

Ibn Al Haitham Journal for Pure and Applied Sciences

Journal homepage: http://jih.uobaghdad.edu.iq/index.php/j/index

Cubic Bipolar Fuzzy Ideals with Thresholds (α, β) , (ω, ϑ) of a Semigroup in KU-algebra

Omniat Adnan Hasan

Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham, University of Baghdad, Iraq

umniyatadnan@gmail.com

Fatema F. Kareem

Department of Mathematics, College of Education for Pure Sciences, Ibn Al Haitham, University of Baghdad, Iraq fatma.f.k@ihcoedu.uobaghdad.edu.iq

Article history: Received, 21, November, 2021, Accepted, 25, January, 2022, Published in April 2022.

Doi: 10.30526/35.2.2724

Abstract

In this paper, we introduce the concept of cubic bipolar fuzzy ideals with thresholds (α,β) , $(\omega,9)$ of a semigroup in KU-algebra as a generalization of sets and in short **(CBF)**. Firstly, a **(CBF)** sub-KU-semigroup with a threshold (α,β) , $(\omega,9)$ and some results in this notion are achieved. Also, (cubic bipolar fuzzy ideals and cubic bipolar fuzzy k-ideals) with thresholds (α,β) , $(\omega,9)$ are defined and some properties of these ideals are given. Relations between a **(CBF)** sub algebra and a **(CBF)** ideal are proved. A few characterizations of a **(CBF)** k-ideal with thresholds (α,β) , $(\omega,9)$ are discussed. Finally, we proved that a **(CBF)** k-ideal and a **(CBF)** ideal with thresholds (α,β) , $(\omega,9)$ of a KU-semi group are equivalent relations.

Keywords: A KU-semigroup, cubic k-ideal, cubic bipolar fuzzy k-ideal with thresholds (α, β) , (ω, θ) .

1. Introduction

The fuzzy sets were introduced by Zadeh [1] in 1956; after that, many authors applied this concept in different mathematics fields. Mostafa [2, 3] studied the notion of fuzzy KU-ideals of KU-algebras and Generalizations of Fuzzy sets, which are called bipolar- fuzzy n-fold KU-ideals. Jun [4-6] studied the notion of a cubic set as a generalization of fuzzy set and interval-valued fuzzy set. Kareem and Hasan[7,8] defined the cubic ideals of a KU-semigroup and a homomorphism of a cubic set in this structure. Bipolar–valued fuzzy sets are extensions of fuzzy sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. Kareem and

Hassan[9] and Kareem and Awad [10] defined the concepts of bipolar fuzzy k-ideals and cubic bipolar ideals in KU-semigroup respectively, also Kareem and Abed [11] presented the idea of bipolar fuzzy k-ideals with a threshold of KU-semigroup.

The paper aims to introduce a cubic bipolar fuzzy k-ideals with thresholds (α,β) , (ω,θ) of KU-semi group and discuss some relations between a cubic bipolar fuzzy k-ideal with thresholds (α,β) , (ω,θ) and a bipolar fuzzy k-ideal.

2. Basic concepts

Definition(1)[12]. Algebra (\aleph , *, 0) is a set \aleph , and a binary operation * which is satisfies the following ,for all χ , γ , $\tau \in \aleph$

$$(ku_1)(\chi * \gamma) * [(\gamma * \tau) * (\chi * \tau)] = 0$$

$$(ku_2) \chi *0 = 0$$

$$(ku_3) 0 * \chi = \chi$$

$$(ku_4) \chi * \gamma = \gamma * \chi = 0$$
 and $\gamma * \chi$ implies $\chi = \gamma$

$$(ku_5) \chi * \chi = 0.$$

We can define a binary operation \leq on \aleph is defined by $\chi \leq \gamma \Leftrightarrow \gamma * \chi = 0$. It follows that (\aleph, \leq) is a partially ordered set.

Theorem(2)[2]. In a KU-algebra $(\aleph, *, 0) \forall \chi, \gamma, \tau \in \aleph$, then the following holds

(1)
$$\chi \leq \gamma$$
 imply $\gamma * \tau \leq \chi * \tau$

$$(2) \chi * (\gamma * \tau) = \gamma * (\chi * \tau)$$

(3)
$$\gamma * \chi \leq \chi$$
, also $(\gamma * \chi) * \chi \leq \gamma$

Definition(3)[2]. A non-empty subset I of a KU-algebra \aleph is named an ideal if for any χ , $\gamma \in \aleph$, then

- (1) $0 \in I$
- (2) If $\chi * \gamma \in I$ implies that $\gamma \in I$.

Definition(4)[2]. A non-empty subset I of a KU-algebra \aleph is named a KU-ideal if

- (1) $0 \in I$
- (2) If $\chi * (\gamma * \tau) \in I$, and $\gamma \in I$ imply that $\chi * \tau \in I$.

Definition(5)[13]. An algebra KU- semi group is a structure contains a nonempty set \aleph with two binary operations $*, \circ$ and a constant 0 satisfying the following

- (I) The set \aleph with operation * and constant 0 is KU-algebra
- (II) The set \aleph with operation \circ is semigroup.

(III)
$$\chi \circ (\gamma * \tau) = (\chi \circ \gamma) * (\chi \circ \tau)$$
, and $(\chi * \gamma) \circ \tau = (\chi \circ \tau) * (\gamma \circ \tau)$, for all $\chi, \gamma, \tau \in \aleph$.

Definition(6)[13]. A non-empty subset A of \aleph is called a sub-KU-semi group of \aleph if $\chi * \gamma \in A$, and $\chi \circ \gamma \in A$, for all $\chi, \gamma \in A$

Definition(7)[13]. In a KU-semi group ($\aleph, *, \circ, 0$), the subset $\varphi \neq I$ of \aleph is said to be S ideal, if

- (i) It is an ideal in a KU-algebra
- (ii) $\chi \circ a \in I$, and $a \circ \chi \in I$, $\forall \chi \in \mathbb{R}$, $a \in I$

Definition(8)[13]. In KU-semigroup $(\aleph, *, \circ, 0)$, the subset $\varphi \neq A$ of \aleph is named a k-ideal, if

- (i) It is a KU-ideal of ℵ
- (ii) $\chi \circ \alpha \in I$, and $\alpha \circ \chi \in I$, $\forall \chi \in \aleph$, $\alpha \in I$

In this part, we recall some concepts of fuzzy logic

A function $\mu: \aleph \to [0,1]$ is said to be a fuzzy set of a set \aleph , and the set

is said to be a level set of μ , for t, where $1 \ge t \ge 0$ $U(\mu, t) = \{\chi \in \aleph : \mu(\chi) \ge t\}$

Now, an interval valued fuzzy set $\tilde{\mu}$ of \aleph is defined as follows:

Remark(9)[7-8]. A function $\tilde{\mu}: \aleph \to D[0,1]$, where D[0,1] is a family of the closed sub-intervals of [0, 1]. The level subset of $\tilde{\mu}$ is denoted by $\tilde{\mu}_{\tilde{t}}$ and it is defined by

$$\tilde{\mu}_{\tilde{t}} = \{ \chi \in \aleph : \tilde{\mu}(\chi) \ge \tilde{t} \}$$
, for every $[0,0] \le \tilde{t} \le [1,1]$.

O. Hasan and F.Kareem [7-8] introduced the Cubic ideals of the KU-semigroup as follows:

Definition(10)[7-8]. In the KU-semigroup($\aleph, *, \circ, 0$), a cubic set Θ is the form $\Theta = \{\langle \chi, \widetilde{\mu}_{\Theta}(\chi), \lambda_{\Theta}(\chi) \rangle : \chi \in \aleph \}$, such that $\lambda_{\Theta}(\chi)$ is a fuzzy set and $\widetilde{\mu}_{\Theta} : \aleph \to D[0,1]$ is an interval-valued, briefly $\Theta = \langle \widetilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$.

Definition(11)[7-8]. In the KU-semigroup $(\aleph, *, \circ, 0)$ a cubic set $\Theta = \langle \widetilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ in \aleph is named a cubic sub-KU-semigroup if: for all $\chi, \gamma \in \aleph$,

- $(1) \ \widetilde{\mu}_{\Theta}(\chi * \gamma) \geq rmin\{\widetilde{\mu}_{\Theta}(\chi) \text{ , } \widetilde{\mu}_{\Theta}(\gamma)\}, \lambda_{\Theta}(\chi * \gamma) \leq max\{\lambda_{\Theta}(\chi) \text{ , } \lambda_{\Theta}(\gamma)\}$
- (2) $\tilde{\mu}_{\Theta}(\chi \circ \gamma) \geq rmin\{\tilde{\mu}_{\Theta}(\chi), \tilde{\mu}_{\Theta}(\gamma)\}, \lambda_{\Theta}(\chi \circ \gamma) \leq max\{\lambda_{\Theta}(\chi), \lambda_{\Theta}(\gamma)\}.$

Definition(12)[7-8]. The set Θ in \aleph is named a cubic ideal of a KU-semigroup

$$(\aleph, *, \circ, 0)$$
 if, $\forall \chi, \gamma \in \aleph$

(CI₁)
$$\tilde{\mu}_{\Theta}(0) \geq \tilde{\mu}_{\Theta}(\chi)$$
 and $\lambda_{\Theta}(0) \leq \lambda_{\Theta}(\chi)$,

$$(CI_2) \ \tilde{\mu}_{\Theta}(\gamma) \geq rmin\{\tilde{\mu}_{\Theta}(\chi * \gamma), \tilde{\mu}_{\Theta}(\chi)\} \ , \ \ \lambda_{\Theta}(\gamma) \leq max\{\lambda_{\Theta}(\chi * \gamma) \ , \lambda_{\Theta}(\chi)\}$$

(CI₃)
$$\tilde{\mu}_{\Theta}(\chi \circ \gamma) \ge rmin\{\tilde{\mu}_{\Theta}(\chi), \, \tilde{\mu}_{\Theta}(\gamma)\}, \, \lambda_{\Theta}(\chi \circ \gamma) \le max\{\lambda_{\Theta}(\chi), \, \lambda_{\Theta}(\gamma)\}.$$

Example(13)[7-8]. Let $\aleph = \{0,1,2\}$ be a set. Define the operations *, ° by the following tables.

*	0	1	2
0	0	1	2
1	0	0	1
2	0	1	0

o	0	1	2
0	0	0	0
1	0	1	0
2	0	0	2

Then the structure $(\aleph, *, \circ, 0)$ is a KU-semi group. A cubic set $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ is defined by:

$$\widetilde{\mu}_{\Theta}(x) = \begin{cases} [0.4, 0.8] & \text{if } \chi \in \{0, 2\} \\ [0.1, 0.3] & \text{if } \chi = 1 \end{cases} \quad \text{and } \lambda_{\Theta}(x) = \begin{cases} 0.1 & \text{if } \chi \in \{0, 2\} \\ 0.3 & \text{if } \chi = 1 \end{cases}$$

Then $\Theta = \langle \tilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ is a cubic ideal of \aleph .

Definition(14)[7-8]. In a KU-semigroup $(\aleph, *, \circ, 0)$, a cubic set $\Theta = \langle \widetilde{\mu}_{\Theta}, \lambda_{\Theta} \rangle$ in \aleph is named a cubic k-ideal if $\forall \chi, \gamma, \tau \in \aleph$

$$(Ck_1)\tilde{\mu}_{\Theta}(0) \geq \tilde{\mu}_{\Theta}(\chi)$$
, and $\lambda_{\Theta}(0) \leq \lambda_{\Theta}(\chi)$

$$(Ck_2)\tilde{\mu}_{\Theta}(\chi * \tau) \ge rmin\{\tilde{\mu}_{\Theta}(\chi * (\gamma * \tau)), \tilde{\mu}_{\Theta}(\gamma)\},$$

$$\lambda_{\Theta}(\chi * \tau) \leq \max\{\lambda_{\Theta}(\chi * (\gamma * \tau)), \lambda_{\Theta}(\gamma)\}$$

$$(Ck_3)\tilde{\mu}_\Theta(\chi\circ\gamma)\geq rmin\{\tilde{\mu}_\Theta(\chi)\,,\tilde{\mu}_\Theta(\gamma)\}\ , \lambda_\Theta(\chi\circ\gamma)\leq max\{\lambda_\Theta(\chi)\,,\,\lambda_\Theta(\gamma)\}.$$

In the following ,we recall some basic concepts of a bipolar fuzzy set.

Definition(15)[9]. A bipolar fuzzy set B in a set \aleph is a form $B = \{(\chi, \mu(\chi), \mu^+(\chi)) : \chi \in \aleph\}$, where $\mu^-(\chi) : \aleph \to [-1,0]$ and $\mu^+(\chi) : \aleph \to [0,1]$ are two fuzzy mappings. The two membership degrees $\mu^+(\chi)$ and $\mu^-(\chi)$ denote the fulfillment degree of \aleph to the property corresponding of B and the fulfillment degree of \aleph to some implicit counter-property of B, respectively.

Kareem and Awad[10] introduced the cubic bipolar ideals of a KU-semigroup in KU-algebra as follows:

Definition(16)[10]. Let \aleph be a non-empty set. A cubic bipolar set in a set \aleph is the structure $\Theta = \{\langle \chi, \widetilde{\mu}_{\Theta}^+(\chi), \widetilde{\mu}_{\Theta}^-(\chi), \lambda_{\Theta}^+(\chi), \lambda_{\Theta}^-(\chi) : \chi \in \aleph \rangle \}$ is denoted as

 $\Theta = \langle N, K \rangle$, where $N(\chi) = \{ \tilde{\mu}_{\Theta}^+(\chi), \tilde{\mu}_{\Theta}^-(\chi) \}$ is called interval-valued bipolar fuzzy set and $K(\chi) = \{ \lambda_{\Theta}^+(\chi), \lambda_{\Theta}^-(\chi) \}$ is a bipolar fuzzy set. Consider $\tilde{\mu}_{\Theta}^+: \aleph \to D[0,1]$ such that $\tilde{\mu}_{\Theta}^+(\chi) = [\xi_{\Theta_L}^+(\chi), \xi_{\Theta_U}^+(\chi)]$ and

 $\tilde{\mu}_{\Theta}^-: \aleph \to D[-1,0]$ such that $\tilde{\mu}_{\Theta}^-(\chi) = [\xi_{\Theta_L}^-(\chi), \xi_{\Theta_U}^-(\chi)]$, also $\lambda_{\Theta}^+: \aleph \to [0,1]$ and $\lambda_{\Theta}^-: \aleph \to [-1,0]$ it follows that

$$\Theta = \{ \langle \chi, \{ [\xi_{\Theta_{\mathsf{I}}}^+(\chi), \xi_{\Theta_{\mathsf{I}}}^+(\chi)], [\xi_{\Theta_{\mathsf{I}}}^-(\chi), \xi_{\Theta_{\mathsf{I}}}^-(\chi)] \}, \qquad \lambda_{\Theta}^+(\chi), \lambda_{\Theta}^-(\chi) \} >: \chi \in \aleph \}$$

Definition(17)[10]. A (CB) $\Theta = \langle N, K \rangle$ in \aleph is named a (CB) sub-KU-semigroup if: $\forall \chi, \gamma \in \aleph$,

$$(1) \ \widetilde{\mu}_{\Theta}^{+}(\chi * \gamma) \geq rmin\{\widetilde{\mu}_{\Theta}^{+}(\chi), \widetilde{\mu}_{\Theta}^{+}(\gamma)\}, \ \widetilde{\mu}_{\Theta}^{-}(\chi * \gamma) \leq rmax\{\widetilde{\mu}_{\Theta}^{-}(\chi), \widetilde{\mu}_{\Theta}^{-}(\gamma)\}$$
$$\lambda_{\Theta}^{+}(\chi * \gamma) \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma)\}, \ \lambda_{\Theta}^{-}(\chi * \gamma) \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma)\},$$

$$(2) \ \widetilde{\mu}_{\Theta}^{+}(\chi \circ \gamma) \geq rmin\{\widetilde{\mu}_{\Theta}^{+}(\chi), \widetilde{\mu}_{\Theta}^{+}(\gamma)\}, \ \widetilde{\mu}_{\Theta}^{-}(\chi \circ \gamma) \leq rmax\{\widetilde{\mu}_{\Theta}^{-}(\chi), \widetilde{\mu}_{\Theta}^{-}(\gamma)\}$$
$$\lambda_{\Theta}^{+}(\chi \circ \gamma) \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma)\}, \ \lambda_{\Theta}^{-}(\chi \circ \gamma) \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma)\},$$

Example(18)[10]: The following table is Illustrates that the set $\aleph = \{0,1,2,3\}$ with binary operations * and \circ

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

0	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then($\aleph, *, \circ, 0$) is a KU-semigroup. Define $\Theta = \langle N, K \rangle$ as follows

$$M(x) = \begin{cases} \{[-0.2, -0.5], [0.1, 0.9]\} & if \quad \chi = \{0, 1\} \\ \{[-0.6, -0.2], [0.2, 0.5]\} & if \quad otherwise \end{cases},$$

$$\lambda_{\Theta}^{+}(x) = \begin{cases} 0.5 & \text{if } \chi = \{0,1\} \\ 0.3 & \text{if otherwise} \end{cases} \quad \lambda_{\Theta}^{-}(x) = \begin{cases} -0.6 & \text{if } \chi = \{0,1\} \\ -0.3 & \text{if otherwise} \end{cases}$$

And by applying definition 2.17, we can easily prove that $\Theta = \langle N, K \rangle$ is a cubic bipolar sub KU-semigroup of \aleph .

3. Cubic bipolar ideals of a KU-semi group with thresholds (α, β) , (ω, ϑ)

In this part, the notion of cubic bipolar k-ideals with thresholds (α, β) , (ω, ϑ) of a KU-semi group and some properties are defined. In the following, we denote a cubic bipolar fuzzy set by (CBF) and let $\alpha, \beta \in D[0,1]$, and, $\omega, \vartheta \in [0,1]$, such that

$$[0,0] < \alpha < \beta < [1,1]$$
 , $0 < \omega < \vartheta < 1$, where ω, ϑ are arbitrary values, and α, β , are arbitrary closed sub-intervals

Definition(19). A *(CBF)* set $\Theta = \langle M, L \rangle$ is named a *(CBF)* sub-KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ if $\forall \chi, \gamma \in \aleph$

$$(1)\min\{\tilde{\mu}_{\Theta}^{-}(\chi * \gamma), -\alpha\} \leq r\max\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$r\max\{\tilde{\mu}_{\Theta}^{+}(\chi * \gamma), \alpha\} \geq r\min\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$\min\{\lambda_{\Theta}^{-}(\chi * \gamma), -\omega\} \leq \max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\theta\}$$

$$\max\{\lambda_{\Theta}^{+}(\chi * \gamma), \omega\} \geq \min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

$$(2)r\min\{\tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma), -\alpha\} \leq r\max\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$r\max\{\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma), \alpha\} \geq r\min\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$\min\{\lambda_{\Theta}^{-}(\chi \circ \gamma), -\omega\} \leq \max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$\max\{\lambda_{\Theta}^{+}(\chi \circ \gamma), \omega\} \geq \min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

Remark(20). Every *(CBF)* sub-KU-semi group of \aleph is a *(CBF)* sub-KU-semigroup with thresholds (α, β) , (ω, ϑ) , but not converse as it is shown in the following example **Example(21).**Let $\aleph = \{0,1,2,3\}$ be a set with two operations * and \circ which are defined by the following tables.

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

0	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then $(\aleph, *, \circ, 0)$ is a KU-semi group. Now, we define $\Theta = \langle M, L \rangle$ by the next

$$M(x) = \begin{cases} \begin{bmatrix} -0.9, -0.8 \end{bmatrix}, \begin{bmatrix} 0.8, & 0.9 \end{bmatrix} & if & \chi = 0 \\ [-0.8, -0.7], \begin{bmatrix} 0.7, & 0.8 \end{bmatrix} & if & \chi = 1 \\ [-0.6, -0.5], \begin{bmatrix} 0.5, & 0.6 \end{bmatrix} & if & \chi = 3 \\ [-0.3, -0.2], \begin{bmatrix} 0.2, & 0.3 \end{bmatrix} & if & \chi = 2 \end{cases}$$

$$L(x) = \begin{cases} -0.9, & 0.9 & if \quad \chi = 0 \\ -0.5, & 0.6 & if \quad \chi = 1 \\ -0.4, & 0.5 & if \quad \chi = 3 \\ -0.2, & 0.2 & if \quad \chi = 2 \end{cases}$$

And by applying definition (19), we can easily prove that $\Theta = \langle M, L \rangle$ is a (*CBF*) sub KU-semi group with thresholds $(\alpha, \beta) = ([0.1, 0.2], [0.2, 0.2])$, and $(\omega, \vartheta) = (0.1, 0.2)$, but not a (*CBF*) sub KU-semi group since

$$\begin{split} \tilde{\mu}_{\Theta}^{+}(1*3) &\geq rmin\{\tilde{\mu}_{\Theta}^{+}(1), \tilde{\mu}_{\Theta}^{+}(3)\} \\ \{\tilde{\mu}_{\Theta}^{+}(2)\} &\geq rmin\{\tilde{\mu}_{\Theta}^{+}(1), \tilde{\mu}_{\Theta}^{+}(3)\} \\ [0.2, 0.3] &\geq rmin\{[0.7, 0.8], [0.5, 0.6]\} \\ [0.2, 0.1] &\geq [0.5, 0.6] \text{ ,which is incorrect phrase} \\ \tilde{\mu}_{\Theta}^{-}(1*3) &\leq rmax\{\tilde{\mu}_{\Theta}^{-}(1), \tilde{\mu}_{\Theta}^{-}(3)\} \end{split}$$

$$\tilde{\mu}_{\Theta}^{-}(2) \le rmax\{[-0.8, -0.7], [-0.6, -0.5]\}$$

 $[-0.3, -0.2 \le [-0.6, -0.5]$, which is the incorrect phrase, and

$$\lambda_{\Theta}^+(1*3) \ge \min\{\lambda_{\Theta}^+(1), \lambda_{\Theta}^+(3)\}$$

$$\lambda_{\Theta}^{+}(2) \geq min\{0.6, 0.5\}$$

 $0.2 \ge 0.5$, it is wrong

$$\lambda_{\Theta}^{-}(1*3) \leq \max\{\lambda_{\Theta}^{-}(1), \lambda_{\Theta}^{-}(3)\}\$$

$$\lambda_{\Theta}^{-}(2) \leq max\{-0.5, -0.4\}$$

 $-0.2 \le -0.4$, which is also wrong.

Remark(22). If $\Theta = \langle M, L \rangle$ is a *(CBF)* sub KU-semi group with thresholds (α, β) , (ω, ϑ) such that $\alpha = [0,0]$, $\beta = [1,1,]$, $\omega = 0$, and $\vartheta = 1$, then $\Theta = \langle M, L \rangle$ is a *(CBF)* sub-KU-semi group of \aleph .

Proposition(23). If $\Theta = \langle M, L \rangle$ is a cubic bipolar sub-KU-semi group with thresholds (α, β) , (ω, θ) of \aleph , then for all $\chi \in \aleph$

- (1) $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$
- (2) $rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$
- (3) $\max\{\lambda_{\Theta}^{+}(0), \omega\} \ge \min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

$$(4)\min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq \max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$$

Proof: by **(ku₅)** $\chi * \chi = 0$, and since $\Theta = \langle M, L \rangle$ is a cubic bipolar sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph ,

$$rmax\{\tilde{\mu}_{\Theta}^{+}(0), \ \alpha\} = rmax\{\tilde{\mu}_{\Theta}^{+}(\chi * \chi), \ \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\chi), \ \beta\}$$
$$= rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}, \text{ that is } (1)$$

$$rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} = rmin\{\tilde{\mu}_{\Theta}^{-}(\chi * \chi), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$$
$$= rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\} \text{, that is } (2)$$

$$\max\{\lambda_{\Theta}^{+}(0), \ \omega\} = \max\{\lambda_{\Theta}^{+}(\chi * \chi), \omega\} \ge \min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\chi), \ \theta\}$$
$$= \min\{\lambda_{\Theta}^{+}(\chi), \theta\}, \text{ that is } (3)$$

$$\min\{\lambda_{\Theta}^{-}(0), -\omega\} = \min\{\lambda_{\Theta}^{-}(\chi * \chi), -\omega\} \le \max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\chi), -\vartheta\}$$
$$= \max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}, \text{that is } (4)$$

Proposition(24).If $\Theta = \langle M, L \rangle$ is a *(CBF)* sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , then for all $\chi \in \aleph$

- (1) $rmax\{\tilde{\mu}_{\Theta}^{+}(0 \circ \chi), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$
- (2) $rmin\{\tilde{\mu}_{\Theta}^{-}(0 \circ \chi), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$
- (3) $\max\{\lambda_{\Theta}^{+}(0 \circ \chi), \omega\} \ge \min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

$$(4)\min\{\lambda_{\Theta}^{-}(0\circ\chi),-\omega\}\leq \max\{\lambda_{\Theta}^{-}(\chi),-\vartheta\}$$

Proof: Since $\Theta = \langle M, L \rangle$ is a *(CBF)* sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , we have

$$rmax\{\tilde{\mu}^+_{\Theta}(0 \circ \chi), \alpha\} \ge rmin\{\tilde{\mu}^+_{\Theta}(0), \tilde{\mu}^+_{\Theta}(\chi), \beta\} = rmin\{\tilde{\mu}^+_{\Theta}(\chi), \beta\}, \text{ which is (1)}$$

$$rmin\{\tilde{\mu}_{\Theta}^{-}(0 \circ \chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(0), \ \tilde{\mu}_{\Theta}^{-}(\chi) - \beta\} = rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}, \text{ which is } (2)$$

$$max\{\lambda_{\Theta}^{+}(0 \circ \chi), \omega\} \geq min\{\lambda_{\Theta}^{+}(0), \lambda_{\Theta}^{+}(\chi), \ \vartheta\} = min\{\lambda_{\Theta}^{+}(\chi), \ \vartheta\}, \text{ which is } (3)$$

$$min\{\lambda_{\Theta}^{-}(0 \circ \chi), -\omega\} \leq max\{\lambda_{\Theta}^{-}(0), \lambda_{\Theta}^{-}(\chi), -\vartheta\} = max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}, \text{ which is } (4)$$

Definition(25). A *(CBF)* set $\Theta = \langle M, L \rangle$ is named a *(CBF)* ideal of the KU-semi group with thresholds $(\alpha, \beta), (\omega, \vartheta)$ if $\forall \chi, \gamma \in \aleph$

$$(CBT_{1}) rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$$

$$rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}, \text{and}$$

$$min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$$

$$max\{\lambda_{\Theta}^{+}(0), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$$

$$(CBT_{2}) \operatorname{rmin}\{\tilde{\mu}_{\Theta}^{-}(\gamma), -\alpha\} \leq \operatorname{rmax}\{\tilde{\mu}_{\Theta}^{-}(\chi * \gamma), \tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}$$

$$\operatorname{rmax}\{\tilde{\mu}_{\Theta}^{+}(\gamma), \alpha\} \geq \operatorname{rmin}\{\tilde{\mu}_{\Theta}^{+}(\chi * \gamma), \tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$$

$$\operatorname{min}\{\lambda_{\Theta}^{-}(\gamma), -\omega\} \leq \operatorname{max}\{\lambda_{\Theta}^{-}(\chi * \gamma), \lambda_{\Theta}^{-}(\chi), -\vartheta\}$$

$$\operatorname{max}\{\lambda_{\Theta}^{+}(\gamma), \omega\} \geq \operatorname{min}\{\lambda_{\Theta}^{+}(\chi * \gamma), \lambda_{\Theta}^{+}(\chi), \vartheta\}$$

$$(CBT_3)rmin\{\tilde{\mu}_{\Theta}^{-}(\chi \circ \gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$rmax\{\tilde{\mu}_{\Theta}^{+}(\chi \circ \gamma), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$min\{\lambda_{\Theta}^{-}(\chi \circ \gamma), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$max\{\lambda_{\Theta}^{+}(\chi \circ \gamma), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

Example(26). The following table Illustrates the set $\aleph = \{0,1,2\}$ with binary operations * and \circ

*	0	1	2
0	0	1	2
1	0	0	1
2	0	1	0

0	0	1	2
0	0	0	0
1	0	1	0
2	0	0	2

Then($\aleph, *, \circ, 0$) is a KU-semigroup. Define $\Theta = \langle M, L \rangle$ as follows:

$$M(\chi) = \begin{cases} [-0.8, -0.7], [0.6, 0.8] & if \ \chi = 0 \\ [-0.6, -0.5], [0.4, 0.6] & if \ \chi = 1 \\ [-0.4, -0.3], [0.3, 0.2] & if \ \chi = 2 \end{cases}$$

$$L(\chi) \begin{cases} -0.6 \,, & 0.8 & if \ \chi = 0 \\ -0.5 \,, & 0.6 & if \ \chi = 1 \\ -0.3 \,, & 0.3 & if \ \chi = 2 \end{cases}$$

We can show that $\Theta = \langle M, L \rangle$ is a (CBF) ideal with thresholds ([0.1, 0.1], [0.3,0.2]) and (0.4, 0.2) of \aleph

Definition(27). A (CBF)set $\Theta = \langle M, L \rangle$ is named a (CBF)k-ideal of KU-semigroup with thresholds (α, β) , (ω, ϑ) if $\forall \gamma, \gamma, \tau \in \aleph$

$$(CBK_1)rmin\{\tilde{\mu}_{\Theta}^-(0), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^-(\chi), -\beta\}$$

 $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\}$

 $\min\{\lambda_\Theta^-(0), -\omega\} \leq \max\{\lambda_\Theta^-(\chi), -\vartheta\}$

 $max\{\lambda_{\Theta}^{+}(0), \omega\} \ge min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

$$(CBK_2) rmin\{\widetilde{\mu}_{\Theta}^-(\chi * \tau), -\alpha\} \leq rmax\{\widetilde{\mu}_{\Theta}^-(\chi * (\gamma * \tau)), \widetilde{\mu}_{\Theta}^-(\gamma), -\beta\}$$

 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi*\tau),\ \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi*(\gamma*\tau),\tilde{\mu}_{\Theta}^{+}(\gamma),\ \beta\}$

 $\min\{\lambda_{\Theta}^{-}(\chi*\tau), -\omega\} \leq \max\{\lambda_{\Theta}^{-}(\chi*(\gamma*\tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$

 $\max\{\lambda_{\Theta}^{+}(\chi*\tau),\ \omega\}\geq \min\{\lambda_{\Theta}^{+}\big(\chi*(\gamma*\tau)\big),\lambda_{\Theta}^{+}(\gamma),\ \vartheta\}$

 $(CBK_3)rmin\{\tilde{\mu}_{\Theta}^-(\chi\circ\gamma), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^-(\chi), \tilde{\mu}_{\Theta}^-(\gamma), -\beta\}$

 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi\circ\gamma),\ \alpha\}\geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi),\tilde{\mu}_{\Theta}^{+}(\gamma),\ \beta\}$

 $\min\{\lambda_\Theta^-(\chi\circ\gamma),-\omega\}\leq \max\{\lambda_\Theta^-(\chi),\lambda_\Theta^-(\gamma),-\vartheta\}$

 $\max\{\lambda_{\Theta}^{+}(\chi\circ\gamma),\ \omega\}\geq\min\{\lambda_{\Theta}^{+}(\chi),\lambda_{\Theta}^{+}(\gamma),\ \vartheta\}$

Lemma(28). Every *(CBF)* k-ideal of \aleph is a *(CBF)* k-ideal with thresholds (α, β) , (ω, ϑ) of \aleph **Proof:** Suppose that $\Theta = \langle M, L \rangle$ is a *(CBF)* k-ideal of \aleph , then let

 $rmax\{\tilde{\mu}^+_{\Theta}(0), \alpha\} < rmin\{\tilde{\mu}^+_{\Theta}(\chi), \beta\}, \text{and } \alpha < \beta \text{ it follows that } \tilde{\mu}^+_{\Theta}(0) < \tilde{\mu}^+_{\Theta}(\chi). \text{ But that is a contradiction, since } \Theta \text{ is a} (\textit{CBF}) \textit{k}\text{-ideal of } \aleph \text{ ,}$

 $rmax\{\tilde{\mu}_{\Theta}^{+}(0), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\chi), \beta\},$

also let $min\{\lambda_\Theta^-(0), -\omega\} > max\{\lambda_\Theta^-(\chi), -\vartheta\}$, and $\omega < \vartheta$, it follows that

 $\lambda_{\Theta}^-(0) > \lambda_{\Theta}^-(\chi)$; this is a contradiction since Θ is a *(CBF) k*-ideal of \aleph . this means that

 $min\{\lambda_{\Theta}^{-}(0), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi), -\vartheta\}$, in the same way, we can prove

 $rmin\{\tilde{\mu}_{\Theta}^{-}(0), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi), -\beta\}, \text{ and } max\{\lambda_{\Theta}^{+}(0), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi), \vartheta\}$

Again, assume that

 $rmax\{\tilde{\mu}_{\Theta}^{+}(\chi*\tau),\alpha\} < rmin\{\tilde{\mu}_{\Theta}^{+}(\chi*(\gamma*\tau),\tilde{\mu}_{\Theta}^{+}(\gamma),\beta\}, \text{ and } \alpha < \beta \text{ it follows that}$ $\tilde{\mu}_{\Theta}^{+}(\chi*\tau) < rmin\{\tilde{\mu}_{\Theta}^{+}(\chi*(\gamma*\tau),\tilde{\mu}_{\Theta}^{+}(\gamma)\}, \text{ which is a contradiction, so}$

Ibn Al-Haitham Jour. for Pure & Appl. Sci. 35(2)2022
$$rmax\{\tilde{\mu}_{\Theta}^{+}(\chi * \tau), \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\chi * (\gamma * \tau), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}, \\ \text{Also let} \\ min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} > max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}, \text{ and } \omega < \vartheta, \text{ so } \lambda_{\Theta}^{-}(\chi * \tau) > max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma)\}, \text{ which is a contradiction. That is } min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\} \\ \text{In the same way, we get} \\ rmin\{\tilde{\mu}_{\Theta}^{-}(\chi * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\chi * (\gamma * \tau)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\} \\ max\{\lambda_{\Theta}^{+}(\chi * \tau), \omega\} \geq min\{\lambda_{\Theta}^{+}(\chi * (\gamma * \tau)), \lambda_{\Theta}^{+}(\gamma), \vartheta\}, \text{ and the condition } (CBK_3) \\ \text{Then, } \Theta = \langle M, L \rangle \text{ is a } (CBF) \text{ k-ideal with thresholds } (\alpha, \beta), (\omega, \vartheta) \text{ of } \aleph. \\ \text{Proposition(29). Let } \Theta = \langle M, L \rangle \text{ be a cubic bipolar k-ideal with thresholds } (\alpha, \beta), (\omega, \vartheta) \text{ of } \aleph \\ \text{if } \chi \leq \gamma \text{ , then} \\ \text{(a) } rmin\{\tilde{\mu}_{\Theta}^{-}(\chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}, \text{ } rmax\{\tilde{\mu}_{\Theta}^{+}(\chi), \text{ } \alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma), \text{ } \beta\} \\ \text{(b) } min\{\lambda_{\Theta}^{-}(\chi), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\gamma), -\vartheta\}, \text{ } max\{\lambda_{\Theta}^{+}(\chi), \text{ } \omega\} \geq min\{\lambda_{\Theta}^{+}(\gamma), \text{ } \vartheta\} \\ \text{Proof: Since } \chi \leq \gamma \text{ , then } \gamma * \chi = 0 \text{ , and by } (ku_3) \text{ } 0 * \chi = \chi \\ \text{Since } \Theta = \langle M, L \rangle \text{ is a } (CB) \text{ k-ideal with thresholds } (\alpha, \beta), (\omega, \vartheta) \text{ of } \aleph \text{ , we get} \\ rmin\{\tilde{\mu}_{\Theta}^{-}(\chi), -\alpha\} = rmin\{\tilde{\mu}_{\Theta}^{-}(0 * \chi), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(0 * (\gamma * \chi)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\} \\ \end{cases}$$

Since
$$\Theta = \langle M, L \rangle$$
 is a (CB) k -ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph , we get
$$rmin\{\tilde{\mu}_{\Theta}^{-}(\chi), -\alpha\} = rmin\{\tilde{\mu}_{\Theta}^{-}(0 * \chi), -\alpha\} \le rmax\{\tilde{\mu}_{\Theta}^{-}(0 * (\gamma * \chi)), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$= rmax\{\tilde{\mu}_{\Theta}^{-}(0), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$= rmax\{\tilde{\mu}_{\Theta}^{-}(0), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

$$= rmax\{\tilde{\mu}_{\Theta}^{+}(\gamma), -\beta\}$$

$$= rmax\{\tilde{\mu}_{\Theta}^{+}(\gamma), -\beta\}$$

$$= rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma), \alpha\} = rmax\{\tilde{\mu}_{\Theta}^{+}(0 * \chi), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(0 * (\gamma * \chi)), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$= rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma), \tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}$$

$$= rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma), \beta\}, \text{which is } (a), \quad \text{And}$$

$$min\{\lambda_{\Theta}^{-}(\chi), -\omega\} = min\{\lambda_{\Theta}^{-}(0 * \chi), -\omega\}$$

$$\leq max\{\lambda_{\Theta}^{-}(0 * (\gamma * \chi)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$= max\{\lambda_{\Theta}^{-}(0), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$= max\{\lambda_{\Theta}^{-}(0), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$

$$= max\{\lambda_{\Theta}^{+}(\gamma), \omega\} = max\{\lambda_{\Theta}^{+}(0 * \chi), \omega\} \ge min\{\lambda_{\Theta}^{+}(0 * (\gamma * \chi)), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

$$= min\{\lambda_{\Theta}^{+}(0 * 0), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

$$= min\{\lambda_{\Theta}^{+}(0 * 0), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

=
$$min\{\lambda_{\Theta}^{+}(\gamma), \vartheta\}$$
, which is (b)

Theorem(30).Let $\Theta = \langle M, L \rangle$ be a cubic bipolar fuzzy set of a KUsemigroup($\aleph, *, \circ, 0$) then, Θ is a *(CBF) k*-ideal with thresholds (α, β) , (ω, ϑ) of \aleph if and only if it is a *(CBF)*-ideal with thresholds (α, β) , (ω, ϑ) of \aleph .

Proof: \Rightarrow Let $\Theta = \langle M, L \rangle$ be a cubic bipolar k-ideal with thresholds (α, β) , (ω, ϑ) of \aleph , if we put $\chi = 0$ in (CBK_2) , we get

$$rmin\{\widetilde{\mu}_{\Theta}^{-}(0*\tau), -\alpha\} \leq rmax\{\widetilde{\mu}_{\Theta}^{-}(0*(\gamma*\tau)), \widetilde{\mu}_{\Theta}^{-}(\gamma), -\beta\} \text{ is }$$

$$rmin\{\widetilde{\mu}_{\Theta}^{-}(\tau), -\alpha\} \leq rmax\{\widetilde{\mu}_{\Theta}^{-}(\gamma * \tau), \widetilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}$$

,also
$$rmax\{\tilde{\mu}_{\Theta}^{+}(0*\tau),\alpha\} \geq rmin\{\tilde{\mu}_{\Theta}^{+}(0*(\gamma*\tau),\tilde{\mu}_{\Theta}^{-}(\gamma),\beta\}$$
 is

$$rmax\{\tilde{\mu}_{\Theta}^{+}(\tau), \alpha\} \ge rmin\{\tilde{\mu}_{\Theta}^{+}(\gamma * \tau), \tilde{\mu}_{\Theta}^{-}(\gamma), \beta\}$$
, and

$$min\{\lambda_{\Theta}^{-}(0*\tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(0*(\gamma*\tau)), \lambda_{\Theta}^{-}(\gamma), -\vartheta\}$$
 is

$$min\{\lambda_{\Theta}^{-}(\tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\gamma * \tau)\}, \lambda_{\Theta}^{-}(\gamma), -\vartheta\},$$

Also
$$max\{\lambda_{\Theta}^{+}(0*\tau), \omega\} \ge min\{\lambda_{\Theta}^{+}(0*(\gamma*\tau)), \lambda_{\Theta}^{+}(\gamma), \vartheta\}$$

 $\max\{\lambda_{\Theta}^{+}(\tau), \ \omega\} \geq \min\{\lambda_{\Theta}^{+}(\gamma * \tau), \lambda_{\Theta}^{+}(\gamma), \ \vartheta\}$, the other conditions (CBT₁), (CBT₃) are holds from the definition of (CBF)k-ideal; therefore $\Theta = \langle M, L \rangle$ is a (CB)-ideal with thresholds $(\alpha, \beta), (\omega, \vartheta)$ of \aleph

 \Leftarrow Let $\Theta = \langle M, L \rangle$ be a cubic bipolar ideal with thresholds (α, β) , (ω, θ) of \aleph ,

By (CBT₂)
$$rmin\{\tilde{\mu}_{\Theta}^{-}(\chi * \tau), -\alpha\} \leq rmax\{\tilde{\mu}_{\Theta}^{-}(\gamma * (\chi * \tau), \tilde{\mu}_{\Theta}^{-}(\gamma), -\beta\}, \text{ also}$$

$$rmax\{\tilde{\mu}^+_{\Theta}(\chi*\tau),\ \alpha\} \leq rmin\{\tilde{\mu}^+_{\Theta}(\gamma*(\chi*\tau),\tilde{\mu}^+_{\Theta}(\gamma),\ \beta\},$$

$$min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\gamma * (\chi * \tau), \lambda_{\Theta}^{-}(\gamma), -\vartheta\},$$
also

$$\max\{\lambda_{\Theta}^{+}(\chi*\tau),\omega\}\geq\min\{\lambda_{\Theta}^{+}(\gamma*(\chi*\tau),\lambda_{\Theta}^{+}(\gamma),\vartheta\}$$

Applying theorem 2 (2) to the previous four steps, we obtain

$$rmin\{\widetilde{\mu}_{\Theta}^{-}(\chi*\tau), -\alpha\} \leq rmax\{\widetilde{\mu}_{\Theta}^{-}(\chi*(\gamma*\tau), \widetilde{\mu}_{\Theta}^{-}(\gamma), -\beta\},$$

$$rmax\{\tilde{\mu}^+_\Theta(\chi*\tau),\alpha\} \leq rmin\{\tilde{\mu}^+_\Theta(\chi*(\gamma*\tau),\tilde{\mu}^+_\Theta(\gamma),~\beta\}~,~\text{and}~$$

$$min\{\lambda_{\Theta}^{-}(\chi * \tau), -\omega\} \leq max\{\lambda_{\Theta}^{-}(\chi * (\gamma * \tau), \lambda_{\Theta}^{-}(\gamma), -\vartheta\},$$

$$max\{\lambda_{\Theta}^{+}(\chi * \tau), \omega\} \ge min\{\lambda_{\Theta}^{+}(\chi * (\gamma * \tau), \lambda_{\Theta}^{+}(\gamma), \vartheta\}, \text{ which is } \boldsymbol{a} \text{ (CBF) } \boldsymbol{k}\text{-ideal},$$

The remaining two conditions $(CBK_1),(CBK_3)$ are holds from the definition of (CBF)-ideal.

4.Conclusion

During this work, we present the definitions of the cubic bipolar sub-KU-semigroup with thresholds (α, β) , (ω, ϑ) and cubic bipolar k-ideal with thresholds (α, β) , (ω, ϑ) of \aleph . The relationship among these types of ideals and some properties are studied, We obtained the following result: every (CBF) sub-KU-semi group of \aleph is a (CBF) sub-KU-semi group with thresholds (α, β) , (ω, ϑ) of \aleph , but the converse is not true. Finally, we proved that a cubic bipolar fuzzy k-ideal with thresholds (α, β) , (ω, ϑ) and a cubic bipolar fuzzy ideal with thresholds (α, β) , (ω, ϑ) of a KU-semi group are equivalents.

References

- 1. Zadeh, L.A. Fuzzy Sets, Inform and Control, 1965, 8, 338-353.
- 2. Mostafa, S.M.; Abd-Elnaby, M.A.; Yousef, M.M.M. Fuzzy ideals of KU-Algebras, Int. Math, Forum, 2011, 6(63), 3139-3149.
- 3. Mostafa, S. M.; Kareem, F. F.bipolar fuzzy N-fold KU-ideals of KU-algebras, Mathematica Aeterna, 2014, *4*, 633-650.
- 4. Jun, Y. B.; Kim, C. S.; Kang, M. S. Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences, 2010, 2 (44), 239–250.
- 5. Jun, Y. B.; Kim, C. S.; Kang, J. G. Cubic q-ideals of BCIalgebras, Ann. Fuzzy Math.Inform. 2011, 1 (1), 25-34.
- Jun, Y. B.; Kim, C. S.; Yang, K. O. Cubic sets, Ann. Fuzzy Math. Inform. 2012,4 (1) 83-98.
- 7. Kareem, F. F.; Hasan, O. A. Cubic ideals of semigroup in KU-algebra, *Journal of Physics: Conference Series* 1804 (2021) 012018 IOP Publishing
- 8. Kareem, F. F.; Hasan, O. A. The Homomorphism of a cubic set of a semigroup in a KU-algebra, *Journal of Physics*, 1879 (2021) 022119 IOP Publishing.
- 9. Kareem, F.F.; Hasan, E. R. Bipolar fuzzy *k*-ideals in KU-semigroups, *Journal of New Theory*, 2019,9, 71-78.
- K Awad, Wisam K., and Fatema F. Kareem. The Homomorphism of Cubic bipolar ideals of a KU-semigroup. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(1)., 73-83.
- 11. Kareem, F.F.; Abed, M. M. Generalizations of Fuzzy k-ideals in a KU-algebra with Semigroup, *Journal of Physics*, 2021, 1879,022108 IOP Publishing.
- 12. Prabpayak, C. Leerawat, U. On ideals and congruence in KU-algebras, scientia Magna, 2009, *5*(*1*), 54-57.
- 13. Kareem, F.F.; Hasan, E. R. On KU-semigroups, *International Journal of Science and Nature*. 2018, 9 (1), 79-84.