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Abstract  

    The aim of this paper is to design a neural network for solving the singular 

perturbation problems by using neural networks. The modified neuro system using a 

polynomial of second degree is to replace each component in the training set. The 

foundation of this approach is to swap off each x in the input vector training set      

 xj⃗⃗⃗  = (x1 , x2 , … , xn) , xj ∈ [a, b] , the polynomial will be as  ξ(x)  =
𝜆

 2 
(x2 + x +

1), 𝜆 ∈ (a , b). The appropriate value is determined within a certain range, which 

has a significant impact on the accuracy of the solution. The numerical results show 

that the modified neuro system method is better and more accurate than usual 

artificial neural network method, the main reason for this point is connected with the 

chosen value of  . Finally, a method of updating the neural network is clarified by 

the numerical results of some examples that are compared to the usual artificial 

neural network method and through which the accuracy of the solution and the 

rapidity of convergence is proved.  
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 حل مشاكل الاضطراب الفردي مع الشروط الأولية والحدودية باستخدام نظام عصبي معدل 

 

 تبارك عقيل الجنابي*, خالد منديل محمد الابراهيمي 
 قسم الرياضيات, كلية التربية, جامعة القادسية, القادسية, العراق 

 
  الخلاصة 

الشبكات       باستخدام  المفرد  الاضطراب  مشاكل  لحل  عصبية  شبكة  تصميم  هو  البحث  هذا  من  الهدف 
العصبية. النظام العصبي المعدل باستخدام متعددة الحدود من الدرجة الثانية لاستبدال كل مكون في مجموعة  

, x1)= في مجموعة التدريب بمتجه الادخال  xالتدريب. أساس هذا النهج هو تبديل كل   x2 , … , xn) , xj ∈ 
[a, b]    xj⃗⃗⃗ 𝜉(x)، متعددة الحدود التي ستكون بالشكل       =

𝜆

 2 
(x2 + x + 1), 𝜆 ∈ (a , b)    .  تم تحديد

القيمة المناسبة ضمن نطاق معين، مما له تأثير كبير على دقة الحل. أظهرت النتائج العددية أن طريقة النظام  
الشبكة   دقة من طريقة  وأكثر  أفضل  المعدل  السبب  العصبي  الحال،  وبطبيعة  المعتادة،  العصبية الاصطناعية 

ل ـ المختارة  بالقيمة  يرتبط  النقطة  لهذه  العصبية من خلال     𝜆 الرئيسي  الشبكة  تحديث  توضيح طريقة  تم  .أخيراً 
النتائج العددية لبعض الأمثلة والتي تم مقارنتها بطريقة الشبكة العصبية الاصطناعية المعتادة والتي من خلالها  

 تم إثبات دقة الحل وسرعة التقارب.
 

              ISSN: 0067-2904 

mailto:kkak1962@yahoo.com


Al-Janabi and Al-Abrahemee                Iraqi Journal of Science, 2024, Vol. 65, No. 11, pp: 6566- 6575 

 
 

6567 

1. Introduction 

     Nowadays, a new branch of computational science has emerged which integrates several 

techniques to solve many problems that are not easily stated without an algorithmic typical 

focus. In one form or another, these approaches are inspired by the imitation of biological 

systems' behavior that are done in a fashion which is either more or less intelligent. It is a 

brand-new approach to computing known as artificial intelligence which uses a variety of 

techniques to manage the uncertainty and imprecision that arise when attempting to solve 

problems that relate to the actual world while these techniques provide effective solutions that 

are simple to apply. The one of these methods are Artificial neural networks (ANNs) [1]. 

Differential equations are used to formulate many issues, and the nonlinear terms only depend 

on certain dependent variable derivatives and a tiny value parameter 𝜀. The typical view of 

these weakly nonlinear issues is that they are perturbations of the corresponding linear 

differential equations [2]. Applications of the perturbed issues for differential equations are 

fairly common, and they have received a lot of attention recently. Singular perturbation issues 

frequently arise in a variety of fields of applied mathematics, such as fluid dynamics, 

elasticity, chemical reactor theory, aerodynamics, magneto hydrodynamics, and plasma 

dynamics [3]. Recently, large range of books and papers that are outlining numerous 

approaches to solving SPPs have been published. Among these, Lagerstrom and Casten [4]. A 

class of singular perturbation problems with certain applications in fluid dynamics  is solved 

using the perturbation technique. Amiraliyev [5] gave the numerical solution of the initial 

condition of the second order linear singly perturbed problem. Arianov et al. [6] studied of a 

perturbation technique application with a few perturbation parameters. There are many studies 

on solving perturbation problems related to artificial intelligence and open learning such as 

artificial neural networks. Artificial neural networks (ANNs) is a calculation method that 

builds several processing units based on interconnected connections. The network consists of 

an arbitrary number of cells or nodes or units or neurons that connect the input set to the 

output. It is a part of a computer system that mimics how the human brain analyzes and 

processes data. Self-driving vehicles, character recognition, image compression, stock market 

prediction, risk analysis systems, drone control, welding quality analysis, computer quality 

analysis, emergency room testing, oil and gas exploration and a variety of other applications 

all use artificial neural networks. Predicting consumer behavior, creating and understanding 

more sophisticated buyer segments, marketing automation, content creation and sales 

forecasting are some applications of the ANN systems in the marketing [7]. In fact, ANNs are 

being used in every circumstance where there are issues with prediction, categorization, or 

control. A few important reasons are responsible for this enormous accomplishment. First and 

foremost, ANNs are highly developed nonlinear computational tools that can simulate 

incredibly complex functions. For the user knowledge, it is necessary to implement NNs 

successfully that are substantially lower than others [8] [9]. Artificial neural networks have 

been used to solve problems in various educational and industrial fields [10] [11] [12] [13]. 

Dash and Daripa [14] have been released and presented analyses of a singularly perturbed 

Boussinesq equation using analytical and numerical methods. Hunter [15] used the numerical 

method to address a particular class of PPs that demonstrates the inadequacy of traditional 

discretization methods. Shikongo [3] created and put into practice some unique numerical 

techniques for some non-linear SPPs. Valanarasu and Ramanujam [16] proposed a numerical 

approach to solve ordinary differential equations (ODEs) second-order SPP with two points 

boundary conditions (BCs) ,as well as there are many papers on the use of modifying the 

neural network to solve differential equations by modifying the training algorithm or some 

parameters associated with the network design. Also, it has been used (MANN) for solving 

SPPs. This approach is according to substituting every x on the input vector training set with 

the first-degree polynomial [9]. In this paper, the study is different from the modernization 
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methods that are previously used. The aim of this study is to present a modified method for 

finding the numerical solutions of SPPs for ODEs by using a modified neuro system (𝑀𝑁𝑆1)  

which will be explained in the next sections.     

 

2. Perturbation problems 

       The perturbed differential equation problems (PPs) are a common occurrence in 

applications that have received a great deal of attention recently.  As a result, PPs are 

categorized into two categories based on their location: singular perturbed problems (SPPs) 

and regular perturbed problems. These issues are known to depend on a small positive 

parameter ԑ in a way that causes the solution to have a multiscale nature  that means there are 

thin transition layers where the answer changes quickly [5]. 

      

      Differential equations with the highest derivative is multiplied by a small parameter ԑ are 

known as singly perturbed differential equations. SPPs for ODEs in their general form, which 

have a small positive parameter ԑ, 0 ˂ 𝜀 ˂˂ 1, have the following form (in case of the second 

order): 

 𝜓′′(x)  =  𝐹 (x, 𝜓, 𝜓′, 𝜀) , x ∈ [𝑎, 𝑏].                                (1)  
 

Where 𝐹 is a generalized nonlinear function of their arguments, and     

𝐹 (x, 𝜓, 𝜓ʹ, 𝜀) 𝜖 𝐶3([𝑎, 𝑏] × 𝑅2 × (0, 1)) , 
𝜕𝐹

𝜕𝜀
(x, 𝜓, 𝜓ʹ, 𝜀)  ≠  0, (x, 𝜓, 𝜓ʹ, 𝜀) 𝜖 ([𝑎, 𝑏]  × 𝑅2 × (0, 1))  

 

Remark: Suppose that there is only one small, positive parameter in our problem. 𝜀 (0 <
 𝜀 ≪ 1),  𝑃𝜀 represents the problem. What occurs if 𝜀 → 0? , the reduced problem is had by 

𝑃0. Under reasonable assumptions, the connection will be investigated between the 𝑃𝜀 and 𝑃0 

solutions. A perturbation problem (1) is called SPP, if 𝜀 → 0, the solution 𝜓𝜀(x) converges to 

𝜓0(x) only at some x-interval, but it does not for the full time period, thus giving rise to the 

"boundary layers" phenomena at both endpoints [17]. 

 

3. Mean squared error (MSE): It measures the amount of error in statistical models. It 

assesses the average squared difference between the observed and predicted values. When a 

model has no error, the MSE equals zero. As model error increases, its value increases. The 

mean squared error is also known as the mean squared deviation (MSD). 

The formula for MSE is the following: 𝑀𝑆𝐸 =
∑(𝑦𝑖−𝑦̂𝑖)

2

𝑛
                                                     

Where : 𝑦𝑖 is the 𝑖𝑡ℎ observed value ,  𝑦̂ is the corresponding predicted value   and  𝑛 is  the 

number of observations. 

 

4. Architectural structure 
      In this section, we will employ the neural networks based on the polynomial.               ξ(x)  =
𝜆

 2 
(x2 + x + 1), 𝜆 ∈ (0,1) to solve the singular perturbation problems. The neural network is a three-

layer feed forward (NN) where the connections weights, biases, and targets are given as real 
numbers and the inputs are also given as real numbers. The basic structural architecture of this 
technique (𝑀𝑁𝑆1) includes  input layers one is a hidden layer and an output layer. Here, the 
dimension is indicated by the amount of neurons in each layer, which is  𝑛 × 𝑚 × 𝑠 , where 𝑛 
denotes the number of neurons in the input layer, 𝑚 is the number of neurons in the hidden layer 
and 𝑠  is the number of neurons in the output layer. The architecture of the model shows the 
transformation of  the 𝑛 inputs ( x1 , x2, … , xi , xi+1, … , xn) into the 𝑠 outputs 
(𝜓1, 𝜓2, … , 𝜓𝑘 , 𝜓𝑘+1, … , 𝜓𝑠) throughout the m hidden neurons 

https://statisticsbyjim.com/glossary/fitted-values/
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(Hid1, Hid2, … , Hidj, Hidj+1, … , Hidm) where the cycles represent the neurons in each layer. Let bj  , 

𝓋k ,  wji and  , skj   be the bias for the neurons Hidj  ,  the bias for the neurons 𝜓𝑘 , the weights 

connecting the neurons  xi to the neurons Hidj  and the weights connecting the neurons Hidj to the 

neurons 𝜓𝑘, respectively. When the n-dimensional input vector (x1, x2, … , xi, xi+1, … , xn )  is 

presented to the neural network. Its input and output relations can be written as the following 
algorithm of the modified neuro system (𝑀𝑁𝑆1): 

Where x  and 𝜓  are the  input and output, respectively. 

Step 1: Start  

Step 2: xi  represent the input units   

xi = ξ(xi)  =
λ

 2 
(x

i

2
+ xi + 1),  i = 1, … , n , λ ∈ (0,1)                                                           

Step 3: Hidden units  

Hidj = T(Netwj) , j = 1,2, … ,m                                                                    

Netwj = ∑ xi
n

i=1
wji + bj  

= ∑
λ

 2 
(xi

2
+ xi + 1)

n

i=1
wji + bj                                                                    

where wji are the input layer's weight parameter, which jth is the unit in the hidden layer, bj is 

an jth bias for the hidden layer unit.                                                          

Step 4: Output units   

Out𝑘(ξ(x),p,ε)=T (Netwk) , k=1,2,…,s                    

Netwk = ∑  
m

j=1
skjHidj+𝓋k   ,  where T is the hyperbolic tangent activation function , 

Out(ξ(x),p,ε) of  the output network and skj is a weight parameter from  jth unit in the hidden 

layer to output layer.  

Step 5:  Calculation of the trial solution 𝜓𝑘.  

Step 6: Stop. 

 

Theorem: Let a and b be positive real numbers, If x ∈ [a, b], then the appropriate value of  𝜆  

can be  determined to guarantee that  ξ(x) =
𝜆

 2 
(x + 1), ξ(x) ∈ (a, b) such that: 

2a

a+1
< λ <

2b

b+1
. 

 

Proof: Since x ∈ [a , b] , and since ξ(x) =
𝜆

 2 
(x + 1).                                                               

Then ξ(x) =
λ

2
 [a + 1, b + 1] = [

λ

2
 (a + 1),

λ

2
 (b + 1)] is obtained if  

λ

2
  (a + 1) = a                  

is considered: λ =
2a

a+1
   and  if we consider  

λ

2
(b + 1) = b , then λ =

2b

b+1
   can be get.                                                   

Therefore, if we consider λ >
2a

a+1
  and  𝜆 <

2b

b+1
   ,                                                                   

then  ξ(x) = [
λ

2
  (a + 1),

λ

2
  (b + 1)] ∈ (

a

a+1
(a + 1),

b

b+1
(b + 1)) = (a, b)  .                  

Therefore, we have  ξ(x) ∈ (a, b)  if  
2a

a+1
< λ <

2b

b+1
.   

 

5. Illustration of 𝑴𝑵𝑺𝟏 for solving SPP 

5.1 Solution of the second-order SPPs with IC 

       For the second-order of SPPs that is considered by :  
𝜀𝜓ˊˊ = F(x, 𝜓, 𝜓ˊ, 𝜀) , x ∈ [a, b] ,    0 < 𝜀 << 1 ,                                                                                (2)         

𝜓(𝑎) = 𝐴   , 𝜓ˊ(𝑎) = 𝐵 .  
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where 𝜓 is a function with derivative 𝜓ˊ,  𝐴 and 𝐵 are real numbers. 

The trial function will be in the form:  
ψt(x,p, ε) = A + B(x − a) + (x − a)2Out(ξ(x),p,ε) .                                                              (3) 

The conditions in eq. (2) are intentionally satisfied by this solution, 

and {xi}i=1
g

 are discrete points that fall within the interval [a, b]. 

Now, we  differentiate the trial function 𝜓t(x, 𝑝, 𝜀) in eq.(3) to find the amount of error, then 

we get the following:  
∂𝜓t(x,p,𝜀)

∂x
= B + 2(x − a)Out(ξ(x),p,ε)+(x − a)2

∂Out(ξ(x),p,ε)

∂x
   ,                                              (4)                                                                                                                                                                                                                                                                                                                                                                                            

∂2𝜓t(x,p,𝜀)

∂x2 = 2[Out(ξ(x),p,ε)] + 4(x − a)
∂Out(ξ(x),p,ε) 

∂x
+ (x − a)2

∂2Out(ξ(x),p,ε) 

∂x2  ,                   (5)                                                                                                                                                                                                                                                                                                                                                                                                                         

Where  Out(ξ(x),p,ε) = ∑ sj
m
j=1 T( ξ(x) wj + bj)     ,                                                                        (6)                 

∂Out(ξ(x),p,ε) 

∂x
= ∑

λ

2
(2xi + 1)wj

m
j=1 sj Tˊ( ξ(x) wj + bj)   ,                                                                 (7)                   

∂2Out(ξ(x),p,ε)

∂x2  = ∑  
𝜆2

2
 wj

2 (2x + 1)2 sj Tˊˊ(  ξ(x) wj + bj) +  𝜆 wj  sj
m
j=1  Tˊ(ξ(x) wj + bj).                  (8)   

 

5.2 Solution for system of SPPs 

       Consider the  system  of K first-order ODEs : 
 𝜀𝜓𝑖

′ = 𝐹𝑖(x , 𝜓1 , 𝜓2 , … , 𝜓𝐾 , 𝜀)  , 0 < 𝜀 << 1                                                                                   (9) 

with 𝜓i(0) = 𝐴i , 𝑖 = 1 , 2 , … , 𝐾. We consider one ANN for each trial solution  𝜓ti
, 𝑖 =

1 , 2 , … , 𝐾  which  can be  written as follows:  
  𝜓𝑡𝑖

(x, 𝑝,ɛ) = 𝐴𝑖 + x 𝑂𝑢𝑡𝑖(ξ(x),𝑝i,ε) .                                                                                               (10) 

Additionally, to reduce the amount of error:                          

𝑚𝑖𝑛
𝒫⃗ 

∑  ℱ ((ϰ⃗ 𝑖 , ɛ, 𝜓𝑡( ϰ⃗ 𝑖, 𝒫,⃗⃗⃗⃗ ɛ ), 𝜓´𝑡( ϰ⃗ 𝑖, 𝒫⃗ , ɛ), 𝜓´´𝑡( ϰ⃗ 𝑖, 𝒫⃗ , ɛ), … ))
2

ϰ⃗ 𝑖 ∈ 𝐷̂                                       (11) 
 

5.3 Solution of the second-order SPPs with B.C  

       Consider the second-order of  SPPs for ODEs 
𝜀𝜓ˊˊ = F(x, 𝜓(x), 𝜓ˊ, 𝜀)     ,x ∈ [a, b].                                                                                                 (12)                                             

Where 𝜀 is the perturbation (0 < 𝜀 << 1 ) with the boundary conditions :  𝜓(𝑎) = 𝐴,𝜓(𝑏) =

𝐵 . For this problem, the trial solution is as follows :                                                          

𝜓𝑡(x, 𝑝, 𝜀) =
𝑏𝐴−𝑎𝐵

𝑏−𝑎
+

𝐵−𝐴

𝑏−𝑎
x + (x − 𝑎)(x − 𝑏)[Out( ξ(x), p, 𝜀)].                                                  (13)                                    

Now we  differentiate the  trial function   𝜓t(x, 𝑝, 𝜀)  in eq.(13), then we obtain:  
𝑑𝜓𝑡(x𝑖,𝑝,𝜀) 

𝑑x
=

𝐵−𝐴

𝑏−𝑎
+ (x − 𝑎)(x − 𝑏)

𝑑𝑂𝑢𝑡(ξ(x),𝑝,𝜀)

𝑑𝑥
+ (2x − (𝑎 + 𝑏))[Out(ξ(x), p, 𝜀)] .                      (14) 

𝑑2𝜓𝑡(𝑥𝐼,𝑝,𝜀) 

𝑑𝜘2 = (x − 𝑎)(x − 𝑏)
𝑑2𝑂𝑢𝑡( ξ(x),𝑝,𝜀)

𝑑𝑥2 + 2(2x − (𝑎 + 𝑏))
𝑑𝑂𝑢𝑡( ξ(x),p,𝜀)

𝑑𝑥
+ 2𝑂𝑢𝑡(ξ(x), 𝑝, 𝜀).  (15)  

Where Out (ξ(x), p, 𝜀) is the output of the feed forword 𝑀𝑁𝑆1with one input for x and 

parameter  𝑝. Hence, 
Out(ξ(x),p,ε) = ∑ sj

m
j=1  T( ξ(x) wj + bj) ,                                                                                                    (16)                 

∂Out(ξ(x),p,ε) 

∂x
= ∑

𝜆

2
(2xi + 1)wj

m
j=1 sj Tˊ( ξ(x) wj + bj),                                                                    (17) 

∂2Out(ξ(x),p,ε)

∂x2 = ∑  
𝜆2

2
 wj

2 (2x + 1)2 sj Tˊˊ(ξ(x) wj + bj) + 𝜆 wj sj
m
j=1  Tˊ(ξ(x) wj + bj).                  (18) 

The amount of the error which must be minimized is given as follows:                          

𝔼𝑖(𝑝, 𝜀) = ∑ [
𝑑2𝜓𝑡(x𝑖,𝑝,𝜀) 

𝑑𝜘2 −
1

𝜀
[𝐹 [x𝑖, 𝜓𝑡(x𝑖, 𝑝, 𝜀),

𝑑𝜓𝑡(x𝑖,𝑝,𝜀)

𝑑x
, 𝜀)]]

2
𝑔
𝑖=1 .                                                (19)  

Where {x𝑖}𝑖=1
𝑔

∈ [a, b] are discrete points ,respectively. Then,  eq.(19) can be rewritten as:   

𝔼𝑖(𝑝, 𝜀) = ∑ [(𝑥𝑖 − 𝑎)(𝑥𝑖 − 𝑏)
𝑑2𝑂𝑢𝑡( 𝜉(𝑥),𝑝,𝜀)

𝑑𝑥2 + 2(2𝑥𝑖 − (𝑎 + 𝑏))
𝑑𝑂𝑢𝑡( 𝜉(𝑥),𝑝,𝜀)

𝑑𝑥
+

𝑔
𝑖=1

2𝑂𝑢𝑡( 𝜉(𝑥), 𝑝, 𝜀) −
1

𝜀
𝐹 (𝑥𝑖 ,

𝑏𝐴−𝑎𝐵

𝑏−𝑎
+

𝐵−𝐴

𝑏−𝑎
𝑥𝑖 + (𝑥𝑖 − 𝑎)(𝑥𝑖 − 𝑏)𝑂𝑢𝑡( 𝜉(𝑥), 𝑝, 𝜀) ,

𝐵−𝐴

𝑏−𝑎
+ (𝑥𝑖 − 𝑎)(𝑥𝑖 −

𝑏)
𝑑(𝑂𝑢𝑡( 𝜉(𝑥),𝑝,𝜀))

𝑑𝑥
+ (2𝑥𝑖 − (𝑎 + 𝑏))𝑂𝑢𝑡( 𝜉(𝑥), 𝑝, 𝜀))]

2

      .                                                                     (20)                       
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6. Numerical illustrations 

      In this section, some numerical results and the resolution of several models SPPs in every 

instance have been used to suggest the employing multiple-layer perceptron, which consists 

of one input of 7 hidden units in one hidden layer and one linear output unit. As the analytical 

solution is already known 𝜓a(x) to each test problem, so we can determine the accuracy of 

the solutions and that is found by computing the deviation : E(x,p,ε) = |𝜓t(x, p, ε) −
𝜓a(x, p, ε)|.  
 

Example1:Consider the following linear system of SPPs: 

 
𝑑𝜓1

𝑑x
= −2𝜓1(x) + 𝜓2(x) + 2𝑠𝑖𝑛x , 

𝜀
𝑑𝜓2

𝑑𝑥
= −(1 + 2𝜀)𝜓1(𝑥) + (1 + 𝜀)(𝜓2(𝑥) − 𝑐𝑜𝑠𝑥 + 𝑠𝑖𝑛𝑥),  

𝜓1(0) = 2 ,𝜓2(0) = 3 . 

The exact solution of this problem is given by the following: 
𝜓1(x) = 2𝑒−x + 𝑠𝑖𝑛x  ,   𝜓2(x) = 2𝑒−x + 𝑐𝑜𝑠x. 

Then, the  trial solutions are 
𝜓1t(x, 𝑝, 𝜀) = 2 + xOut(ξ(x),p,ε) ,  𝜓2t(x, 𝑝, 𝜀) = 3 + xOut(ξ(x),p,ε) . 
 

     The 𝑀𝑁𝑆1 is trained using a grid of ten equidistant points in the interval [0,1] that means  

the input vector x⃗  (training set) is: x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}. Now, to 

find the error function E that must be minimized for this problem, the following steps have to 

be  applied: 
∂𝜓1t(x,p,𝜀)

∂x
=  Out(ξ(x),p,ε) + x

∂Out(ξ(x),p,ε)

∂x
  ,        

∂𝜓2t(x,p,𝜀)

∂x
=  Out(ξ(x),p,ε) + x

∂Out(ξ(x),p,ε)

∂x
  .                                                                        

Then, we get: 𝔼𝑖(𝑝, 𝜀) = ∑ [
∂𝜓1t(x𝑖,p,𝜀)

∂x
− (−2𝜓1𝑡(x𝑖) + 𝜓2𝑡(x𝑖) + 2𝑠𝑖𝑛x𝑖 )]

2
+ [

∂𝜓2t(x𝑖,p,𝜀)

∂x
−11

𝑖=1

1

𝜀
(−(1 + 2𝜀)𝜓1𝑡(x𝑖) + (1 + 𝜀)(𝜓2𝑡(x𝑖) − 𝑐𝑜𝑠x𝑖 + 𝑠𝑖𝑛x𝑖))]

2
  ,      

𝔼𝑖(𝑝, 𝜀) = ∑ [Out(ξ(x𝑖), p, ε) + x𝑖  
∂Out(ξ(x𝑖),p,ε)

∂x
− (−2(2 + x𝑖  Out(ξ(x𝑖), p, ε)) + (3 +11

𝑖=1

 x𝑖  Out(ξ(x𝑖), p, ε) + 2𝑠𝑖𝑛x𝑖 ))]
2
+ [Out(ξ(x𝑖), p, ε)  +  x𝑖  

∂Out(ξ(x𝑖),p,ε)

∂x
−

1

𝜀
(−(1 + 2𝜀)2 +

 x𝑖  Out(ξ(x𝑖), p, ε) + (1 + 𝜀)(3 + x𝑖Out(ξ(x𝑖), p, ε) − 𝑐𝑜𝑠x𝑖 + 𝑠𝑖𝑛x𝑖))]
2
  .  

  Since    Out(ξ(x),p,ε) = ∑ sj
7
j=1 T( ξ(x) wj + bj) and         

∂Out(ξ(x),p,ε) 

∂x
= ∑

𝜆

2
(2xi + 1)wj

7
j=1 sj Tˊ( ξ(x) wj + bj) .   

Therefore, we get: 𝔼𝑖(𝑝, 𝜀) = ∑ [∑ vj
7
j=1  T( ξ(x𝑖) wj + bj + x𝑖  ∑

𝜆

2
(2xi +

7
j=1

11
𝑖=1

1)wj sj Tˊ( ξ(x𝑖) wj + bj) − (−2(2 + x𝑖  ∑ sj
7
j=1  T( ξ(x𝑖) wj + bj)) + (3 +

 x𝑖  (∑ sj
7
j=1  T( ξ(x𝑖) wj + bj) + 2𝑠𝑖𝑛x𝑖  ))]

2
+ [(∑ sj

7
j=1  T( ξ(x𝑖) wj + bj)  + x𝑖  ∑

𝜆

2
(2xi +

7
j=1

1)wj sj Tˊ( ξ(x𝑖) wj + bj) −
1

𝜀
(−(1 + 2𝜀)(2 + x𝑖  ∑ sj

7
j=1  T( ξ(x𝑖) wj + bj) + (1 + 𝜀)(3 +

 x𝑖(∑ sj
7
j=1  T( ξ(x𝑖) wj + bj) − 𝑐𝑜𝑠x𝑖 + 𝑠𝑖𝑛x𝑖))]

22

. 

Since x in this example is between 0 and 1 and according to theorem, it requires to select 0 <
𝜆 < 1 , then it is selected  𝜆 = 0.3 and let 𝜀 = 10−7.                                                     

The training set x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1} ,                            
ξ(x): 0.15 0.19 0.24 0.28 0.33 0.37 0.42 0.46 0.51 0.5 0.6    .                                                             
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     In Figures 1-2, the analytical and neural solutions found in the training set are shown by 

the feed forward 𝑀𝑁𝑆1  trained using a grid of evenly spaced points in [0,1] . Then the oral 

results for 𝑀𝑁𝑆1 , UANN, and train accuracy errors are shown in table 1. 

 

Figure 1: Analytic and 𝑀𝑁𝑆1 of  𝜓1t in example 1,  Figure 2: Analytic and 𝑀𝑁𝑆1 of  𝜓2t 

example 1,   with 𝜀 = 10−7  .                                          with 𝜀 = 10−7.                                                                      
                                                                                               

Table 1: Analytic , 𝑀𝑁𝑆1 solution and accuracy of the train of example 1 , 𝜀 = 10−7, 𝜆 =
0.3. 

Input 

𝒙 

Analytic 

solution 

𝝍𝟏𝒂(𝒙) 

Analytic 

solution 

𝝍𝟐𝒂(𝒙) 

Solution of 

𝑴𝑵𝑺𝟏  𝝍𝟏𝒕(𝒙) 

for training 

algorithm 

 

Solution of 

𝑴𝑵𝑺𝟏  

𝝍𝟐𝒕(𝒙) for 

training 

algorithm 

 

Accuracy 

of 

solutions  

of 𝑴𝑵𝑺𝟏 

𝑬(𝒙)
= |𝝍𝟏𝒕(𝒙)
− 𝝍𝟏𝒂(𝒙)| 

Accuracy 

of 

solutions  

of 𝑴𝑵𝑺𝟏 

𝑬(𝒙)
= |𝝍𝟐𝒕(𝒙)
− 𝝍𝟐𝒂(𝒙)| 

0 
2.000000000000

000 

3.000000000000

000 

2.0000000000

00000 

3.0000000000

00000 
0 0 

0.1 
1.909508252718

750 

2.804679001349

940 

1.9095082425

68540 

2.8046790664

75460 

1.01502E-

08 

6.51255E-

08 

0.2 
1.836130836951

020 

2.617528083997

210 

1.8361308553

67320 

2.6175280654

33560 

1.84163E-

08 

1.85636E-

08 

0.3 
1.777156648024

780 

2.436972930489

040 

1.7771566464

32750 

2.4369729388

65240 

1.59203E-

09 
8.3762E-09 

0.4 
1.730058434379

930 

2.261701086074

160 

1.7300584311

25850 

2.2617010867

73570 

3.25408E-

09 

6.99406E-

10 

0.5 
1.692486858029

470 

2.090643881315

640 

1.6924868345

63250 

2.0906488535

57800 

2.34662E-

08 

4.97224E-

06 

0.6 
1.662265745583

090 

1.922958887097

730 

1.6622657632

78740 

1.9229588995

35780 

1.76957E-

08 
1.2438E-08 

0.7 
1.637388294820

510 

1.758012794867

310 

1.6373882945

73130 

1.7580129545

67930 
2.4738E-10 

1.59701E-

07 

0.8 
1.616014019133

970 

1.595364637581

610 

1.6160145527

73150 

1.5953646885

67980 

5.33639E-

07 

5.09864E-

08 

0.9 
1.596466229108

680 

1.434749287751

860 

1.5964662663

15740 

1.4347492888

58950 

3.72071E-

08 

1.10709E-

09 

1 
1.577229867150

780 

1.276061188211

020 

1.5772298655

31570 

1.2760611855

44570 

1.61921E-

09 

2.66645E-

09 

The accuracy of the train 

Time Epoch 
Tim

e 

Epoc

h MSE=2.61

343E-14 

MSE=2.25

056E-12 0:00:0

1 
11 

0:00:

3 
44 
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Example 2:Consider the following  second-order nonlinear SPP: ɛ𝜓 + 𝜓 + 𝜓2 = 0 with the 

Dirichiet BC′s :  𝜓(0) = 0    ,   𝜓(1) = 1/2 . 

The exact solution of this problem is given by : 𝜓𝑡(x) =
1

1+x
−

𝑒−x/ɛ

(1+x)2
. 

Then, trial solutions are : 𝜓𝑡(x, 𝑝) =
1

2
x + x(x − 1)[Out(ξ(x), p, 𝜀)] 

The 𝑀𝑁𝑆1 trained using a grid of ten equidistant points in the interval[0.1] that means the 

input vector x⃗  (training set) is: 

x⃗ = {0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1}. 
Now, to find the error function E that must be minimized for this  

problem, the following steps have to be  applied: 
∂𝜓t(x,p,𝜀)

∂x
=  

1

2
+ (2x − 1)[Out(ξ(x),p,ε)] + (x2 − x)

∂Out(ξ(x),p,ε)

∂x
 ,             

∂2𝜓t(x,p,𝜀)

∂x2 = 2[Out(ξ(x),p,ε)] + 2 ((2x − 1)
∂Out(ξ(x),p,ε) 

∂x
) + (x2 − x) 

∂2Out(ξ(x),p,ε) 

∂x2  .    

Then, we get the following: 𝔼𝑖(𝑝, 𝜀) = ∑ [
𝑑2𝜓𝑡(x𝐼,𝑝,𝜀) 

𝑑𝜘2 −
1

𝜀
[−𝜓 − 𝜓2]

2
11
𝑖=1   ,     

𝔼𝑖(𝑝, 𝜀) = ∑ [2[Out(ξ(x𝑖), p, ε)]  +  2 ((2x𝑖 − 1)
∂Out(ξ(x𝑖),p,ε) 

∂x
) + (x𝑖

2 − x𝑖) 
∂2Out(ξ(x𝑖),p,ε) 

∂x2 −11
𝑖=1

1

𝜀
[− (  

1

2
+ (2x𝑖 − 1)[Out(ξ(x𝑖), p, ε)]  +  (x𝑖

2 − x𝑖) 
∂Out(ξ(x𝑖),p,ε)

∂x
) − (

1

2
x𝑖 + x𝑖(x𝑖 −

1)[Out( ξ(x𝑖), p, 𝜀)])
2
]
2

 . 

Since Out(ξ(x),p,ε) = ∑ sj
7
j=1 T( ξ(x) wj + bj)  ,                                             

∂Out(ξ(x),p,ε) 

∂x
= ∑

𝜆

2
(2xi + 1)wj

7
j=1 sj Tˊ(ξ(x) wj + bj)  , and       

∂2Out(ξ(x𝑖),p,ε) 

∂x2 = ∑  
𝜆2

2
 wj

2 (2x + 1)2 sj Tˊˊ(  ξ(x) wj + bj) +  𝜆 wj  sj
7
j=1  Tˊ(ξ(x) wj + bj) . 

Therefore, we get:                 

𝔼𝑖(𝑝, 𝜀) = ∑ [∑ sj
7
j=1 T( ξ(xi ) wj + bj)  +  2 ((2x𝑖 − 1)∑

𝜆

2
(2xi + 1)wj

7
j=1 sj Tˊ(ξ(xi ) wj +

11
𝑖=1

bj) )  + (x𝑖
2 − x𝑖) ∑  

𝜆2

2
 wj

2 (2x + 1)2 sj Tˊˊ(  ξ(xi ) wj + bj) +  𝜆 wj  sj
7
j=1 Tˊ(  ξ(xi ) wj + bj) −

1

𝜀
[− (  

1

2
+ (2x𝑖 − 1)[∑ sj

7
j=1  T( ξ(xi ) wj + bj)]  + (x𝑖

2 − x𝑖) ∑
𝜆

2
(2xi + 1)wj

7
j=1 sj Tˊ( ξ(xi ) wj +

bj) ) − (
1

2
x𝑖 + x𝑖(x𝑖 − 1)[∑ sj

7
j=1 T( ξ(xi ) wj + bj)])

2
]
2

 . 

 

      Since x in this example is between 0 and 1 and  according to theorem , it requires to select 

0 < 𝜆 < 1  , then it  is selected 𝜆 = 0.6  and let 𝜀 = 10−6. The training set  x⃗ =
{0, 0.1, 0.2 ,0.3, 0.4, 0.5, 0.6 ,0.7, 0.8 ,0.9 ,1} ,                                                                       

ξ(x): 0.3 0.39 0.48 0.57 0.66 0.75 0.84 0.93 1.02 1.11 1.2 .                                                          

In Figure 3, the analytical and neural solutions found in the training set are shown by the feed 

forward 𝑀𝑁𝑆1  trained using a grid of evenly spaced points in [0,1]. Then the oral results for 

𝑀𝑁𝑆1 , UANN, and train accuracy errors are shown in Table 2 . 
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Figure 3: Analytic and 𝑀𝑁𝑆1 of example 2, with 𝜀 = 10−6. 

 

Table 2: Analytic, 𝑀𝑁𝑆1 solution and accuracy of the train of example 2,𝜀 = 10−6, 𝜆 = 0.6. 

Input 𝑥 
Analytic solution 

𝜓𝑎(𝑥) 

Solution of 𝑀𝑁𝑆1  

𝜓𝑡(𝑥) for training 

algorithm 

 

Solution of 

UANN 𝜓𝑡(𝑥) for 

training 

algorithm 

 

Accuracy of 

solutions  of 

𝑀𝑁𝑆1 
𝐸(𝑥)
= |𝜓𝑡(𝑥)
− 𝜓𝑎(𝑥)| 

Accuracy of 

solutions  of 

UANN 
𝐸(𝑥)
= |𝜓𝑡(𝑥)
− 𝜓𝑎(𝑥)| 

0 
0.0000000000000

00 

0.00000000000000

0 

0.000000000000

000 
0 0 

0.1 
0.9090909090909

09 

0.90909090955432

1 

0.909055432298

700 
4.63412E-10 3.54768E-05 

0.2 
0.8333333333333

33 

0.83333333776510

9 

0.833335544983

210 
4.43178E-09 2.21165E-06 

0.3 
0.7692307692307

69 

0.76923076443210

9 

0.769230766521

986 
4.79866E-09 2.70878E-09 

0.4 
0.7142857142857

14 

0.71428578875190

8 

0.714285788751

908 
7.44662E-08 7.44662E-08 

0.5 
0.6666666666666

67 

0.66666664091129

8 

0.666666666543

219 
2.57554E-08 1.23448E-10 

0.6 
0.6250000000000

00 

0.62500980054328

0 

0.625008874319

860 
9.80054E-06 8.87432E-06 

0.7 
0.5882352941176

47 

0.58823528874309

8 

0.588235288743

098 
5.37455E-09 5.37455E-09 

0.8 
0.5555555555555

56 

0.55555588674498

0 

0.555621009654

390 
3.31189E-07 6.54541E-05 

0.9 
0.5263157894736

84 

0.52631578887543

0 

0.526315788875

430 
5.98254E-10 5.98254E-10 

1 
0.5000000000000

00 

0.50000000000000

0 

0.500005443219

000 
0 5.44322E-06 

The accuracy of the train 

Time Epoch Time Epoch 
MSE=8.742

42E-12 

MSE=5.14193E-

10 0:00:05 77 
0:00:2

1 
182 

 

7. Conclusions 

      In this paper, it has been used a new type of update types on the neural networks to solve 

the singular perturbation problems. This update is to replace the training data with data after 

compensation with a polynomial of the second degree . After taking several examples and 

comparing, the results are in the practical side, So the method is characterized by the speed of 

convergence and reduction error rates and this is clear through the time , epoch and mean 
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squared error in the tables are compared with exact solution and usual artificial neural 

networks. 
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