, b \in A$ $s.t$ $f(a) = a'$, $(b) = b'$ $a' * b' = f(a) * f(b) = f(a * b) \in f(A)$ $\therefore a' * b' \in f(A)$ Now, $a' \cdot b' = f(a) \cdot f(b) = f(a \cdot b) \in f(A)$ $\therefore a' \cdot b' \in f(A)$ Hence $f(A)$ is subIS-algebra.

Proposition 3.7 Let $f: X \to X'$ be a IS-algebra homomorphism if X is commutative then f(X) is commutative.

Proof:

to prove f(X) is IS-algebra

let
$$y_1$$
, $y_2 \in f(x) \exists x_1, x_2 \in X$ s.t $f(x_1) = y_1$, $f(x_2) = y_2$ so, $y_1 \cdot y_2 = f(x_1) \cdot f(x_2) = f(x_1 \cdot x_2) \in f(x)$ let $x, y, z \in f(x) \subseteq Y$ so $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ hence $(f(x), \cdot)$ is semigroup. to prove $(f(X), \cdot, \cdot)$ is BCI algebra let X is commutative then $f(x) \cdot (f(x) \cdot f(y)) = f(x) \cdot f(x \cdot y)$ $= f(x \cdot (x \cdot y))$ $= f(y \cdot (y \cdot x))$ $= f(y) \cdot f(y \cdot x)$

= f(y) * [f(y) * f(x)]

Hence f(X) is commutative.

Proposition 3.8 Let $f: X \to X'$ be a IS-algebra homomorphism if f(X) is commutative then X is commutative.

Proof:

Let
$$x, y \in X \rightarrow f(x)$$
, $f(y) \in f(X)$
Let $f(X)$ is commutative

$$f(x) * [f(x) * f(y)] = f(y) * [f(y) * f(x)]$$

$$\Rightarrow f(x * (x * y)) = f(y * (y * x))$$

$$\Rightarrow x * (x * y) = y * (y * x)$$

Hence X is commutative.

Proposition 3.9 Let $f: X \to Y$ epimorphism and let X is commutative with operation of semigroup then Y is commutative with operation of semigroup.

Proof:

Let
$$x'$$
, $y' \in Y$ $\exists x, y \in X$ $s.t$ $f(x) = x'$, $f(y) = y'$
 $x' \cdot y' = f(x) \cdot f(y) = f(x \cdot y) = f(y \cdot x) = f(y) \cdot f(x) = y' \cdot x'$

Hence Y is commutative with operation of semigroup.

Proposition 3.10 Let X be a IS-algebra then an equivalence relation ρ on X is congruence if and only if is both left and right compatible.

Proof:

Let ρ is congruence relation and let $x, y \in X$ s.t $(x, y) \in \rho$ then

$$(z,z) \in \rho$$
 [since ρ is reflexive] and ρ is compatible then $(x*z,y*z) \in \rho$ and $(x\cdot z,y\cdot z) \in \rho$

Hence ρ is right compatible.

In a similar way, we can prove that ρ is left compatible.

Conversely

Let ρ is both left and right compatible and let $x, y, u, v \in X$ s.t $(x, y) \in \rho$ and $(u, v) \in \rho$

Since ρ is right compatible then

$$(x * u, y * u) \in \rho$$
 and $(x \cdot u, y \cdot u) \in \rho$

Since ρ is left compatible then

$$(y * u, y * v) \in \rho$$
 and $(y \cdot u, y \cdot v) \in \rho$

Since ρ is transitive

So
$$(x * u, y * v) \in \rho$$
 and $(x \cdot u, y \cdot v) \in \rho$

Hence ρ is congruence.

Proposition 3.11 Let ρ is congruence relation on IS-algebra X then X/ρ is IS-algebra under operations $x\rho * y\rho = (x * y)\rho$ and $(x\rho) \cdot (y\rho) = (x \cdot y)\rho$

Proof: Let ρ is congruence relation

It is clear the operation are well define then

 $(X/\rho, *, 0)$ is BCI algebra and $(X/\rho, .)$ is semigroup

Let $x\rho, y\rho, z\rho \in X/\rho$ then

$$(x\rho \cdot y\rho) * z\rho = (x \cdot y)\rho * z\rho$$

$$= ((x \cdot y) * z)\rho$$

$$= (x * z \cdot y * z)\rho$$

$$= (x * z)\rho \cdot (y * z)\rho$$

$$= (x\rho * z\rho) \cdot (y\rho * z\rho)$$

Hence $(X/\rho, *, ., 0)$ is IS-algebra.

Proposition 3.12 Let ρ is congruence relation on IS-algebra X then the mapping $\Omega: X \to X/\rho$ define by $\Omega(x) = x\rho$ $\forall x \in X$ is IS-algebra homomorphism.

Proof: Let ρ is congruence relation and let $x, y \in X$ then

$$\Omega(x * y) = (x * y)\rho = x\rho * y\rho = \Omega(x) * \Omega(y)$$
 and

$$\Omega(x \cdot y) = (x \cdot y)\rho = x\rho \cdot y\rho = \Omega(x) \cdot \Omega(y)$$

Hence Ω is IS-algebra homomorphism.

Proposition 3.13 Let X and Y be IS-algebra and $f: X \to Y$ homomorphism then Φ is congruence relation on X where $\Phi = \{(x, y) \in X \times X : f(x) = f(y)\}$.

Proof: Let $f: X \to Y$ homomorphism

To show that Φ is an equivalence relation

then $(x, x) \in \Phi$ [since f(x) = f(x)]

Let
$$(x, y) \in \Phi$$
 s.t $f(x) = f(y) \Rightarrow f(y) = f(x)$ $\therefore (y, x) \in \Phi$

Let $(x, y) \in \Phi$ and $(y, z) \in \Phi$

$$\rightarrow f(x) = f(y)$$
 and $f(y) = f(z) \Rightarrow f(x) = f(z)$ $\therefore (x, z) \in \Phi$

 \therefore Φ is equivalence relation

Let
$$x, y, u, v \in X$$
 s.t $(x, y), (u, v) \in \Phi \Rightarrow f(x) = f(y)$, $f(u) = f(v)$

$$\Rightarrow f(x*u) = f(x)*f(u) = f(y)*f(v) = f(y*v)$$
 and

$$f(x \cdot u) = f(x) \cdot f(u) = f(y) \cdot f(v) = f(y \cdot v)$$
 then

$$(x * u, y * v) \in \Phi$$
 and $(x \cdot u, y \cdot v) \in \Phi$

 \therefore Φ is congruence relation.

Proposition 3.14 Let $f: X \to Y$ be IS-algebra homomorphism and $\rho \subseteq \Phi$ a congruence relation of X then there exist a unique homomorphism $g: X/\rho \to Y$ where Φ as define above.

Proof:

Let g define by $g(x\rho) = f(x)$ then g is well define

$$\therefore x\rho = y\rho \rightarrow (x, y) \in \rho$$
 $\therefore \rho \subseteq \Phi$ and $(x, y) \in \rho \rightarrow (x, y) \in \Phi$

$$\Rightarrow f(x) = f(y)$$
 : $g(x\rho) = g(y\rho)$

Now.

$$g(x\rho * y\rho) = g((x * y)\rho)$$

$$= f(x * y)$$

$$= f(x) * f(y)$$

$$= g(x\rho) * g(x\rho)$$

And

$$g(x\rho \cdot y\rho) = g((x \cdot y)\rho)$$

$$= f(x \cdot y)$$

$$= f(x) \cdot f(y)$$

$$= g(x\rho) \cdot g(x\rho)$$

Hence g is IS-algebra homomorphism and g is a unique.

References

- [1] Y.Imai and K.Iseki, "On Axiom Systems of Propositional Calculi *XIV*", Proc.Japan Acad,42 ,19-22 , 1966 .
- [2] K.Iseki, "An Algebra Related with a Propositional Calculus", Japan Acad., 42 1966.
- [3] Petrich, Mario."Introduction to Semigroups" Charles E.Merrill Publishing Company A Bell and Howell Company, USA. 1973.
- [4] Q.P.Hu and K.Iseki ,"On BCI-algebras satisfying (x*y)*z=x*(y*z), Math. Seminar Notes (presently,Kobe J. Math.), 8(1980), 553-555.
- [5] M.Aslam and A.B.Thaheem, A note on p-semisimple BCI-algebras, Math. Japon., 36:1(1991),39-45.
- [6] Y.B.Jun, S.M.Hong and E.H.Roh, "BCI-semigroups", Honam Math. J., 15:1 (1993),59-64.
- [7] Y.B.Jun and E.H.Roh, "On the BCI-G pert of BCI-algebras, Math. Japon., 38:4(1993),697-702.
- [8] S.S.Ahn and H.S.Kim, "A note on I-ideals in BCI-semigroups ",Comm.Korean Math. Soc., 11:4(1996),895-902.
- [9] Young Bae Jun, Xiao Long Xin and Eun Hwan Roh "A Class of algebras related to BCI-algebras and semigroups", Soochow Journal of Math., 24, no. 4,pp. 309-321,(1998).
- [10] K. H. Kim, "On Structure of KS-Semigroups", Int. Math. Forum, 1, No. 2, 67-76, (2006).
- [11] Joncelyn S.Paradero-Vilela and Mila Cawi "On KS-Semigroup Homomorphism " International Mathematical Forum ,4, no. 23, 1129- 1138 , (2009) .