Journal University of Kerbala, Vol. 15 No.3 Scientific. 2017

Convergence order-unit of vector metric space

تقارب الترتيب الاحادي للفضاء المتري المتجة

Zeinab Hassan Abood

University of Karbala, College of Business and Economics, Department of statistics

Abstract

In this paper, we introduce order- unit of vector metric space by using an order - unit and give some of their properties. Also we prove that the order unit continuous topology is order unit vectorial continuous.

لمستخلص: ـ

في هذا البحث قدمنا الترتيب الاحادي للفضاء المتري المتجهة باستخدام الرتبه الاحادية واعطينا بعض خصائصها، كذلك برهنا بأن التبولوجي المستمر ذات الترتيب الاحادي يكون مستمر اتجاهيا برتبه احاديه.

1.Introduction

Metric space are very important in mathematics and applied sciences. In [1], a vector space is determined with a rang graph having values in a Riesz space . In [1] and [2], some results in metric space theory are generalized to vector metric space theory, and the Baire Theorem and some fixed point theorems in vector metric space are given . Actually, the study of metric space having value on a vector space has started by Zabrejko in [5]. The distance map in the sense of Zabrejko takes values from an ordered vector space . We use the structure of lattice with the vector metric having values in Riesz spaces, then we have new results as mentioned above .

In this paper ,we introduce the definition of that we call it the order- unit - vector metric space and related results about convergent in order - unit - vector metric space. Also we prove that the order unit continuous topology is order unit vectorial continuous .

2. Definitions

We give in this section, basic definitions which will be used throughout the paper.

Definition 2.1 [3]

Let X be a non-empty set and E be a Riesz space . The function $\sigma: X \times X \to E$ is said to be a vector metric (or E-metric) if it is satisfying the following properties :-

- 1) $\sigma(a, b) = 0$ if and only a = b.
- 2) $\sigma(a,b) \le (a,c) + (b,c)$ for all $a,b,c \in X$

Also the triple (X, σ, E) is said to be vector metric space.

For convergence properties of sequences in vector metric space , one could refer to the paper by Cevik et. [3] .

Definition 2.2[6]

If $\mathcal F$ is a real vector space , a cone in $\mathcal F$ is a nonempty subset $\mathcal C\subseteq \mathcal F$ with the following two properties :

- 1. $af \in \mathcal{C}$ whenever $a \in [0, \infty)$ and $f \in \mathcal{C}$;
- 2. $f + w \in C$ whenever, $w \in C$.

An ordered vector space $(\mathcal{F}, \mathcal{F}^+)$ is pair consisting of a real vector space \mathcal{F} and a cone $\mathcal{F}^+ \subseteq \mathcal{F}$ satisfying

3. $\mathcal{F}^{+} \cap \mathcal{F}^{+} = \{0\}.$

Journal University of Kerbala, Vol. 15 No.3 Scientific . 2017

Definition 2.3 [4]

Let $\mathcal V$ be an ordered real vector space . An element $0 < e \in \mathcal V$ is called an order - unit if for each $x \in \mathcal V$ there exists a $\lambda > 0$ such that $x \le \lambda e$. The set of order units of $\mathcal V$ will be denoted by ou($\mathcal V$).

3. The main result

We introduce the definition of that we call it the order- unit-vector metric space which will be used throughout the paper . We will write $u \gg 0$ if $u > o \in \mathcal{V}$, where $(\mathcal{X}, \eta, \mathcal{V})$ is an order- unit-vector metric .

Definition 3.1

Let \mathcal{X} be a non-empty set and \mathcal{V} be an ordered real vector space with $ou(\mathcal{V}) \neq \emptyset$. A function $\eta: \mathcal{X} \times \mathcal{X} \to \mathcal{V}$ is called an order-unit-vector metric or $(ou(\mathcal{V})$ -metric) if:-

- 1) $\eta(u, v) \gg 0$ for all $u, v \in \mathcal{X}$
- 2) $\eta(u, v) = 0$ if and only u = v for all $u, v \in \mathcal{X}$.
- 3) $\eta(u, v) \ll (u, w) + (v, w)$ for all $u, v, w \in \mathcal{X}$

In this case, the triple $(\mathcal{X}, \eta, \mathcal{V})$ is called an order-unit-vector metric space.

Note 3.2

Let $\mathcal V$ be an ordered real vector space . If $\{v_n\}$ is a decreasing sequence in $\mathcal V$ such that $\inf v_n = v$, we will write $v_n \downarrow 0$.

Definition 3.4

A sequence $\{z_n\}$ in an order- unit- vector metric space $(\mathcal{X}, \eta, \mathcal{V})$ is said to be an ou-vectorial converges (or ou $(\mathcal{V}\text{-converges})$), where $u\gg 0$, if for some $u\in \mathcal{X}$, there is a sequence $\{v_n\}$ in \mathcal{V} such that $v_n\downarrow 0$ and $\eta(z_n,z)\ll uv_n$ for all n. We will denote this ou $(\mathcal{V}\text{-converges})$ by $z_n\to z(\ll ou)$.

Definition 3.5

A sequence $\{z_n\}$ in $\mathcal X$ is called a ou($\mathcal V$ -Cauchy) sequence, where $u\gg 0$, if there exists a sequence $\{v_n\}$ in $\mathcal V$ such that $v_n\downarrow 0$ and $\eta(z_n,z_{n+t})\ll uv_n$ holds for all n and t.

Definition 3.5

An order- unit- vector metric space $(\mathcal{X}, \eta, \mathcal{V})$ is called ou(\mathcal{V} -complete), where $u \gg 0$, if each ou(\mathcal{V} -Cauchy) sequence in \mathcal{X} is ou (\mathcal{V} -convergence).

Proposition 3.6

Let $(\mathcal{X}, \eta, \mathcal{V})$ be an order- unit- vector metric space and $\{z_n\}$ be sequence in \mathcal{X} , where $u \gg 0$, then $\{z_n\}$ converges to z if only if $\eta(z_n, z) \to 0$ (\ll ou) as $n \to \infty$.

Proof

Suppose $\{z_n\}$ is convergent to z. Choose $z\in\mathcal{X}$ where $u\gg 0$. Then there exists $v_n\in\mathcal{V}$ such that $v_n\downarrow 0$ and $\eta(z_n,z)\ll uv_n$. This means $\eta(z_n,z)\to 0$ as $n\to\infty$ for all n.

Conversely , suppose that $\eta(z_n,z) \to 0$ as $n \to \infty$ for all n. For some $u \in \mathcal{X}$ there exists $v_n \in \mathcal{V}$ such that $v_n \downarrow 0$ and $\eta(z_n,z) \ll uv_n$ for all n, where $u \gg 0$. Hence $\{z_n\}$ converges to z.

Journal University of Kerbala, Vol. 15 No.3 Scientific. 2017

Proposition 3.7

Let the triple $(\mathcal{X}, \eta, \mathcal{V})$ be an order- unit- vector metric space .And $\{z_n\}$ be sequence in \mathcal{X} , where $u \gg 0$. Then limit of $\{z_n\}$ is unique if it exists.

Proof:-

Assume that sequence $\{z_n\}$ convergent to two points z and r. For some , $u\in\mathcal{X}$ then there exists $v_n\in\mathcal{V}$ such that $v_n\downarrow 0$ and $\eta(z_n,z)\ll\frac{uv_n}{2}$, $\eta(z_n,r)\ll\frac{uv_n}{2}$ for all n , where $u\gg 0$.

Now
$$\eta(z,r) \ll \eta(z_n,z) + \eta(z_n,r) \ll \frac{uv_n}{2} + \frac{uv_n}{2} \ll uv_n$$

Hence $(z,r) \ll uv_n$. This mean $(z,r) = 0$, hence $z = r$

Proposition 3.8

Let $(\mathcal{X}, \eta, \mathcal{V})$ be an order- unit- vector metric space and $\{z_n\}$ be sequence in \mathcal{X} , where $u \gg 0$, if $\{z_n\}$ converges to z then $\{z_n\}$ is Cauchy sequence.

Proof:-

For some $u \in \mathcal{X}$ there is $v_n \in \mathcal{V}$ such that $v_n \downarrow 0$ and $(z_n,z) \ll \frac{uv_n}{2}$, where $u \gg 0$.

$$\eta(z_n,z_{n+t}) \ll \eta(z_n,z) + \eta(z_{n+t},z) \ll \frac{uv_n}{2} + \frac{uv_n}{2} \ll uv_n$$

Hence $\{z_n\}$ is a Cauchy sequence.

Proposition 3.9

Let (X, η, V) be an order-unit-vector metric space and $\{z_n\}$ converge in , where $u \gg 0$, then every sub sequence of convergent sequence is convergent to the same limit.

Proof:

Let $\{z_n\}$ be convergent sequence in $\mathcal X$ and converges to the point $z\in\mathcal X$. Let $\{z_{n_d}\}$ be sub-sequence of $\{z_n\}$. Since $\{z_n\}$ converges to z, so there is $v_{n_1}\in\mathcal V$ satisfying $v_{n_1}\downarrow 0$ for some $u_1\in\mathcal X$ such that

 $\eta(z_n,z) \ll u_1 v_{n_1}$ for all n_1 , where $u_1 \gg 0$.

Let $\{z_{n_d}\}$ converges to r.

Then there is $v_{n_2} \in \mathcal{V}$ satisfying $v_{n_2} \downarrow 0$ for some $u_2 \in \mathcal{X}$ such that

 $\eta(z_{n_d},r) \ll u_2 v_{n_2}$ for all n_2 where $u_2 \gg 0$.

Let $uv_n = max\{u_1v_{n1}, u_2v_{n2}\}$

Now $(z,r) = \eta(z,z_{n_d}) + \eta(z_{n_d},r) \ll u_1 v_{n_1} + u_2 v_{n_2} \ll u v_n$.

This implies $(z,r) \ll uv_n$. Hence $\{z_{n_d}\}$ converges to z.

Definition 3.10

Let $(\mathcal{X}, \eta, \mathcal{V})$ and $(\mathcal{Y}, \eta, \mathcal{U})$ be two an order- unit- vector metric spaces with $ou(\mathcal{V}) \neq \emptyset$. We say that the map $\varphi: \mathcal{X} \to \mathcal{Y}$ is an order- unit- vectorial continuous at z if $z_n \to z (\ll ou)$ in \mathcal{X} implies $\varphi(z_n) \to \varphi(z) (\ll ou)$.

Proposition 3.11

Let $(\mathcal{X}, \eta, \mathcal{V})$ and $(\mathcal{Y}, \eta, \mathcal{U})$ be two an order-unit-vector metric spaces with $ou(\mathcal{V}) \neq \emptyset$. If the mapping $\varphi \colon \mathcal{X} \to \mathcal{Y}$ is order unit continuous topology, then φ is order unit vectorial continuous. **Proof**

Suppose that $z_n \to z (\ll ou)$ in \mathcal{X} . Then there exists a sequence $\{v_n\}$ in \mathcal{V} such that $v_n \downarrow 0$ and $\eta(z_n,z) \ll uv_n$ for all n, where $u\gg 0$. Let b any nonzero positive element in u. Since φ is order unit continuous topology , there exists $some\ v$ in \mathcal{V} such that $\eta\big(\varphi(x),\varphi(y)\big) \ll ub$ whenever $y\in\mathcal{X}$ and $\eta(x,y)\ll v$, where $u\gg 0$. Then there exist a sequence $\{v_n\}$ in \mathcal{U} and $\varphi(z_n,z)\ll uv_n$ for all n, where $u\gg 0$. Hence, $\varphi(z_n)\to \varphi(z)(\ll ou)$.

Journal University of Kerbala, Vol. 15 No.3 Scientific . 2017

Proposition 3.12

Let $(\mathcal{X}, \eta, \mathcal{V})$, $(\mathcal{Y}, \eta, \mathcal{U})$ and $(\mathcal{Z}, \eta, \mathcal{D})$ be an order unit vectorial continuous, φ mapping of \mathcal{X} into \mathcal{Y} and ξ a mapping of \mathcal{Y} into \mathcal{Z} . If φ is order unit vectorial continuous at x in \mathcal{U} and ξ is order unit vectorial continuous at x, then $\xi \circ \varphi$ is order unit vectorial continuous at x.

Proof

Let us take $b \gg 0$ in \mathcal{D} . As ξ is order unit vectorial continuous at , there exist some a in \mathcal{U} such that $\eta(\xi(\varphi(x),\xi(y)) \ll ub$ whenever $y \in \mathcal{Y}$ and $\eta(\varphi(x),y) \ll a$, where $u \gg 0$.

As φ is order unit vectorial continuous at x, for every $a \gg 0$ in \mathcal{U} , there exist some c in \mathcal{V} such that $\eta(\varphi(x), \varphi(d)) \ll ua$ whenever $d \in \mathcal{X}$ and $\eta(x, d) \ll c$, where $u \gg 0$.

This implies that $(\xi(\varphi(x), \xi(\varphi(d)) \ll ub)$. Therefore $\xi \circ \varphi$ is order unit vectorial continuous at x.

References

- [1] I. Altun ,C. Cevik · some common fixed point theorems in vector metric spaces, Filomat , 25(1), 105-113, 2011.
- [2] C. Cevik, I. Altun 'vector metric spaces and some properties , Topol., Methods Nonlinear Anal., 375-382, 2009 .
- [3] C. Cevik · vector metric space and its completion, Karatekin Univ. Cankiri, Turkey.
- [4] O.W. Gaans cones, positive and order units, Leiden Univ. 2012.
- [5] P.P. Zabrejko · K-metric and K-normed linear spaces , survey , Collect. Math. ,4-6, 1997.
- [6] V. Paulsen and M. Tomforde 'vector spaces with an order unit, math. OA, 2009.