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Abstract

In this paper, we introduce the concept of cubic bipolar fuzzy ideals with thresholds (o.p).(®.9) of
a semigroup in KU-algebra as a generalization of sets and in short (CBF). Firstly, a (CBF) sub-
KU-semigroup with a threshold (a.,B),(®.,3) and some results in this notion are achieved. Also,
(cubic bipolar fuzzy ideals and cubic bipolar fuzzy k-1deals) with thresholds (o.,p).(w ,3) are defined
and some properties of these ideals are given. Relations between a (CBF) sub algebra and a (CBF)
ideal are proved. A few characterizations of a (CBF) k-ideal with thresholds (o, B), (©.9) are
discussed. Finally, we proved that a (CBF) k-ideal and a (CBF) ideal with thresholds (a, p), (®.9)
of a KU-semi group are equivalent relations.

Keywords: A KU-semigroup, cubic k-ideal, cubic bipolar fuzzy k-ideal with thresholds (a, B),
(0,9).

1. Introduction

The fuzzy sets were introduced by Zadeh [1] in 1956; after that, many authors applied this
concept in different mathematics fields. Mostafa [2, 3] studied the notion of fuzzy KU-ideals of
KU-algebras and Generalizations of Fuzzy sets, which are called bipolar- fuzzy n-fold KU-ideals.
Jun [4- 6] studied the notion of a cubic set as a generalization of fuzzy set and interval-valued
fuzzy set. Kareem and Hasan[7,8] defined the cubic ideals of a KU-semigroup and a
homomorphism of a cubic set in this structure. Bipolar—valued fuzzy sets are extensions of fuzzy

sets whose membership degree range is enlarged from the interval [0,1] to [-1,1]. Kareem and
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Hassan[9] and Kareem and Awad [10] defined the concepts of bipolar fuzzy k-ideals and cubic
bipolar ideals in KU-semigroup respectively, also Kareem and Abed [11] presented the idea of
bipolar fuzzy k-ideals with a threshold of KU -semigroup.

The paper aims to introduce a cubic bipolar fuzzy k-ideals with thresholds (o.p),(®,3) of KU-semi
group and discuss some relations between a cubic bipolar fuzzy k-ideal with thresholds (a.p), (®,9)
and a bipolar fuzzy k-ideal.

2. Basic concepts

Definition(1)[12]. Algebra(R,*,0) 1s a set X ,and a binary operation * which is satisfies the
following .forally,y, T € X

ku)(x* ) * =D *x*0]=0

(kuy) x *0=10

(kug) 0+ x = x

(kug) x*y=y*x=0 and y*x implies x =y

(kug) x *x = 0.

We can define a binary operation < on X is defined by x <y & y * x = 0. It follows that
(R,<)isa partially ordered set .

Theorem(2)[2]. In a KU-algebra (X,+,0 ) V ¥, ¥, T € X, then the following holds
(Dx<y imply y* t<x*t

@ x*r*D)=y*x*1)

Gy*x sxalso (y*x)*x <v

Definition(3)[2]. A non-empty subset I of a KU-algebra X is named an ideal if for anyy,y €
X, then

(1) 0el

2Q)If x+*y €I impliesthat y €I .

Definition(4)[2]. A non-empty subset I of a KU-algebra X is named a KU-ideal if

(1) 0el

2)If x*(y*t)€l ,andy €1 mmplythat x*t € .

Definition(5)[13]. An algebra KU- semi group is a structure contains a nonempty set 8 with
two binary operations *,c and a constant 0 satisfying the following

(D The set X with operation * and constant 0 is KU-algebra
(I) ~ The set X with operation o is semigroup.

M) xoe(y*t)=(ey)*(xet),and(x*y)et=(xot)*(yo1) foraly,y teR.

48



Ibn Al-Haitham Jour. for Pure & Appl. Sci. 35(2)2022

Definition(6)[13]. A non-empty subset 4 of X is called a sub-KU-semi group of Xif x*y € A4 ,
andyey €A, forall y,yed
Definition(7)[13]. In a KU-semi group (X,*,0,0), the subset ¢ # I of X is said to be S ideal , if

(i) Itis anideal in a KU-algebra
(ii) xca€el,andaecyel , Ve, ael

Definition(8)[13]. In KU-semigroup (X,#,0,0), the subset ¢ # A of X is named a k -ideal , if

(i) It 1s a KU-1deal of R
(ii) xcae€el,andacxyel,VvxeR.,acel
In this part , we recall some concepts of fuzzy logic

A function p: X — [0,1] 1s said to be a fuzzy set of a set X,and the set
is said to be a level set of p, fort, where 1 >t > 0U(u,t) = {x € X : u(x) = t}

Now, an interval valued fuzzy set [i of X is defined as follows:

Remark(9)[7-8].A function fi: R — D|[0,1], where D[0,1] is a family of the closedsub -
intervals of[0, 1]. The level subset of /i is denoted by fizand it is defined by

fi; ={x € X: fi(x) = T}, for every [0,0] < 7 < [1,1].
0. Hasan and F.Kareem [7-8] introduced the Cubic ideals of the KU-semigroup as follows:

Definition(10)[7-8]. In the KU-semigroup(R,*,2,0), a cubic set O is the form

0 = {{x, le(x), 2o (X)): x € R}, such that Ag(x) is a fuzzy setand [ig: X — D[0,1] is an
interval-valued , briefly © = (fig, Ag).

Definition(11)[7-8]. In the KU-semigroup (¥,*,°,0) a cubic set 0 = (fig, Ap)in X is named a
cubic sub-KU-semigroup if: for all y,y € X,

(1) fe(x *v) = rmin{fie(X) , Ho(V) A0 (X * ¥) = max{Ae(X) , Ao (¥)}

(2) fo(x o y) =z rmin{fie(x) , fo(¥)}, 2e(x o ¥) = max{Ae(X) , o(¥)}-

Definition(12)[7-8]. The set © in X is named a cubic ideal of a KU-semigroup
(R,+0,0)if,Vy,y € X

(CIY) [i(0) = fio(x) and 26 (0) < Ao (X)),

(CL) fig(v) = rmin{fio (x *¥), e ()}, A6(¥) = max{Ae(x *v) , A0 (0}
(CI) fig(x °y) = rminf{fie(x), fle(¥)}. 2e(x o ¥) < max{de(x) , 2e(¥)}.
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Example(13)[7-8]. Let X = {0,1,2} be a set. Define the operations *,c by the following tables.

* |0 1 |2 o |0 1 |2
0 |0 1 |2 0 |0 0 |0
1 o 0 |1 1 |0 1 ]0
2 o 1 0 210 0 (2

Then the structure (X,*,0,0) is a KU-semi group. A cubic set © = (fig, Ag) is defined by:

[0.4,0.8] if xe{0,2}

N _ 0.1 if xe{0,2}
fie(x) ‘{[0.1,0.3] if x=1

andlg(x):{ol?, if x=1

Then © = (fig, Ae) 1s a cubic ideal of X .

Definition(14)[7-8]. In a KU-semigroup (X,*,0,0), a cubic set ©@ = (fig, Ag) in X is named a
cubic k-ideal if V y,y,T € N

(Ckq)fie(0)) = fig(x) , and A9(0) < ZAe(x)

(Ck2)fio(x * 1) = rmin{lie(x * (¥ * 1)), Lo (V) };

Ae(x * 1) < max{Ae(x * (¥ * 1)), Ae(¥)}

(Ck3)fio(x o y) = rmin{lie(x) ,fe(¥)} Ae(x °¥) < max{de(x), Ao(¥)}-

In the following ,we recall some basic concepts of a bipolar fuzzy set.

Definition(15)[9]. A bipolar fuzzy setB inaset Xisa form B={(y, u(y). 4" (¥)): y €N},
where 4 (y):N —[-1,0]and 27 (x): N —[0,1] are two fuzzy mappings. The two membership
degrees 1" (y)and u (y)denote the fulfillment degree of X to the property corresponding of

B and the fulfillment degree of N to some implicit counter-property of B, respectively.

Kareem and Awad[10] introduced the cubic bipolar ideals of a KU- semigroup in KU-algebra
as follows:
Definition(16)[10]. Let X be a non-empty set. A cubic bipolar set in a set X 1s the structure © =
{(x 6 00, 1o 00, 26 (X), o (X): X € X)} is denoted as

© = (N,K), where N(x) = {fig %), fig ()} is called interval-valued bipolar fuzzy set and
K = {260, 26(x)} is a bipolar fuzzy set. Consider fis:® — D[0,1] such that g (x) =
[£4,00, £8,00] and

fig: & = D[—1,0] such that fig (X) = [{e, 00, e, (0] » also Ag5:R = [0,1] and Ag: X - [—1,0] it

follows that
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0 = {<x {[§6,00,$6, (0] [§0,00,§0, 0011 2600, 2600} >:x € K}
Definition(17)[10]. A (CB) © = (N, K) in X is named a (CB) sub-KU-semigroup if: Vyx,y € X,
@) 15+ y) = rmin{iig 00 , 16 (V). flo (x * v) < rmax{le (x) . flo ()}
A6+ v) 2 minfAg () , A6 (N}, 26 (x *¥) < max{Ae(X) . A6 (1)}
2) f6(xey) =2 rmin{fis(x) , @6 (¥)}. Ao (x °¥) < rmax{fig (x) . fio ()}
A6 oY) =2 min{Ag(x) , A6 (1N} Ao (x ° ¥) < max{Ae(x) , 2e(¥)};
Example(18)[10]: The following table is Illustrates that the set X = {0,1,2,3} with binary

operations * and °

= [0 [ 1] 273 ol 1 |23
0 |0 | 1| 213 ool o o]0
1 0] 0] 0] 2 1ol 1 To]1
2102 0] 1 2ol o0 212
50010010 3o 1 2713
Then(R,*,0,0) is a KU-semigroup. Define © = (N, K) as follows
M(x) = {{[—0-2,—0-5]. [0.1,09]} if x={01}
) = [-0.6,-0.2],[0.2,0.5]} if otherwise
05 if x={01} ._ ~0.6 if x=1{01}
+ — —_
Ao(x) = { 0.3 if otherwise Ao(x) = { -0.3 if otherwise

And by applying definition 2.17, we can easily prove that @ = (N, K) is a cubic bipolar sub KU-
semigroup of X .

3. Cubic bipolar ideals of a KU-semi group with thresholds (a, §), (w,9)

In this part, the notion of cubic bipolar k-ideals with thresholds (a, ), (w ,9) of a KU-semi
group and some properties are defined. In the following, we denote a cubic bipolar fuzzy set by
(CBF) ,and let @, € D[0,1],and,w,9 € [0,1], such that

[00]<a<pB<[11] ,0<w< 9<1,where w, are arbitrary values, and

a, [, are arbitrary closed sub-intervals
Definition(19). A (CBF) set © = (M, L) is named a (CBF) sub-KU-semi group with thresholds
(a, B), (w,9) 1fV y,y €ER
(D)min{jio (x * y), —a} < rmax{fie(x). fig (v), =B}
rmax{fig (x *v), a} = rmin{fig (x). iis (v), B}
min{le(x +v), —w} < max{Ag(x), e (v), =¥}
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max{A5(x *y), w} = min{a§(x), 24 (y), 9}
(2rmin{jig (x °y), —a} < rmax{jig (), fle (v), =B}
rmax{fi(x ° v), a} = rmin{fis (X), i (v), B}
min{Ag(x °y), —w} < max{Ag (x), Ao (), =¥}
max{Ag(x e y), w} = min{Ag(x), A5 (v), 9}
Remark(20). Every (CBF) sub-KU-semi group of X 1s a (CBF) sub-KU-semigroup with
thresholds (a, B), (w ,9) , but not converse as it is shown in the following example

Example(21).Let X = {0,1,2,3} be a set with two operations * and o which are defined by the

following tables.
* 0 1 2 3 o 0 1 2 3
oo 1] 2]3 010 [0 00
1 0 0 0 2 110 1 0 1
270012 01 2100 |[2]2
3 00701070 3o 1 [27]3

Then(R,*,0,0) is a KU-semi group.Now, we define © = (M, L) by the next

[-0.9,-0.8],[08, 09] if x=0
[-0.8,—0.7],[0.7, 0.8] if x=1

M) =1 [06,-05],[05 06] if x=3
[-0.3,—-0.2],[0.2, 03] if x=2
09, 09 if x=0

L(x) = —-0.5, 0.6 if x=1

—04, 05 if x=3
—02, 02 if y=2

And by applying definition (19), we can easily prove that © = (M, L) is a(CBF)sub KU-semi

group with thresholds (a, f) = ([0.1,0.2],[0.2,0.2]), and (w,9)=(0.1,0.2) , but not a (CBF)sub

KU-semi group since

(1 3) = rmin{fid (1), 48 (3))

(13 (2)} = rmin{ji3 (1), 4 (3)}

[0.2,0.3] = rmin{[0.7,0.8],[0.5,0.6]}
[0.2,0.1] = [0.5,0.6] ,which is incorrect phrase

fio(1+3) < rmax{jig(1) ,fig(3)}
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flo(2) < rmax{[-0.8,-0.7],[-0.6,—0.5]}
[—0.3, —0.2< [-0.6, —0.5], which is the incorrect phrase, and
251+ 3) = min(AL (1), A4(3)}
2§(2) = min{0.6,0.5}
0.2 = 0.5, it is wrong
25(1+3) < max{25(1) , 25(3)}
16(2) < max{-0.5,—-0.4}
—0.2 < —0.4, which is also wrong.
Remark(22). If @ = (M, L) is a (CBF) sub KU-semi group with thresholds (o, f3), (w,9) such
that a=1[0,0], B=[1,1,],w =0, and 9 =1 .then © =(M,L) is a (CBF) sub-KU-semi
group of X.
Proposition(23).If © = (M, L) is a cubic bipolar sub-KU-semi group with thresholds (a, f),
(w,9) of R then forall y € R
(1) rmax{ii (0, @} = rmin{i3(x), B}
(2) rmin{jig (0), —a} < rmax{jls (1), —B)
(3) max{A§(0), w} = min{A§(x), 9}
(4 )min{4g(0), —w} < max{ig(x), —9}
Proof: by (kus) y * y =0 ,and since © = (M, L) is a cubic bipolar sub-KU-semi group
with thresholds (a, f), (w ,9) of X,

rmax{ii§ (0, @} = rmax{iis (e + 1), @} = rmindiis (0, G500, B)
=rmin{fig(x), [}, thatis (1)
rmin{jig (0),—a} = rmin{fig (x * x), —a} < rmax{jia (1), fis (1), —B}
= rmax{jig(x), —B} .that is (2)
max{1§(0), w} = max{A{(x * x), w} = min{A§(x), 2&(x), 9}
= min{A¢(x) ,9} .thatis (3)
min{25(0), —w} = minfla(x * x), —w} < max{ls (), 26 (x), —9}
= max{Ag(x), —9},that is (4)
Proposition(24).If © = (M, L) is a (CBF) sub-KU-semi group with thresholds (a, ), (w ,9) of
X ,then for all y € R
(1) rmax{ii5 (0 ), @} = rmin{iis (), B}
(2) rmin{fia (0 » %), —a} < rmax{fig (x), —B)
(3) max{A§(0 0 x), w} = min{A¢(x), 9}
(4 )minfA5(0 ° 1), —w} < max{Ag(x), —9)
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Proof: Since © = (M, L) is a (CBF) sub-KU-semi group with thresholds (a, B), (w ,9) of X,

we have

rmax(ii3 (0 ), @} = rmin{i(0), AS00, BY = rmin{@d(x), B Y. which is (1)

rmin{fi (0 © 1), —a} < rmax{fi(0), fia(x) — B} = rmax{ji (1), ~B, which is (2
max{A§(0 ° x), w} = min{A§(0), 25 (x), 9} = min{A§(x), 9}, which is (3)
min{Ag(0 ° x), —w} < max{1g(0), Ag(x), =9} = max{Ag(x), —9}.,which is (4)

Definition(25). A (CBF) set © = (M, L) is named a (CBF) ideal of the KU-semi group with
thresholds (a, f), (w,9) 1fV x,y €R
(CBT; ) rmin{fig(0), —a} < rmax{jig(x), —B}
rmax{fis(0), a} = rmin{ji(x), B}.and
min{Ag(0), —w} < max{Ag(x), —9}
max{1§(0), w} = min{Ad(x), 9}
(CBT) rmin{fia(y), —a} < rmax{iia (x * v). fis (1), — B}
rmax{iig(v), @} = rmingfis Cc+ 1), 60, B
min{Ag(y), —w} < max{Aa(x * ¥, A6 (1), =9}
max(A5(r), w} = minfA(x + 1) 2500, 9
(CBT3)rmin{fig(x ° y), —a} < rmax{fig (), fig(¥), —B}
rmax{fis(x o v), a} = rmin{fi§ (), f5(), £}
min{ls(x ), —w} < max{As(0), Ao (v), —9}
max(A5(x ° ¥, w} = minfAs(0, 450, )
Example(26).The following table Illustrates the set X = {0,1,2} with binary operations * and o

« | 0] 1] 2 o| 0| 1] 2
0] 0] 1|2 0] 0/ 0|0
1| 0] 0| 1 1| 0] 1| O
21 01 1|0 21 0/ 01/ 2

Then(R,*,0,0) is a KU-semigroup. Define © = (M, L) as follows:
[-0.8,—0.7],[0.6,0.8] if x=0

M(x) ={[-0.6,—0.5],[0.4,0.6] if x=1
[-0.4,—0.3],[0.3,0.2] if x=2
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~0.6, 08 if x=0
L(x){-05, 0.6 if x=1
~0.3, 03 if x="2

We can show that @ = (M, L) is a (CBF) ideal with thresholds ([0.1, 0.1], [0.3,0.2]) and (0.4,
0.2) of R
Definition(27). A (CBF)set © = (M, L) is named a (CBF)k-ideal of KU-semigroup with
thresholds (a, ), (w,9) 1fV x,y, T ER
(CBKy)rmin{jig(0), —a} < rmax{jig(x), =B}
rmax{fig(0), a} = rmin{fig(x), B}
min{ig(0), —w} < max{Ag(x), —9}
max{1§(0), w} = min{Ad(x), 9}
(CBK>) rmin{fig(x * 1), —a} < rmax{fio(x * (v * 1)), Ao (v), — B}
rmax{fig(x * 1), a} = rmin{ji§(x * (v * 1), 15 (), B}
min{de (x * 1), —w} < max{Ae(x * (v * 7)), Ao (), =¥}
max{A§(x * 1), w} = min{A§ (x * (y * r)) 5(7), 9}
(CBKyrmin{jig(x  y), —a} < rmax{jio (x), fie (v), =B}
rmax{jig(x ° y), a} = rmin{jig G0, fie (v), B}
min{lg(x °y), —w} < max{Ag (x), X6 (), =9}
max{Ag(x °y), w} =min{lg(x),Ae(y), 9}
Lemma(28). Every (CBF) k-ideal of X is a (CBF) k-ideal with thresholds (a, ), (w ,9) of R
Proof: Suppose that @ = (M, L) is a (CBF) k-ideal of X , then let

rmax{ji§(0), a} < rmin{ji (x), }.and a < f it follows that fig (0) < fig(x). But that is a
contradiction, since O is a(CBF) k-ideal of R ,

rmax{jig(0), a} = rmin{fig (), B},

also let min{1g(0), —w} > max{Ag(x), -9}, and w < I , it follows that

A6(0) > Ag(x); this is a contradiction since 0 is a(CBF) k-ideal of X . this means that
min{Ag(0), —w} < max{Ag(x), —9}, in the same way, we can prove

rmin{jig (0), —a} < rmax{fig (), —B}, and max{1§(0), w} = min{A§(x), 9}

Again , assume that

rmax{jig (x * 1), a} < rmin{jig (x * (y * 1), fig (¥), B}, and a < B it follows that

fig(x * ) < rmin{jiy (x * (y * 1), fig(y)} , which is a contradiction, so
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rmax{fi§(x * 7), @} = rmin{jig(x * (v * 1), fig (¥), B3
Also let

min{Ag(x * 7), —w} > max{Ag(x * (y * 7)), 2e(y),—9} . and @ < I, so

Ao(x * ) > max{Ag(x = (y 7)), A6(y)} . which is a contradiction. That is min{Ag(x *
1), —w} < max{Ag(x * (v * 1)), 2o (¥), =9}

In the same way, we get

rmin{fig (x * 1), —a} < rmax{fig(x * (y * 7)), fie (v), =B}

max{A$(x * 1), w} = min{A§ (x = (y * 7)), 24 (y), 9}.and the condition (CBK3)

Then, © = (M, L)is a (CBF) k-ideal with thresholds (a, B),(w ,9) of X.

Proposition(29). Let @ = (M, L) be a cubic bipolar k-ideal with thresholds (a, ), (w ,9) of X
if y <y.then

(@) rmin{jis (x), —} < rmax{iis (), —B}, rmax{iy (), a} = rmin{ig (), B)

(8) min{25 (), ~w} < max{Ag(y),—9) . max(25(0), w} = min{A3(y), )

Proof: Since y < y.,hen y*y =0,and by (kuz) 0+ y = y
Since © = (M, L) is a (CB) k-ideal with thresholds (a, ), (w ,9) of X ,we get
rmin{fle (x), —a} = rmin{fg (0 * x), —a} < rmax{fig (0 * (v * X)), fie (¥), =B}
= rmax{fig (0 * 0), Ag (), =B}
= rmax{fig (0), fie (v), —B}
= rmax{fig (), =B}
rmax{fi (x), a} = rmax{iig (0  x), a} = rmin{fi§ (0 = (y * x)), @& (v), B}
= rmin{fi§ (0 « 0), A5 (v), B}
= rmin{fi§ (0), 15 (), B}
= rmin{fig(y), B}.whichis (@), And
min{Ag(x), —w} = min{Ag(0 * x), —w}
< max{2g(0 * (v * 1)), 26 (¥), =9}
= max{g(0 * 0), A (y), =9}
= max{g(0), g(y), =¥}
= max{Ag(y), =9}
max{A{(x), o} = max{A§(0 * ), w} = mm{& (0 * (y * )()) AW, 19}
= min{A$(0 = 0), 25(y), 9}
= min{A§(0), A5 (y), 9}
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= min{Ag(y), 9},which is(b)
Theorem(30).Let © = (M, L) be a cubic bipolar fuzzy set of a KUsemigroup(RX,+,2,0) then, O is
a (CBF) k-i1deal with thresholds (a, f), (w ,9) of X if and only if it is a (CBF)-ideal with
thresholds (a, ), (w ,9) of X.
Proof: = Let © = (M, L) be a cubic bipolar k-ideal with thresholds (a, ), (w ,9) of X .if we put
x =0 in (CBK3) , we get
rmin{jig (0 + 1), ~a} < rmax{fig(0 + (y * 1)), o (¥), =B} is
rmin{fig (v), —a} < rmax{fig(y * ), i (y), B}
also  rmax{ig(0+ 1), a} = rmin{@g(0 + (v + 1), g (), B} is
rmax{fi§(v), a} = rmin{ig(y * 1), fio(v), B} .and
min{g(0 * 7), —w} < max{Ag(0 * (y * 7)), A (y), =9} is
min{e(7), —w} < max{As(y * 1)), A6 (¥), =¥},
Also  max{2§(0 1), w} =min{Ag(0* (y *1)),25(y), 9}
max{A§(1), w} = min{A§(y * 1), 25 (y), 9}.the other conditions (CBT}), (CBT3) are holds from
the definition of (CBF)k-ideal; therefore © = (M, L)is a (CB)-ideal with thresholds (a, ), (w ,9)
of X
& Let © = (M, L) be a cubic bipolar ideal with thresholds (a, ), (w ,9) of X,
By (CBT:) rmin{jig (x * 7), ~a} < rmax{fia(y * (x * 7). fig (), —B}. also
rmax{fi§(x * 7), a} < rmin{fig(y = (¢ = 1), A6 (), B3
min{Ag(x * 1), —w} < max{Ag(y * (x * 1), Ae(y), —9}, also
max{As(x * 1), w} = min{Ag(y = (x * 1), A (y), 9}
Applying theorem 2 (2) to the previous four steps ,we obtain
rmin{jie (x * 7), —a} < rmax{jie (x * (v * 1), fle (¥), =B}
rmax{fié(x  ©),a} < rmin{fig(x * (v * 1), fig (v), B} . and
min{Ag(x * 1), —w} < max{Ae(x * (v * 1), Ae (¥), =9},
max{A§(x * 1), w} = min{A{(x * (y = 1),2§(y), 9}, which is a (CBF) k-ideal,
The remaining two conditions (CBK;),(CBK3) are holds from the definition of (CBF)-ideal .
4.Conclusion

During this work, we present the definitions of the cubic bipolar sub-KU-semigroup with
thresholds (a, f), (w,9) and cubic bipolar k-ideal with thresholds (a, ), (w,¥) of X. The
relationship among these types of ideals and some properties are studied, We obtained the
following result: every (CBF) sub-KU-semi group of X is a (CBF) sub-KU-semi group with
thresholds (a, f), (w,¥) of R ,but the converse is not true. Finally, we proved that a cubic bipolar
fuzzy k-1deal with thresholds (a, ), (w ,9) and a cubic bipolar fuzzy ideal with thresholds (a, ),
(w ,9) of a KU-semi group are equivalents.
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