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Abstract

The aim of this paper is to design a neural network for solving the singular
perturbation problems by using neural networks. The modified neuro system using a
polynomial of second degree is to replace each component in the training set. The
foundation of this approach is to swap off each x in the input vector training set

X, = (X1,Xz,...,Xy) , X € [a,b] , the polynomial will be as §(x) = %(x2 +x+

1), 2 € (a,b). The appropriate value is determined within a certain range, which
has a significant impact on the accuracy of the solution. The numerical results show
that the modified neuro system method is better and more accurate than usual
artificial neural network method, the main reason for this point is connected with the
chosen value of . Finally, a method of updating the neural network is clarified by
the numerical results of some examples that are compared to the usual artificial
neural network method and through which the accuracy of the solution and the
rapidity of convergence is proved.
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1. Introduction

Nowadays, a new branch of computational science has emerged which integrates several
techniques to solve many problems that are not easily stated without an algorithmic typical
focus. In one form or another, these approaches are inspired by the imitation of biological
systems' behavior that are done in a fashion which is either more or less intelligent. It is a
brand-new approach to computing known as artificial intelligence which uses a variety of
techniques to manage the uncertainty and imprecision that arise when attempting to solve
problems that relate to the actual world while these techniques provide effective solutions that
are simple to apply. The one of these methods are Artificial neural networks (ANNSs) [1].
Differential equations are used to formulate many issues, and the nonlinear terms only depend
on certain dependent variable derivatives and a tiny value parameter €. The typical view of
these weakly nonlinear issues is that they are perturbations of the corresponding linear
differential equations [2]. Applications of the perturbed issues for differential equations are
fairly common, and they have received a lot of attention recently. Singular perturbation issues
frequently arise in a variety of fields of applied mathematics, such as fluid dynamics,
elasticity, chemical reactor theory, aerodynamics, magneto hydrodynamics, and plasma
dynamics [3]. Recently, large range of books and papers that are outlining numerous
approaches to solving SPPs have been published. Among these, Lagerstrom and Casten [4]. A
class of singular perturbation problems with certain applications in fluid dynamics is solved
using the perturbation technique. Amiraliyev [5] gave the numerical solution of the initial
condition of the second order linear singly perturbed problem. Arianov et al. [6] studied of a
perturbation technique application with a few perturbation parameters. There are many studies
on solving perturbation problems related to artificial intelligence and open learning such as
artificial neural networks. Artificial neural networks (ANNS) is a calculation method that
builds several processing units based on interconnected connections. The network consists of
an arbitrary number of cells or nodes or units or neurons that connect the input set to the
output. It is a part of a computer system that mimics how the human brain analyzes and
processes data. Self-driving vehicles, character recognition, image compression, stock market
prediction, risk analysis systems, drone control, welding quality analysis, computer quality
analysis, emergency room testing, oil and gas exploration and a variety of other applications
all use artificial neural networks. Predicting consumer behavior, creating and understanding
more sophisticated buyer segments, marketing automation, content creation and sales
forecasting are some applications of the ANN systems in the marketing [7]. In fact, ANNs are
being used in every circumstance where there are issues with prediction, categorization, or
control. A few important reasons are responsible for this enormous accomplishment. First and
foremost, ANNs are highly developed nonlinear computational tools that can simulate
incredibly complex functions. For the user knowledge, it is necessary to implement NNs
successfully that are substantially lower than others [8] [9]. Artificial neural networks have
been used to solve problems in various educational and industrial fields [10] [11] [12] [13].
Dash and Daripa [14] have been released and presented analyses of a singularly perturbed
Boussinesq equation using analytical and numerical methods. Hunter [15] used the numerical
method to address a particular class of PPs that demonstrates the inadequacy of traditional
discretization methods. Shikongo [3] created and put into practice some unique numerical
techniques for some non-linear SPPs. Valanarasu and Ramanujam [16] proposed a numerical
approach to solve ordinary differential equations (ODES) second-order SPP with two points
boundary conditions (BCs) ,as well as there are many papers on the use of modifying the
neural network to solve differential equations by modifying the training algorithm or some
parameters associated with the network design. Also, it has been used (MANN) for solving
SPPs. This approach is according to substituting every x on the input vector training set with
the first-degree polynomial [9]. In this paper, the study is different from the modernization
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methods that are previously used. The aim of this study is to present a modified method for
finding the numerical solutions of SPPs for ODEs by using a modified neuro system (MNS;)
which will be explained in the next sections.

2. Perturbation problems

The perturbed differential equation problems (PPs) are a common occurrence in
applications that have received a great deal of attention recently. As a result, PPs are
categorized into two categories based on their location: singular perturbed problems (SPPs)
and regular perturbed problems. These issues are known to depend on a small positive
parameter € in a way that causes the solution to have a multiscale nature that means there are
thin transition layers where the answer changes quickly [5].

Differential equations with the highest derivative is multiplied by a small parameter € are
known as singly perturbed differential equations. SPPs for ODEs in their general form, which
have a small positive parameter €, 0 < € << 1, have the following form (in case of the second
order):

V') = F (Y, ¢),x € [a,b]. (1)

Where F is a generalized nonlinear function of their arguments, and
F (x,¢, 9", ¢) € C3([a,b] X R? x (0,1)) ,
Ly, = 0, PP, e ([ab] xR x (0,1)

Remark: Suppose that there is only one small, positive parameter in our problem. & (0 <
€ K1), P, represents the problem. What occurs if € = 0?7, the reduced problem is had by
P,. Under reasonable assumptions, the connection will be investigated between the P, and P,
solutions. A perturbation problem (1) is called SPP, if £ — 0, the solution ¥, (x) converges to
Yo (x) only at some x-interval, but it does not for the full time period, thus giving rise to the
"boundary layers" phenomena at both endpoints [17].

3. Mean squared error (MSE): It measures the amount of error in statistical models. It
assesses the average squared difference between the observed and predicted values. When a
model has no error, the MSE equals zero. As model error increases, its value increases. The
mean squared error is also known as the mean squared deviation (MSD).

The formula for MSE is the following: MSE = Z(%T‘yt)z

Where : y; is the it" observed value , 7 is the corresponding predicted value and n is the
number of observations.

4. Architectural structure
In this section, we will employ the neural networks based on the polynomial. &¢x) =

%(x2 +x+ 1), 1 € (0,1) to solve the singular perturbation problems. The neural network is a three-

layer feed forward (NN) where the connections weights, biases, and targets are given as real
numbers and the inputs are also given as real numbers. The basic structural architecture of this
technique (MNS;) includes input layers one is a hidden layer and an output layer. Here, the
dimension is indicated by the amount of neurons in each layer, which is n Xm X s , where n
denotes the number of neurons in the input layer, m is the number of neurons in the hidden layer
and s is the number of neurons in the output layer. The architecture of the model shows the
transformation  of the n inputs (Xq,Xy, ..., Xi,Xj+1,--,Xp) into the s outputs
Wi, Y2, e Vi Vit 1s s Ws) throughout the m hidden neurons
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(Hid4, Hidy, ..., Hidj, Hidj4, ..., Hidy,) where the cycles represent the neurons in each layer. Let b; ,

vy, Wj and , sy be the bias for the neurons Hid; , the bias for the neurons v , the weights
connecting the neurons x; to the neurons Hid]- and the weights connecting the neurons Hid]- to the
neurons Yy, respectively. When the n-dimensional input vector (X;,X,,...,X;, X1, X, ) IS

presented to the neural network. Its input and output relations can be written as the following
algorithm of the modified neuro system (MNS,):

Where x and ¥ are the input and output, respectively.

Step 1: Start

Step 2: x; represent the input units

X, =§x) =2+ x+1), i=1,..,n,1€(01)
Step 3: Hidden units

Hidj = T(Netwj) ,j=12,...m

_ n
Netw; = 3. xw; +b,
—_— n )\ 2
= Zi=17<xi +x, + 1>Wji + b,
where w;; are the input layer's weight parameter, which jth is the unit in the hidden layer, b, is

an jth bias for the hidden layer unit.
Step 4: Output units

Out, (5(x),p.&)=T (Netw, ) , k=1,2,...;
Netw, =2],";1 sHid+v, where T is the hyperbolic tangent activation function,

Out(§(x),p,e) of the output network and Skj is a weight parameter from jth unit in the hidden

layer to output layer.
Step 5: Calculation of the trial solution .
Step 6: Stop.

Theorem: Let a and b be positive real numbers, If x € [a, b], then the appropriate value of A
2b

. A 2a
can be determined to guarantee that §(x) = > (x+1),&(x) € (a,b) such that: <A<

Proof: Since x € [a,b], and since §(x) = %(x +1).

Then§() =2 [a+ Lb+1] =[5 (a+1), 3 (b+ 1] isobtainedif > (a+1) =a

is considered: A = =~ and if we consider 2(b+1) = b, then A = == can be get.
a+1 2 b+1

. . 2 2b
Therefore, if we consider A > == and 1 < =—
a+1 b+1

then §) =[5 (a+1),5 (b+1)] € <: @a+1),—=(b+ 1)) = (ab) .

.. 2a 2b
Therefore, we have §(x) € (a,b) if — < A< vy

5. lllustration of MNS for solving SPP
5.1 Solution of the second-order SPPs with IC
For the second-order of SPPs that is considered by :
e =Fxy,P,e),x€[ab], 0<e<<]], 2)
Y@ =4 ,¥(a)=B.
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where v is a function with derivative 1°, A and B are real numbers.
The trial function will be in the form:

Pe(xp,e) = A+ B(x —a) + (x — a)?0ut(§(x),pe) - ©)
The conditions in eq. (2) are intentionally satisfied by this solution,
and {xi};gzl are discrete points that fall within the interval [a, b].
Now, we differentiate the trial function y¥(x, p, €) in eq.(3) to find the amount of error, then
we get the following:

SEDE) — B+ 2(x — a) Out(§(x),p,e) +(x — a)? 220CWR 4)
%};p@ = 2[0ut({(x),p,e)] + 4(x — a) w + (x—a)? zﬂ()ut?% : (5)
Where Out(§(x), p,s) Y15 T8 wy +by) (6)
aOut(Zix)lp.S) Z] 13 (le + Dwys; T'(§(x) wj + by) , (7)
TOUEWPI — ym L w2 (2x+ 1)2 5 T7( §() w; +by) + Awj s T'(E) w; +by). 8)

5.2 Solution for system of SPPs
Consider the system of K first-order ODEs :
;' = Fi(x, Y1 ,YP,, .., P e) ,0<e<< 1 )
with ¥;(0) = 4; , i=1,2,...,K. We consider one ANN for each trial solution 1, i =
1,2,..,K which can be written as follows:

lpt[(xl p:E) = Ai +X Outi (E(X)lpiis) : (10)
Additionally, to reduce the amount of error:
- s (= B A N1 2

min Sz, p F((Foe (7 Pe) W o(7 P e) v (7P 6), ..)) (12)

5.3 Solution of the second-order SPPs with B.C
Consider the second-order of SPPs for ODEs

e’ =FxyYXx),Y,e) XE€]Jab]. (12)
Where ¢ is the perturbation (0 < € << 1) with the boundary conditions : y(a) = A,¥(b) =
B : For this problem,  the trial solution is as  follows
PP, &) = =0+ o x + (x — @) (x — B)[Out(§(x), p, &) (13)
Now we dlfferentlate the trial function Y(x,p, &) ineq.(13), then we obtain:

LebipD) _ B2 4 (x — a) (x — b) LHEDLD 4 (95 — (a + b)) [Out(EX), p, )] (14)
—dzwj;‘;'p's) = (x —a)(x—b) —d U509 +2(2x— (a + b)) LHEDLD 4 20ue(5(x), p, €). (15)

Where Out (§(x),p, €) is the output of the feed forword MNSIWI'[h one input for x and
parameter p. Hence,

Out((x).p.) = XjZ1 55 T(§(x) wj +by), (16)
BRI — g, i(zxi + Dw;'s; T'(§(x) wj + by), (17)
TOuEWRS = ym 2 w2 (25 + 1)% s, T*(§60 wj + by) + Awys; T/(E) w; + by). (18)
The amount of the error which must be minimized is given as follows:

Eip,e) = T0, [C2029 [ o), 20122 )17 (19

Where {xi}g":1 € [a, b] are discrete points ,respectively. Then, eq.(19) can be rewritten as:

d?out D, dout D
Ei(P, S) = 2?21 [(xi - a)(x- — )W_'_ Z(in _ (a + b)) u (g(x)PS)

20ut(£(0),p,€) = 1F (3, 5= + 20+ (31— @) (31 — D)Out(§(x), p,e) by T~ @) —
p) LMEWPD) 4 (5, — (a + b))Out( £, p, g))] . (20)

6570



Al-Janabi and Al-Abrahemee Iragi Journal of Science, 2024, Vol. 65, No. 11, pp: 6566- 6575

6. Numerical illustrations

In this section, some numerical results and the resolution of several models SPPs in every
instance have been used to suggest the employing multiple-layer perceptron, which consists
of one input of 7 hidden units in one hidden layer and one linear output unit. As the analytical
solution is already known ,(x) to each test problem, so we can determine the accuracy of
the solutions and that is found by computing the deviation : E(x,p.e) = |Y(x,p,€) —

Ya(x,p,e)l.

Examplel:Consider the following linear system of SPPs:
B = 29, (%) + 1 () + 2sinx,
dwz =—(1+428)yY;(x) + (1 + &)W, (x) — cosx + sinx),
lPl(O) 2,,(0)=3.
The exact solution of this problem is given by the following:
P1(x) =26 +sinx , P,(x) = 2e7* + cosx.
Then, the trial solutions are
1/J1t(X; b, 8) =2+ XOUt(E(X)'p'S) ' lpZt(X' b, 8) =3+ XOUt(E(X)'p'S) '

The MNS; is trained using a grid of ten equidistant points in the interval [0,1] that means
the input vector X (training set) is: X = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. Now, to
find the error function E that must be minimized for this problem, the following steps have to
be applied:

oY1 (x,p,8) _ 90ut(§(x),p,e)
ok = Out(§(x),p,e) + x X—— =,

0Ye(xpe) _ 90ut(§(x),p,e)
ok = Out(§(x),p,e) + X—— .

Then, we get: E;(p,e) =X12 [M (=291,(x) + Yo (x;) + 2sinx; )] +[a¢2t(xlpf)

L(=(1+ 2610 (x) + (L + ©)(e(x7) — cosx, + sinx))|

a0 )P
Ei(p,€) = X, [0ut(€(x), p,e) + x; ZEX0PD (22 + x; Out((x), p,e)) + (3 +

2 .
X; Out(§(x), p, &) + 2sinx; )| + [Out(E(x), p ) + x; ZHEIIRD 2 (—(1 4 2¢)2 +

X; OUL(E(x), &) + (1 + £)(3 + X,0UtE(), P, €) — cosx; + sinxy))|
Since  Out(((x),p,e) = ¥/=; 5; T(§(x) w; + b)) and
PERRD = 3715 (2% + Dwys T (560 w +by).
Therefore, we get: E;(p, ) = Y12, [Z]le,- T(&(x) wj +bj + x; Zj7=1§(2Xi +

Xi (Z;=1 S]' T( E(Xi) W] + b]) + ZSinXl' ))]2 + [(Ziil Sj T( E(Xl’) W] + b]) + X Z;=1%(2Xi +
Dw;s; T'(E(x;) wj + by) —i(—(1 +28)(2 + x; Xy 5 T(Ex) wj + b)) + (1 +)(3 +

22
x; (X155 T(E(x) wj + bj) — cosx; + sinxi))] .
Since x in this example is between 0 and 1 and according to theorem, it requires to select 0 <
A< 1,thenitisselected 2 =0.3andlets =107"7.
The training set X = {0, 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 ,1} ,
£(x):0.150.190.24 0.28 0.330.37 0.42 0.46 0.51 0.5 0.6
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In Figures 1-2, the analytical and neural solutions found in the training set are shown by
the feed forward MNS; trained using a grid of evenly spaced points in [0,1] . Then the oral
results for MNS; , UANN, and train accuracy errors are shown in table 1.

T——Exact
©— MNS1

02 03 04 05

281

26

24F

22F

L L L
0.1 02 03

Figure 1: Analytic and MNS; of 1, in example 1, Figure 2: Analytic and MNS; of
example 1, withe =1077 .

with e = 1077.

Table 1: Analytic , MNS; solution and accuracy of the train of example 1, e = 1077, =

0.3.
. Accuracy Accuracy
Solution of SOJ;}:\I;;I’] o1 of of
[ Analytic Analytic MNS; ¥q,(x) Yot (1) }or solutions solutions
x solution solution for training tzrtainin of MNS; of MNS,
Y1) 24 (%) algorithm~~_PARS - E(x) E(x)
J = [h1(0) = [Php(x)
~ P10 — P (x)]
0 2.000000000000 3.000000000000 2.0000000000 3.0000000000 0 0
000 000 00000 00000
01 1.909508252718 2.804679001349  1.9095082425 2.8046790664  1.01502E-  6.51255E-
' 750 940 68540 75460 08 08
02 1.836130836951 2.617528083997 1.8361308553 2.6175280654 1.84163E-  1.85636E-
' 020 210 67320 33560 08 08
03 1.777156648024 2.436972930489 1.7771566464 2.4369729388  1.59203E- 8.3762E-09
' 780 040 32750 65240 09 '
04 1.730058434379 2.261701086074 1.7300584311 2.2617010867 3.25408E-  6.99406E-
' 930 160 25850 73570 09 10
05 1.692486858029 2.090643881315 1.6924868345 2.0906488535 2.34662E-  4.97224E-
' 470 640 63250 57800 08 06
1.662265745583 1.922958887097 1.6622657632 1.9229588995  1.76957E-
o 090 730 78740 35780 08 1.2438E-08
1.637388294820 1.758012794867 1.6373882945 1.7580129545 1.59701E-
L 510 310 73130 67930 2.4738E-10 07
08 1.616014019133 1.595364637581 1.6160145527 15953646885 5.33639E-  5.09864E-
' 970 610 73150 67980 07 08
09 1.596466229108 1.434749287751 1.5964662663 1.4347492888 3.72071E-  1.10709E-
' 680 860 15740 58950 08 09
1 1577229867150 1.276061188211 1.5772298655 1.2760611855 1.61921E- 2.66645E-
780 020 31570 44570 09 09
. Tim  Epoc
Tim Epoch
The accuracy of the train ° i ¢ h MSE=2.61  MSE=2.25
0:00:0 0:00: 343E-14 056E-12
1 11 3 44
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Example 2:Consider the following second-order nonlinear SPP: ey” + ¢’ + 1% = 0 with the
Dirichiet BC's: ¥(0) =0 , ¥(1) =1/2.

The exact solution of this problem is given by : ¢, (x) = ﬁ ~ T

Then, trial solutions are : ¥, (x,p) = %x + x(x — 1)[Out(((x), p, €)]

The MNS; trained using a grid of ten equidistant points in the interval[0.1] that means the
input vector X (training set) is:

x ={0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 ,1}.

Now, to find the error function E that must be minimized for this

problem, the following steps have to be applied:

RS = 24 (2x= DIOutEE) )] + (o —x) PR,

2
pexpe) _ 2[0ut(€(x),p,e)] + 2 ((ZX -1) —BOut(‘g'(x),p,s)) + (x? —x)

e—x/e

920ut(§(x),p.€)

ox? ox ox?
Then, we get the following: E;(p, ¢) = ¥i2, [dzwtd(%“g) - i [—y' — 1/;2]2 :
Ei(p,2) = T, [200ut(0x0, p )] + 2((2x; = DIMEEDRD ) (2 ) TOUCLIPS)
2= ( 5+ (2x - DIOutE(),p 9] + G —x) FOELIPE) — (Lx; + xy(x; —
DU, p.N) | -
Since Out(§(x),p,e) = X/_1 5 T(§(X) wj + b)) ,
W = Z]-7=1§(2Xi + Dw; s; T'(§(x) wj + b;) , and
TOulEDPD = 97 2 w2 (2x+ 1)2 s, T'( &x)w;+by) + 2w s T(Ex) w; +by).

Therefore, we get:
Ei(p,€) = i | S0 TCE00) wy +b) + 2((@xi = D Bea3 251 + Dwy 5 TG0 ) wy +

b]) ) + (Xiz - Xi) Z]7=1 /12—2 W]2 (ZX + 1)2 S]' T"( E(Xi) W] + b]) + A W] S]' T,( Z(Xi ) W] + b]) -
1 [— ( %-I— (in — 1)[Zi7=1 S]' T( E(Xi ) W] + b])] + (Xiz — Xi) Z]7=1%(2Xi + 1)W] S]' T,( E(Xi ) W] +

&

b;j) ) - (%Xi +x;(x; — DX 5 T(E(x;) wj + b]-)])z]2 .

Since x in this example is between 0 and 1 and according to theorem , it requires to select
0<A<1, then it is selected A =0.6 and let £ =10"% The training set X =
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 ,0.9,1} ,
&x): 03 039 048 057 066 075 084 093 102 111 12
In Figure 3, the analytical and neural solutions found in the training set are shown by the feed
forward MNS; trained using a grid of evenly spaced points in [0,1]. Then the oral results for
MNS, , UANN, and train accuracy errors are shown in Table 2 .
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Figure 3: Analytic and MNS, of example 2, with e = 107°.

1 1 L 1
0.1 0.2 03 0.4

L L L
05 06 0.7

L
08

1
09 1

Table 2: Analytic, MNS; solution and accuracy of the train of example 2, = 107%,1 = 0.6.

Solution of

Accuracy of

Accuracy of

Solution of MNS; solutions of solutions of
Analytic solution P, (x) for training A }l}F(x) for MNS, UANN
Input x . training
W, (x) algorithm algorithm E(x) E(x)
= [ (x) = ¢ (x)
_wa(x)l _wa(x)l
0.0000000000000  0.00000000000000  0.000000000000
0 00 0 000 0 0
01 0.90909(())3090909 0.90909030955432 0.9090753332298 4.63412E-10 3.54768E-05
0.2 0.833333?33333333 0.833333;;3776510 0.8333315344983 4.43178E-09 2 91165E-06
0.3 0.76923g;692307 0.76923056443210 0.7692§gg66521 4.79866E-09 2 70878E-09
0.4 0.71428151142857 0.714285g8875190 0.7142;33;88751 7 A4662E-08 7 44662E-08
05 0.666662;3666666 0.666666534091129 0.666653?;366543 2 57554E-08 1.23448E-10
06 0.62500(())(())000000 0.625009(&)30054328 0.6250ggg74319 9.80054E-06 8.87432E-06
0.7 0.58823572941176 0.58823558874309 0.5882395588743 5.37455E-09 5 37455E-09
08 0.555555?555555 0.555555(&)38674498 0.55565;(())09654 3.31189E-07 6.54541E-05
0.9 0.52631851894736 0.52631558887543 0.526323?588875 5 98254E-10 5 98254E-10
1 0.5000000000000  0.50000000000000 0.500005443219 0 5 44322E-06
00 0 000
The accuracy of the train T mpoch (;r(l)rgez Epoch MSE=8.742 MSE=5.14193E-
Y 0:00:05 77 0?82 42E-12 10

7. Conclusions

In this paper, it has been used a new type of update types on the neural networks to solve
the singular perturbation problems. This update is to replace the training data with data after
compensation with a polynomial of the second degree . After taking several examples and
comparing, the results are in the practical side, So the method is characterized by the speed of
convergence and reduction error rates and this is clear through the time , epoch and mean
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squared error in the tables are compared with exact solution and usual artificial neural
networks.
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