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Abstract

We have used the shifted 1/N method to solve the Schrddinger equation with Manning —
Rosen potential in two dimensions . This method is primarily tested on the 3D case and then
detailed calculations carried out on the 2D case .The energy levels for both cases are listed as a
function of the potential strengths « and A and the screening parameter b . A comparison with
literature reveals that the 1/N method is reliable and powerful .
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1-Introduction

In non - relativistic quantum mechanics
maximum information of a quantum system
can be obtained when one knows the exact
solution of the corresponding Schrédinger
equation .However ,the exact analytical
solution of the Schrddinger equation is only
possible with the angular momentum [ =0
for some potential models like the
nonharmonic oscillator [1], kratzer [1-3],
poschl-Teller [4,5], sacarf [6], Woods-Sax
[7,8,9], Hulthen [10,11] , the Manning —
Rosen [12,13,14] and Rosen-Morse potentials
[15,16],etc. But when [ # 0 the Schrodinger
equation can only be solved approximately
for different suitable approximation schemes
such as the Factorization method [17], the
super-symmetric quantum mechanics [18],
Nikiforov-Uvarov method [19], the shifted
1/N expansion method [20],etc.
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In the present paper, we attempt to solve
approximately the Schrodinger equation in
two dimensions with Manning -Rosen
potential including the centrifugal term by
using the shifted 1/N expansion .This
approximation has been successfully used in
connection  with  spherically symmetric
potentials [21]. The method starts by that N is
sufficiently large . In this way , a new
effective potential can be defined and the
kinetic energy term becomes negligible,
resulting in a semiclassical approach[20]. For
spherically symmetric potential one usually
uses x = k/2 (r —ry)/7, as a new variable
instead of r , where k=N +2l—a, k is
the expansion parameter , [ is the orbital
guantum number and a is a suitable shift
parameter [21] .If one expands the resulting
equation of x ,an analytical structure similar
to the one of the one -—dimensional
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unharmonic oscillator is found. Once the
problem is collapsed to its actual dimension
(N=1,2,3,....), it simply remains to relate the
coefficients of both equations in order to get
the energy corrections .

This paper is arranged as follows : In
section 2, we outline the main steps the
shifted 1/N approximations for the Manning

2- shifted 1/N expansion

The Manning —Rosen potential is given by
[22]

—Rosen potential . In section 3, we compare
our numerical results for N=3 with the
available accurate numerical results [24] , and
our results for N=2 Which to our knowledge
did not appear before in the literature , are
presented thereafter. concluding remarks are
given in section 4.

A and «a are two dimensionless parameters,
but the parameter b has the dimension of

1 |a@=1)e=2r/b pe-r/b length .The radial Schrédinger equation in N
V(r) =42 et o () dimensions is given by
K = 2m/h*
d?2 N-1 d I(+N=2)
[- {5+ 2 BB v )| = p(@) )
where
r2=yN Xz N=123.... (3)
ForN = 2, rsinfsing,X; =rcosf and m =
Xy =rcos¢,X, =rsin¢g and | = -1, ...,0, ..., . The first derivative in equation
m| ,and for (2) is removed by replacing ¥ by ¢ from :
N=3,X; =rsinfcos¢,X; =
1 N-1 a-nN
Y@ = g exp (=3 [ dr) = ()7 (4)
Inserting equation (4) in equation (2) ,results in the following equation for ¢:
d? 41(1+N-2)+(N-1)(N-3)
L9 1 (g - HBNDHEDWI) _y (1)) g(r) = 0 ©)
Letting k=N +2l—a ,where a is a meaning of an additional degree of freedom ,
suitable shifted parameter which has the we get ([20])

2 — —
[—d‘i—z+(k+a— 1)(k +a—3)/4r? +V(r)] o(r) = E¢(r). (6)
Following the former procedure of the shifted the relevant formulae up to the third —order
1/N expansion [20],we present here only the correction in physical N = 2,3 spaces are
analytical expressions , which are required to obtained as follows:
obtain bound state energies E,, ; .Therefore ,

E=E0+%[(1—a)(3—a)/4+0c1]+;—f§ (7
Where
Ey =V(ry) + k?/4r¢ (8)
and
a=2-202n,+1Dw 9)
With
w =341 V'(1)/V(ro) (10)

The parameter 1, can be determined through the relation

1
V213V () =N+2l—a=Q2 (11)
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Where n, is the radial quantum number and
ocqand oc,are given in [23] and V'and V" are
the first and second derivatives of the
potential with respect to r, respectively. The
key quantity on which the shifted 1/N
procedure is depending on is ry. To calculate
ro from equation (11) , w should be first

~A+4a(a—1)e 0/b +[2a(a—1)+A] e~2T0/D

evaluated by using equation (10) followed by
the shifted parameter a from equation (9) .
This would require the calculation of the first
and second derivatives of potential at r =
1p-Performing the last step and using equation
(10) , we get :

1/2

o
w=(—X
(b

A—2[a(a—1)+Ale-T0/b +[2a(a—1)+A]e—2T0/b) (12)

Using w in equation (9) and then substituting into (11) ,we obtain (for N = 3) the following

transcendental relation :

Where
P T— 2r  —[2a(a—1)+A] e=270/b+pe-T0/b
F= erSV(rO = \/krTO3 x o (1_1ir0/b)3 - (14)
and
JO=1+21+(@2n +1) w (15)

The relation (15) can be solved numerically
for ry for a given set of 4, a, b, L and n,
provided that the obtained root must satisfy
the condition that

1 V(r)

1
Veff(r) = Zr_2+ 0

T8 1

€3=—1+

6ka5 (1- e—ro/b)s [Ae

being minimum at r = r. Other quantities
leading to the energy are followed
sequentially (for more details see [23]).

/b 4 (—8a(a—1)+3A)e2ro/b

—(4a(@-D+34) e/ — 2a(a—1) + A)e ¥/ ]

[-Ae™/% + (16 a(a — 1) — 10 A )e~2ro/b

“ro/b 4 (=32 a(a — 1) + 25 A )e2ro/b

5 ¢ 1
&y = — +
4" 24kQb® (1 — e—To/b)6
+ 66a(a — 1)e 370/ + (36 a (@ — 1)+10 A) e~470/b
+ 2 a(a—1)+A4) e >0/b]
b= —ot ui ! [4
5= T2 120kQb7 (1 —e-ro/b)y7 1€

+ (=262 a(a — 1) + 40 A)e /> — (342 a(a — 1) + 404 )e =0/
—(82ala—-1)+254)e /P — 2a(a— 1)+ A)e ™o/t ]
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7y o ! [-Ae™™/P + (64 a(a — 1) — 564 )e~2ro/b
4" 720kQb® (1— e—To/b)8

+ (946 a(a — 1) — 245 A)e3"0/b 4+ (2416 a(a — 1) )e*ro/P

+ (1436 a(a — 1) + 2454 )e™>0/" + (176 a(a — 1) + 56 A )e =70/
+Qal(a—1)+ A)e 7m0/t ]
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Other quantities such as e; (i = 0,1, ...,4) and d;(j = 1,2, ...,6) are obtaind directly by the
substitution of the corresponding ¢; and §;, respectively.
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Table 1. Eigenvalues for the states 1s-6g for 3D and fora = 0.75 and a =1.5
A=2b (m=h=1).

States | 1/b a =0.75 a=1.5
Present | Lucha et al[24] | Present | Lucha et al[24]
15 0.025 | -0.778 6517 |  ---emeememv 02142915 |  cmeeeeeeeees
0.050 | -0.7624770 |  —-emeeeme -0.206 1857 | = -em-eemmee-
0.075 | -0.746 6566 |  —--e--eeme 01982301 |  —emmeeee-
25 0.025 | -0.1307914 |  -ereeemee- -0.0734304 |  -eeeeeeee
0.050 | -0.118 5602 | = --r--me-me- -0.0634813 |  --eeeeeeee
0.075 | -0.106 9576 |  -=---emmoeeeev -0.054 1877 | = -emeeemeee-
2pP 0.025 | -0.120 4882 -0.120 5271 -0.090 0173 -0.089 9708
0.050 | -0.108 1768 -0.108 2151 -0.080 0854 -0.080 0400
0.075 | -0.096 4098 -0.096 4469 -0.070 6134 -0.070 5701
35 0.025 | -0.047 3453 -0.033 3553
0.050 | -0.036 6831 -0.023 8450
0.075 | -0.027 4435 | = —eoeeeeeeeev -0.0158277 | = -emeeeeee
3p 0.025 | -0.045 7105 -0.045 8779 -0.037 2129 -0.036 9134
0.050 | -0.034 9100 -0.035 0633 -0.027 5397 -0.027 2696
0.075 | -0.025 4350 -0.025 5654 -0.019 1714 -0.018 9474
3d 0.025 | -0.044 7732 -0.044 7743 -0.039 4817 -0.039 4789
0.050 | -0.033 6920 -0.033 6930 -0.029 4520 -0.029 4496
0.075 | -0.023 7612 -0.023 7621 -0.020 4682 -0.020 4663
45 0.025 | -0.0211153 |  --eomeemem- -0.016 3555 |  -meoemeeeee
0.050 | -0.012 2565 |  =eomeemeemee -0.0082296 | = —ermemmeee-
0.075 | -0.006 0316 |  =<--ceeemee -0.0029437 |  —ereeee-
4p 0.025 | -0.020 6536 -0.020 8097 -0.017 5201 -0.017 1740
0.050 | -0.011 6268 -0.011 7365 -0.009 1809 -0.008 9134
0.075 | -0.005 0928 -0.005 0945 -0.003 3961 -0.003 1884
4d 0.025 | -0.020 2905 -0.020 3017 -0.018 2424 -0.018 2115
0.050 | -0.010 9839 -0.010 9904 -0.009 5392 -0.009 5167
0.075 | -0.004 0373 -0.004 0331 -0.003 1577 -0.003 1399
af 0.025 | -0.019 9796 -0.019 9797 -0.018 6131 -0.018 6137
0.050 | -0.010 2392 -0.010 2393 -0.009 4016 -0.009 4015
0.075 | -0.002 6449 -0.002 6443 -0.002 2315 -0.002 2307
5p 0.025 | -0.009 7010 -0.009 8079 -0.008 3607 -0.008 0816
5d 0.025 | -0.009 4995 -0.009 5141 -0.008 5893 -0.008 5415
5f 0.025 | -0.009 2813 -0.009 2825 -0.008 6664 -0.008 6619
5g 0.025 | -0.009 0330 -0.009 0330 -0.008 151 -0.008 6150
6P 0.025 | -0.004 3103 -0.004 3583 -0.003 6914 -0.003 4876
6d 0.025 | -0.004 1601 -0.004 1650 -0.003 7311 -0.003 6813
6f 0.025 | -0.003 9803 -0.003 9803 -0.003 6871 -0.003 6774
6g 0.025 | -0.003 5633 -0.003 7611 -0.003 5633 -0.003 5623
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Table 2. Eigenvalues for the states 15-6g for 2D and for a = 0.75 and
a=15,A=2b(m=h=1).

States | 1/b a=0.75 a=15

1S | 0.025 | e -0.236 3920
0050 | - -0.228 6190

0075 | s -0.220 9431

25 | 0.025 -0.318 4997 -0.087 5315
0.050 -0.305 0352 -0.077 5116

0.075 -0.291 9843 -0.067 9264

2P | 0.025 -0.240 4777 -0.141 1529
0.050 -0.227 2783 -0.131 8815

0.075 -0.214 4151 -0.122 8812

35 | 0.025 -0.078 4777 -0.043 2362
0.050 -0.067 0632 -0.033 2931

0.075 -0.056 6607 -0.024 4207

3P | 0.025 -0.073 2084 -0.053 0067
0.050 -0.061 7208 -0.043 1070

0.075 -0.051 1787 -0.034 1524

3d | 0.025 -0.070 6319 -0.058 8111
0.050 -0.058 9514 -0.048 6775

0.075 -0.048 0851 -0.039 2595

4S | 0.025 -0.031 7458 -0.021 8887
0.050 -0.021 9759 -0.012 9788

0.075 -0.014 2329 -0.006 2754

4P | 0.025 -0.030 7476 -0.024 4191
0.050 -0.020 8724 -0.015 4320

0.075 -0.012 9103 -0.008 4253

4d | 0.025 -0.030 0741 -0.026 0631
0.050 -0.019 9884 -0.016 7950

0.075 -0.011 6879 -0.009 2777

4f | 0.025 -0.029 6071 -0.027 0031
0.050 -0.019 1614 -0.017 2951

0.075 -0.010 2908 -0.009 0554

5P | 0.025 -0.014 3107 -0.011 8462
5d | 0.025 -0.014 0397 -0.012 3868
5f | 0.025 -0.013 7858 -0.012 6826
59 | 0.025 -0.013 5265 -0.012 7710
6P | 0.025 -0.006 6285 -0.005 5422
6d | 0.025 -0.006 4693 -0.005 7168
6f | 0.025 -0.006 2889 -0.005 7746
6g | 0.025 -0.006 0766 -0.005 727

3-Numerical results

We find by comparing the results in tables
(1) and (2) that the energy electron correlation
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kernel in the case of two dimensions is larger
than that in the case of three dimensions as a
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result of restricting its movement within a
plane in the former. Also the degree of
degeneracy changes ; in three dimensions it is
n, = n*(exuding spin) while in the case of
two dimensions all values (|m;|+n, + 1)
are possible , So the degree of degeneracy of
the first case is more than the second and we
can attribute that to the falling down in the
symmetry in the case of the two dimensions
compared with the three dimensions as shown

in figure (1) . At specific value for n we find
this energy is less when increasing the
number of quantitative orbital [ in both cases
as shown in figure (2) ,but for the quantum
numbers [,n, the energy in the case of 3D
depends on both terms while , in the case of
2D the energy depends on the magnetic
guantum number m,; instead and the radial
guantum number n, .

5E-16
—o—15(3D)
4*—
T ——25(3D)
-0.05 —u
i ——35(3D)
==
t —¥=15(2D)
0.1
— —®—25(2D)
S
@
o 35(2D)
-0.15
-0.2 —
+
‘ |
-0.25 :
0.025 0.045 0.065 0.085
1/b

Figure 1. Energy eigenvalues for n = 1, 2, 3 of s states for 2D and 3D cases when & = 1.5
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-0.09

= = 33(3D)

-------

0.025

0.045 0.065

1/b

0.085 0.105

Figure 2. Energy eigenvalues of the orbital s,p and d state for 2D and 3D cases when a = 0.75

4-Concluding remarks

The Manning Rosen potential with
centrifugal term is a rather involved problem
and most works tend to model such term by
fitting with a parameter that approximates
analytical solution with known confluent type
functions. The above procedure has its own
shortcomings which render the above method
unstable. The shifted 1/N method on the
other hand is a ready recipe to deal with
analytical potentials regardless of
singulastions near the origin. This is
especially true with 3D case as shown in table
(1). In table (2) we list the energy terms up to
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[ =5 with remarkable numerical stability.
The accuracy of these results unfortunately
cannot be evaluated at the present due to the
larch of parallel numerical ones in the
literature. However, in view of the almost
complete agreement with corresponding 3D
results, we are confident that our results are
accurate. Further instigation in this regard is
certainly required for firm evaluation of the
1/N method for reduced dimensional MR
potentials.
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