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Abstract— Plant diseases are a severe threat to the environment, economy, and health. Early 

disease identification remains a challenging task in Iraq due to the scarce of the necessary 

resources and infrastructure. This paper uses various deep learning algorithms to detect different 

diseases on plant leaves and detect healthy ones, using an RGB camera as a crucial part of our 

real-time autonomous greenhouses' robot along with using two datasets, plant-village and cotton 

dataset, to investigate the best convolutional neural network architecture. The first dataset 

contained 10,190 images from the plant-village open datasets; it includes four crops with ten 

distinct classes of diseased and healthy leaves. Moreover, the cotton dataset contained 2,204 

images for training and 106 images for testing; it has four classes of diseased and healthy plants 

and leaves. Different network architectures were tested in this paper for the best suitable 

lightweight architecture for our mobile robot. Results show that the best performance is 99.908% 

which achieved by the VGG16 network. The highest accuracy of VGG16 obtained in our research 

makes it the best tool for our autonomous plant disease detection robot. 
 

Index Terms— Convolutional neural networks architectures, Computer vision, Deep learning, Leaf disease 

detection and classification, Precision agriculture. 

 

 

I. INTRODUCTION 

Robotics have been widely adopted in the field of agriculture in greenhouses. A 

greenhouse can revolutionize long-term crop production and food security in areas where food 

scarcity is a significant issue by artificially providing suitable conditions for crop growth. It 

enhances crop production compared to farms [1]. Moreover, in recent years, food security has 

been considered a significant issue. According to the FAO (Food and Agricultural 

Organization of the United Nations), food growth should be raised by 70% by 2050 to meet the 

growing global population's food requirements [2]. Global famines are a distinct possibility if 

effective and accurate methods do not improve plant production; moreover, crop diseases 

continue to pose the most significant threat to food security. Although identifying and 

diagnosing plant diseases may be time-consuming, it significantly reduces product losses [3]. 

As a consequence, expenditure on agricultural robotics research has increased at an exponential 

rate [4]. 

Precision agriculture is farming more healthy quantity growing crops utilizing 

technology; some information technology procedures get used for precision agriculture 

applications, like accurate pesticide administration. Despite all the technological advances in 

precision agriculture, it is still not as good as a human expert, but humans are prone to danger 
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and illnesses due to continuous exposure to farms and pesticides. Therefore, our proposed 

farming tools must process and make inferences from the acquired data professionally. Unlike 

conventional image processing techniques, Deep learning (DL) is a subset of machine 

learning algorithms that progressively uses multiple layers to extract higher-level features; it 

prevents labor-intensive feature engineering and threshold segmentation used in previous plant 

disease detection[5]-[6]. It is the most convenient in leaf disease detection by preprocessing the 

image of the infected plant leaf and fitting it into the disease detection network model. 

         Computer vision and Artificial Intelligence research have facilitated raw image automatic 

plant disease detection [7]. They guarantee real-time execution, robustness, adaptability, and 

scalability [8]. Traditionally, classification approaches depended on semantic features [9]. 

However, the characteristic of DL is the ability to obtain attributes from image patterns 

automatically facilitated the use of convolutional neural networks  in the field of computer 

vision and pattern recognition systems, e.g., detecting handwritten eastern Arabic numbers 

[10].  

        As shown in Fig. 1[11], the convolutional neural network (CNN) consists of four layers: 

an input layer, a convolutional and pooling layer, fully connected layers, and an output layer. 

Convolutional layers hold the results of filter or kernel convolution with the previous. These 

filters, or kernels, are composed of learnable weights and biases. Pooling layers reduces the 

number of pixels of an image (downsampling) while not losing important information. Max 

pooling is one method that retains the most representative pixel while ignoring the least 

representative ones. Output from successive convolution and pooling layers is flattened to a 

single vector to input the next layer. The first fully connected layer inputs from feature analysis 

and applies weights to predict the correct label, and the fully connected output layer gives the 

final probability for each label [12]. 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

FIG. 1. CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE [11] 

 

        Transfer Learning (TL) represents the idea of overcoming the isolated learning paradigm 

and utilizing knowledge acquired for one task to solve related ones. It achieves higher accuracy 

with less training time compared to classical methods neural networks [13]. In this study, 

previous studies are presented, additionally using two datasets, plant-Village dataset [14] and 
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cotton dataset [15], four pre-trained state-of-the-art CNN architectures are trained and fine-

tuned using TL in two methods (shallow TL and deep TL) to find a high accuracy network 

model with less RAM size due to our usage of the Jetson Nano in our robot. 

The remainder of the paper is organized as follows: Section II provides related works, in 

Section III materials and methods are described, Section IV presents the study results and 

discussion. Section V contains the conclusion. 

 

 

II. RELATED WORK 

          Plant disease detection and identification are a tedious task that requires human intellect 

and experience to complete correctly. Nowadays, various self-automated plant disease 

classification techniques are used, replacing parts of human's agricultural jobs, including 

machine learning and basic engineering, which befit fewer classes and are more based on 

specific environments. As a consequence, small environmental changes can result in significant 

accuracy drops. Recently, CNN architectures are used to improve plant disease classification 

and have made substantial progress toward resolving the existing challenges confronting 

researchers in this field. 

         In [16], E. Fujita and Y. Kawasaki suggested a classifier for cucumber diseases based on 

a network comprised of four convolutional layers with max-pooling layers in-between. Local 

reaction normalization was used for image pre-processing. For preparation and validation, they 

used two datasets. These databases provide seven distinct categories of diseases as well as one 

healthy class. The first dataset comprises 7320 images of leaves taken in ideal conditions. The 

second dataset includes 7520 images obtained under optimal and insufficient lighting 

environments to maximize the likelihood of recognizing diseases accurately. Finally, the 

proposed method achieved an accuracy of 82.3%. 

          Furthermore, A. Dhakal and P. S. Shakya  [17] suggested developing a classifier for 

tomato leaves. The dataset was assembled using data from the plant-village dataset and a 

variety of online sources. The images in the dataset depict leaf samples infected with bacterial 

spot, yellow leaf curl virus, late blight, and healthy leaf. Resize, zoom, shear, and rotate 

augmentation methods used images to maximize the dataset's scale. The suggested CNN, 

which consists of four convolutional and pooling layers, was constructed entirely from scratch 

and obtained an overall accuracy of 98.59% in identifying plant disease. 

         S. P. Mohanty [18] collected a dataset of 966 images to identify nine classes of rice 

diseases. They used image augmentation strategies such as grey transformation, image grey 

transformation, and image filtering and relied on transfer learning architectures VGGNet, 

ImageNet, and Inception. The total accuracy obtained is 92%. On the other hand, other studies 

used transfer learning, such as [19] and [20], in [19] I. Z. Mukti and developed a TL network 

using the ResNet50 model. The use of shallow Fine-Tuning has improved the identification 

accuracy. This work used a dataset that included images of 38 different diseases as well as 
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healthy plants. The dataset increased because of the rotation, width shift, height shift, shear 

range, and horizontal flip data augmentation. The model achieved an accuracy of 99.80% using 

ResNet50, 94.96% using VGG16, 91.75% using VGG19, and 83.66% using AlexNet. While in 

[20], V. Kumar recommended using the ResNet34 model using TL and utilizing images from 

the new plant diseases dataset, which contains 15200 images labelled with 38 distinct groups 

and covering 14 different crops. Rotation and normalization image pre-processing techniques 

are implemented to improve data quality to support feature extraction easily. Two metrics were 

used to evaluate accuracy and precision using SVM, decision trees, logistic regression, and K-

NN algorithms along with ResNet34. Compared with the mentioned models, ResNet34 

achieved 99.40% accuracy and 96.51% precision. Other studies reviewed existing strategies for 

deep learning architectures used for the identification of plant diseases. 

         Other studies reviewed existing strategies for deep learning architectures used for the 

identification of plant diseases. J. Wäldchen and P. Mäder [21] recently released a study on 

identifying plant diseases using computer vision techniques. Their analysis included nearly 120 

works and a comprehensive overview of datasets. 

          The majority of the research presented in this section focused on improving disease 

classification accuracy using a small number of classes, as stated in [16]-[17], which used 

customized CNN architectures, and [18]-[20], which applied TL to existing deep CNN 

architectures using datasets of single leaves without accounting for background changes or 

using just shallow TL in [19]. Additionally, they do not indicate the hardware or framework on 

which the training and testing of the CNN are performed. This study aims to detect leaves with 

complicated backgrounds in greenhouses accurately and identify diseases that are seen. Two 

datasets were used in this work to classify four crops with ten classifications of diseased and 

healthy leaves for the first dataset; moreover, four classes of healthy and diseased cotton plant 

and leaves are detected using two deep learning techniques, shallow TL and deep TL, which 

achieves a better level of accuracy. However, further study on the local datasets is necessary 

owing to their scarcity. 

 

III. MATERIALS and METHODS 

This work is part of designing and implementing an autonomous robot system to monitor 

plants and identify diseases. This robot does not only detect diseases but also sprays pesticides 

locally to treat the infected leaves. High accuracy in navigation and detection is obtained 

through the use of deep learning algorithms. Moreover, this is an environment-friendly 

approach and will reduce exposure to pesticides for farm workers and crops. The outcome of 

using such a robot will reduce production costs and will increase sustainability. As shown in 

Fig. 2, the flowchart of our suggested approach for detecting and classifying plant diseases, a 

dataset is used for training and testing. The first dataset including four crops and ten 

classifications of sick and healthy leaf images was obtained from the plant-village [14] 

collection; this is a reliable public dataset that has been utilized in many prior studies. 

Otherwise, gathering and labeling a new dataset is a costly job that needs the expertise of an 

academic; the dataset used is detailed in Table I. Moreover, a background class [22] was added 
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to distinguish leaves in the greenhouse complex environment. or utilizing a cotton dataset [15] 

including four classes of cotton plant and leaves, both diseased and healthy, plus a background 

class [22]; this dataset is detailed in Table II. 

 

 

 

FIG. 2. THE FLOWCHART OF PLANT DISEASE DETECTION PROCESS. 

 

 

 

Start  

End 

Dataset acquisition: 

1- Extracted plantvillage dataset or 

cotton dataset   

2- Stanford background class 

Image preprocessing: 

1- Image normalization: mean and 

standard deviation. 

2-data augmentation: Image resize, 

random horizontal flip and random 

size crop. 

Train- test dataset split  

VGG16 classifier   

Detect leaves weather healthy 

or detected disease category   
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TABLE. I. DERIVED PLANTVILLAGE DATASET DETAILS. 

No Name No. of Images 

1 Cherry Healthy 854 

2 Cherry Powdery Mildew 1052 

3 Grape Healthy 423 

4 Grape Black Rot 1180 

5 Grape Black Measles (Esca) 1383 

6 Grape Leaf Blight 1076 

7 Peach Healthy 360 

8 Peach Bacterial Spot 2297 

9 Strawberry Healthy 456 

10 Strawberry Leaf Scorch 1109 

 

TABLE. 2. COTTON DATASET DETAILS. 

No Name No. of Images 

1 Diseased Cotton Plant 921 

2 Fresh Cotton Plant 514 

3 Diseased Cotton Leaf 356 

4 Fresh Cotton Leaf 519 

 

          Subsequently, image preprocessing is performed in the following steps: image resize, 

image normalization, and data augmentation. Images were resized to 224*224 as it is the same 

input size the chosen pre-trained models were trained. For image normalization to mean and 

standard deviation, values of RGB image pixels were computed using the corresponding values 

mean= [0.485, 0.456, 0.406], standard deviation= [0.229, 0.224, 0.225] to speed up training 

and reduce cost function. Moreover, the normalization ensures that each input parameter, pixel, 

has similar data distribution, making convergence faster while training a network [23]. Using 

the ImageNet pre-trained models with their own mean and standard deviation eases the 

optimization process while using ImageNet-like images similar to our dataset. The datasets 

were distributed in an 80/20 ratio rule for training and evaluation consisting of the following 

details (Cherry Healthy, Cherry Powdery Mildew, Grape Healthy, Grape Black Rot, Grape 

Black Measles, Grape Leaf Blight, Peach Healthy, Peach Bacterial Spot, Strawberry Healthy, 

Strawberry Leaf Scorch), shown in Table I, for the first dataset and the following details 

(Diseased Cotton Plant, Fresh Cotton Plant, Diseased Cotton Leaf) for the second dataset are 

shown in Table II. We chose the ratio above since validating models with a small number of 

hyperparameters does not need much data because doing so is computationally expensive. 

         It was selected four pre-trained models based on their high accuracy through training on 

ImageNet shown in Table III [24], ImageNet is a dataset comprised of 14 million images 

created primarily to classify 1000 classes created by academics. Implementing transfer learning 

on pre-trained models facilitates complicated classification tasks requiring large datasets and 

reduced training time since these pre-trained models become efficiently tuned to similar 

behavior. The following CNN models (Inceptionnet-v3 [25], ResNet50 [26], Squeezenet1-1 

[27], and VGG16 [28]) were retrained using a backpropagation algorithm on GPU using 

CUDA to reduce training time by Pytorch framework, characteristics of the used machine 
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shown in Table IV. Pytorch is a programming framework based on python, used to build and 

code deep learning models. It also achieves on average high-performance using GPU and 

CUDA compared to other frameworks, which results in less training time. TL is often 

represented in computer vision via the use of pre-trained models. A pre-trained model has been 

trained on an extensive benchmark dataset to solve a similar issue to the one we are trying to 

solve. Inceptionnet-v3, ResNet50, Squeezenet1-1, and VGG16 were trained to utilize TL in 

two methods. The first method is to fine-tune the network's final layer (shallow training) while 

the previous layers work as feature extractors; the second method is to fine-tune each layer 

(deep training) in the network and apply backpropagation from the pertained layers. Training a 

neural network involves solving an optimization problem; this entails decreasing the loss 

function iteratively by changing the trainable parameters. When a model is trained for the first 

time, it is assigned an arbitrary set of weights to each connection between neurons, and these 

weights are continuously changed before they achieve their optimum values through training. 

Optimizing weights varies depending on the optimization algorithm used; in our work, the 

stochastic gradient descent (SGD) with the momentum 0.9 was used since it achieves high 

performance with long a training time [29]. 

          As shown in Fig. 3, VGG16 architecture, CNN improved architecture of the AlexNet 

network, contains 16 weight layers in which 13 are convolution layers and 3 fully connected 

layers stacked together designed for image classification. The model achieves 92.7% top-5 

accuracy in ImageNet. The images, of size (224*224*3) RGB collected after the normalization 

step, are used to input layers. VGG is the idea of deeper networks, and with smaller filters, it 

uses a 3*3 filter which is the smallest convolutional filter with an increased number of layers 

from eight layers in AlexNet. The first two layers are convolutional layers with 3*3 filters, 

whilst the first two layers utilize 64 filters, resulting in a volume of 224*224*64 due to the use 

of the same convolutions. The filters are often three by three with a stride of one. Following 

that, a pooling layer with a max pool of 2*2 size and stride two was used to reduce the 

volume's height and width from 224*224*64 to 112*112*64. Following that, two additional 

convolution layers with 128 filters are added. As a consequence, a new dimension of 

112*112*128 is formed. The amount is decreased to 56*56*128 after the pooling layer is used. 

Two additional convolution layers of 256 filters are inserted, accompanied by a down sampling 

layer that shrinks the image to 28*28*256. A max-pool layer separates two additional stacks, 

each with three convolution layers. Following the final pooling layer, the 7*7*512 volume is 

flattened into a Fully Connected (FC) layer with 4096 channels and 1000 groups of SoftMax 

output [28]. Cross entropy loss was used as it is a measure of the difference between two 

probability distributions for a given random variable or set of events; the goal is to minimize 

the loss, i.e., the smaller the loss, the better the model. The calculation formula is: 

 

𝐿𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) = − log (
exp(𝑥[𝑐𝑙𝑎𝑠𝑠])

∑ exp(𝑥[𝑖])𝑖
) = −𝑥[𝑐𝑙𝑎𝑠𝑠] + log(∑ exp(𝑥[𝑖])𝑖 ).                                              (1) 

  

         From the above equation, x is the input, and the output of the last layer of the network 

and class is the category index. Also, accuracy is calculated through the formula: 

 

 Accuracy =  (correctly predicted class / total testing class) ×  100%.                                                    (2) 
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FIG. 3.  VGG16 ARCHITECTUR [30]. 

For the implementation of the disease detection process in greenhouses, the VGG16 model was 

saved after training. Images acquired from greenhouses with 720*720 are resized to 224*224 

because images should be uniform before being fed to a CNN model. Preprocessing images 

after deploying a model is essential to perform steps that simplify and improve the accuracy of 

the applied method [31]. The images were captured using a Logitechc270 RGB camera, which 

is shown in Fig. 4 the camera is mounted on a robotic arm as an integral component of the 

robot shown in Fig. 5. Four, the robot's primary goal is to identify plant diseases and spray 

pesticides exclusively on diseased leaves. This camera records frames for analysis by the 

Jetson Nano embedded system-on-module shown in Fig. 6, it is a small, powerful computer 

with 4 GB of RAM that allows the concurrent execution of several neural networks for image 

classification, object identification, segmentation, and voice processing while using as little as 

5 watts. It also includes the Linux operating system, NVIDIA CUDA®, cuDNN, and 

TensorRTTM software libraries for deep learning and GPU computing, which assist computer 

vision applications. 

 

TABLE 3.  PRETRAINED MODELS AND THEIR PERFORMANCE.[24] 

No Model Year No of parameters Top-1 Accuracy 

1 Inceptionnet-v3 2015 24 million 78.8% 

2 ResNet50 2015 25 million 77.15% 

3 squeezenet1-1 2016 1.2 million 57.5% 

4 VGG16 2014 138 million 74.5% 
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TABLE. 4. COMPUTER ATTRIBUTES. 

No Computer System Attributes 

1 Operating System  Windows 10 64 bits 

2 Processor (CPU) Intel(R) Core (TM) i7-10750H CPU @ 2.59 GHz 

3 Graphics (GPU) Nvidia GTX 1660Ti 6GB 

4 Memory 16.0 GB 

 

 

FIG. 4. LOGITECH C270 CAMERA USED IN RESEARCH. 

 

 

 

FIG. 5.  THE ROBOT USED IN THE RESEARCH. 
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FIG. 6.  JETSON NANO DEVELOPER KIT BOARD. 

 

IV. RESEARCH RESULTS AND DISCUSSION 

          Our findings on training TL CNN architectures hint that fine-tuning all layers in a model 

(Deep training) achieves higher accuracy than the shallow training counterpart. As Table V 

elaborates, VGG16 has achieved the highest accuracy among models with 99.9% accuracy 

with a comparable result of 99.6% to Squeezenet1.1. Whereas in shallow training, 

Squeezenet1.1 accomplished an accuracy of 98.5%, with a similar accuracy of 97.8% for 

Resnet50. These results tie well with previous studies wherein TL training consumes less time 

than training networks from scratch [23]. In terms of training time, shallow training consumes 

less time as in Squeezenet1.1 that consumed around 10 minutes on our dataset due to its low 

number of trainable parameters, than Resnet50 that consumed a bit longer of around 21 

minutes. We also observe that loss in deep is lower than shallow leaning as Resnet50 has a loss 

of 0.006; likewise, Squeezenet1.1 loss is 0.046.  

          From the results shown in Table VI, it is clear that VGG16 has achieved the highest 

accuracy among models with 99.7% accuracy with a comparable result of 98.8% to Resnet50. 

While ResNet50 achieved an accuracy of 95.2% during shallow training, Inception-v3 

achieved a near accuracy of 92.8%. In terms of training time, shallow training consumes less 

time as in Squeezenet1.1consumed around 4 minutes on our dataset due to its low number of 

trainable parameters, than Resnet50 consumes a bit longer of around 6 minutes. Consuming a 

short amount of time is related to the use of a Gpu. We also observe that loss in deep is lower 

than shallow leaning as VGG16 has a loss of 0.068; likewise, ResNet50loss is 0.108.  

          The results now provide evidence that the deep VGG16 model has the best performance 

to be used to diagnose plant diseases on our cost-effective and autonomous robot. Although 

other models have high accuracies, VGG16 was chosen because of its highest accuracy of all 

models. Also, diseases need to be accurately diagnosed. Moreover, there is no need for high 

response time needed for navigation in greenhouses. Plant diseases are detected using a 

standard RGB camera on our mobile robot computer. Images are analyzed by Jetson Nano 

Developer Kit, which is strong enough for these computational tasks. The detection code must 

be the lightest and most minor complex to occupy the most miniature RAM and be run using 

the minimum computational power because mobile computing needs to compute more than just 

the detection task. Tasks like autonomous navigation and driving the motors are among the 
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things needed to be co-computed by the robot. In this work, the trained model for VGG16 is 

saved and then used for classification. The classification method determines if a plant leaf is 

contaminated or not, the type of plant disease, and the variety of plants. The detection and 

recognition of correct plant disease classifications of various images of artificial trees using our 

robot are shown in Fig. 7, online grape images in Fig. 8 and online cotton leaf images in Fig. 9. 
 

TABLE.5. ACCURACY, TRAINING TIME, AND LOSS OF CNN MODELS USING THE FIRST DATASET. 

Model and Training Type Training Loss Training Time (in min) Test Accuracy%     

Inception-v3 (Shallow training) 1.251 30.688 96.282 

Inception-v3 (Deep training) 0.048 151.215 97.108 

ResNet50 (Shallow training) 0.321 21.723 97.888 

ResNet50 (Deep training) 0.006 108.752 99.667 

Squeezenet1.1 (Shallow training) 0.076 10.150 98.577 

Squeezenet1.1 (Deep training) 0.046 29.901 99.678 

VGG16 (Shallow training) 0.271 30.409 97.062 

VGG16 (Deep training) 0.063 185.900 99.908 

 

TABLE.6. ACCURACY, TRAINING TIME, AND LOSS OF CNN MODELS USING THE SECOND DATASET. 

Model and Training Type Training Loss Training Time (in min) Test Accuracy%     

Inception-v3 (Shallow training) 0.869 8.510 92.885 

Inception-v3 (Deep training) 0.277 15.537 96.442 

ResNet50 (Shallow training) 0.341 6.571 95.256 

ResNet50 (Deep training) 0.108 11.85 98.814 

Squeezenet1.1 (Shallow training) 0.169 4.433 90.909 

Squeezenet1.1 (Deep training) 0.337 5.343 92.094 

VGG16 (Shallow training) 0.900 7.760 86.561 

VGG16 (Deep training) 0.068 17.527 99.754 

 

 

 

 

 

 

 

 

 

 

FIG. 7. STRAWBERRY PLANT. 

 

 

https://doi.org/10.33103/uot.ijccce.21.4.2


26 
 

Received 4/5/2021; Accepted 28l8l2021 

  

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 4, December 2021             

@ 2017 University of Technology, Iraq               ISSN (Print) 1811-9212                       ISSN (Online) 2617-3352  

DOI: https://doi.org/10.33103/uot.ijccce.21.4.2 

 
 

 

 

 

 

 

 

 

 

FIG. 8.  GRAPE PLANT. 

 

 

 

 

 

 

 

 

 

 

FIG. 9.  COTTON PLANT. 

 

V. CONCLUSION 

         The findings of the current work confirm that using transfer learning on pre-trained CNN 

architectures achieves high accuracy and consumes a short time. This work used two transfer 

learning methods: shallow transfer learning and deep transfer learning for retraining 

Inceptionnet-v3, ResNet50, Squeezenet1-1, and VGG16. Both transfer learning methods 

achieve considerable accuracies on test images. However, detection of plants diseases needs to 

be most accurate to stop the spread of disease. Even though in-depth training takes longer than 

the shallow counterpart, it achieves higher accuracy with less training loss. The highest 

accuracy achieved from VGG16 using deep transfer learning makes it the best model to be part 

of our plant disease detection system within the robot. In addition, local datasets might prove 

an important area for future research. 
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Abbreviations: 

FAO: Food and Agricultural Organization of the United Nations. 

DL: deep learning. 

CNN: convolutional neural network. 

TL: transfer learning. 
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