Al-Humedi et al. Iragi Journal of Science, 2024, Vol. 65, No. 11, pp: 6589 6602
DOI: 10.24996/ijs.2024.65.11.33

/-\___/
Iraqi

Journal of

Science

o ~—
ISSN: 0067-2904

Solving the Nonlinear Time-Fractional Zakharov-Kuznetsov Equation with
the Chebyshev Spectral Method

Hameeda Oda Al-Humedi 1, Firas Amer Al-Saadawi?, Ammar Muslim Abdulhussein®
! Department Mathematics, Education College for Pure Science, Basrah, Irag.
2 Department Mathematics, Open Education College in Basrah, Basrah, Irag.

Received: 13/6/2023  Accepted: 29/9/2023 Published: 30/11/2024

Abstract

In this study, we introduce a new application to a spectral approach for solving
two-dimensional (2D) time-fractional Zakhrov-Kuznetsov equations (TFZKESs) with
initial conditions (ICs) and boundary conditions (BCs). When the regular magnetic
domain is present, this equation represents a model that illustrates the conduct of
weakly nonlinear ionic phonetic waves in a plasma that provides cool ions and an
electronically isothermal environment. The fundamental qualifiers of fractional
derivatives are characterized in the Caputo concept. We propose a new numerical
approach that relies on shifted Chebyshev polynomials (SCPs) as test functions and
uniformly grid points for time and space. In the field of fractional calculus, we have
to introduce several schemes to evaluate a solution to the nonlinear fractional
problems. This new technique is a preferable attempt. The results show that the
current method is quite effective, and robust which provides excellent accuracy, and
is appropriate for implementation to solve many significant fractional differential
equations.

Keywords: Spectral Approach, Time-Fractional Zakhrov-Kuznetsov Equations,
Shifted Chebyshev Polynomials, Maximum Error, Accuracy.
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1. Introduction
Fractional calculus has been taken more attention and appreciation recently due to its
effective contributions to the modeling of natural phenomena and its great role to extend the
basis of its applications in the various fields such as solids mechanics, diffusion issues,
control theory, biomedical engineering, viscoelasticity, and economics [1, 2, 3]. The majority
of fractional differential equations (FDES) are based on linear and nonlinear mathematical
models that are absent or extremely complicated to fix analytically. As a result, numerical and
approximation methods must be employed [4]. We will go through one of these numerical
methods and strategies to solve these kinds of equations.

The spectral method is a potent mathematical technique for numerically resolving

differential equations of fractional or integer order. It becomes one of the most recently used
approximate methods because it requires fewer grid points and more accurate than other
numerical methods.
The calculation of weighting factors for the discretization of fractional or integer order spatial
or temporal derivatives is one of the most important aspects of the spectral approach. The
spectral approach utilizes a variety of orthogonal polynomials as test functions, which play an
important role in determining the validity of numerical solutions and mesh points for evenly
and unequally spacing grid points.

There are numerous studies that have employed collocation approach for various sorts of
purpose and have used many formulas for solving FDEs that relate to large current research.
Spline collocation methodologies are based on the Lagrange basic polynomials were
employed by Pedas and Tamme [5] in 2011 to solve linear multi-term FDEs. To solve the
fractional nonlinear Langevin equation, Bhrawy and Alghamdi [6] created shifted Jacobi-
Gauss-Lobatto polynomials in 2012. Khader [7] developed generalized Laguerre polynomials
to find a rough solution for fractional delay differential equations (FDDEs) in (2013). For
solving the fractional advection—diffusion equation, Tian et al. [8] and Saeed with Rehman [3]
in (2014) exploited the Legendre-Gauss-Lobatto and Chebyshev-Gauss-Lobatto polynomials
in matrix notation, and suggested the Hermite wavelet polynomials to solve linear and
nonlinear FDDEs. With regard to the operational matrix of fractional derivatives of shifted
Jacobi polynomials, Bhrawy [9] in 2015 suggested an efficient method to solve nonlinear
fractional sub-diffusion and response sub-diffusion equations. Jaleb with Adibi [10]. In
(2016), Alshbool and Hashim [11] utilized shifted Legendre and Bernstein polynomials to
obtain rigid numerical solutions to space fractional diffusion equations, fractional Riccati
differential equations, and fractional-order systems. The operational matrix was proposed by
Rahimkhani et al. [12] in (2017), who studied Bernoulli wavelet polynomial for discover
numerical solution of FDDEs. In (2018), Agarwal as well as El-Sayed [13] and M.
Bahmanpour et al. [14] used shifted Chebyshev polynomials of the second kind to solve the
fractional order diffusion equation, and introduced Mintz wavelets by using Miintz Legendre
and Jacobi polynomials as a test function to solve FDEs. In (2019), Ali et al. [15] applied the
spectral collocation formula to propose solutions for FDDEs with Chebyshev operational
form. Al-Humedi with Al-Saadawi [16] and Al-Humedi with Al-Saadawi [17] in (2020-2021)
solved 1D and 2D time-space fractional bioheat models adopting shifted Jacobi-Gauss-
Lobatto polynomials and fractional shifted Legendre polynomials as test functions and
spectral collocation methods.
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Spectral approaches are developed to present a new numerical solution for 2D nonlinear
TFZKEs that relies on Chebyshev polynomials as test functions in this study.
2. Basic Equation

Many observations demonstrate that the wave moves irregularly in time, and various
characteristics of a nonlinear wave should be examined over different time scales, so the
ZKE is a model defining the isotropic growth of a nonlinear ion wavefront. The primary flow
feature of a tube flow can be described by the flow theory, however, the vortices near the
boundary must be explained on a smaller time scale necessitating the use of a fractional
model [18].

The time-fractional form of 2D unsteady state nonlinear TFZKE (B, 2, B3) with an
arbitrary positive real order derivative a € (0,1] has been studied:
Dfu+y(ufr) +y,(ufz)  + y3(uﬁs)xw =0, 0<x<N,0<y<N,,0<t<N; (1)

subject to the following ICs and BCs

u(x,y,0) = folx,y), 0<x<N;, 0<y<N,, (2)
u(0,y,t) = fi(y,t), 0<y<N, 0<t<N; 3)
u(Nl,y,t):fz(y,t), OSySNz, OStSN3, (4’)
u(x,O,t)=f3(x,t), OSXSNl, OStSN3, (5)
u(x, Ny, t) = fo(x, t), 0<x<N;,, 0<t<N;. (6)

Where u = u(x,y,t), y1,¥2 and y5 are random constants. In the systematic electric field, the
integers  B,,5, and S5 are responsible for the conduct of weak nonlinear acoustic ion
vibrations in a plasma containing cool ions and hot exothermic electrons [19].

3. Notes and Prelims
This part focuses mostly on the fundamental definitions of fractional calculus that might
be employed in our study.

Definition 3.1. The Riemann-Liouville fractional integral operator of order & > 0 is defined
by [20]:

1 X
1% (x) = @ ]0 (x=5)1 @ (s)ds, a > 0,

Po@)=¢ ).

()

Definition 3.2. The Riemann-Liouville fractional differential operator (FDO) is given as
follows [21]:

1 dn x @ (s) ds,a >0n—-—1<a<n
I'n—a) dx"J, (x —s)a—n+1 ™ ) < )
D« = 0 8
R P ®
dam ,a = n.
Definition 3.3. The Caputo FDO is defined as follows [22]:
! x_ o™ ()
D« (X') — I (n-a) fO (x—s)a—n+1 ds, n — 1 < a < n, (9)
v d"e (x) ~
dx™ ,a = n.

The expressions describe the relationship between the Riemann-Liouville fractional
integral and Caputo differential operators [23]:
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D*I* ¢ (x) = ¢ (%),

n-1 xk
D% g () = 9 ()= ) ¢® (0"
k=0 '

for g = -1, a = 0, and C is constant. The Caputo FDO possesses several important
features that are required in this situation. They are as follows [24]:

(10)

i)D%C = 0,
0 forp € Nyand B < [a],
iy)p*xf=1 ITB+1)
>
F(ﬁ+1—a)x , forB € Nyandp = |a], (11)
n n
iii) D* (z Ci (pi(x)> = Z c;D% ¢;(x), where {c;}}-, are constants.
i=0 i=0

4. The shifted Chebyshev Polynomials for Fractional and Ordinary Derivatives

The first kind of Chebyshev polynomials T;(t) are orthogonal polynomials of degree i in t
defined on [—1,1]

T;(t) = cos if,

where t =cosf and 6 € [0,m]. By using the following recurrence relation, the

polynomials T;(t) can be constructed [25]
Tip1(t) = 2tT;(t) — T;—1(2), i=12,.., Tot) =1, T,(t) =t. (12)

To employ these polynomials on interval x € [0,N;], we defined SCPs by applying the
variable change t = Izv—j — 1. Let SCPs, Tl-(lzv—’lc— 1) which is characterized by Ty, ;(x). Then

Ty,,i(x) can be generated by using equation (12) such that [26]:

2x )
Ty,iv1(x) =2 (E - 1) Ty,,i(x) = Ty,,i-1(%), i=12..,

where Ty, o(x) = 1and Ty, 1 (x) = 12v_j — 1. The analytic form of SCPs, Ty, ;(x) of degree i is

given by _
< i+ k—1)122k
Ty,i(x) = —1)ik
wi (%) lkzzo( ) NEa =2
where Ty, ;(0) = (—1)% and Ty,,i(N1) = 1. The requirement for orthogonality is

Ny

'[ Ty,,j(x) Ty, i ()wy, (x)dx = Sjchy, (14)
0
1
where wy, = (N;x —x*)"zand hy, = %n, withCy =2,C, =1,k = 1.
The first order derivative depends on SCPs of the vector

“, (13)

W) = [Ty, 000), Ty, 1), ..., Ty, m, (x)]” can be expressed by

d
P = iy (15)
DD js the (M;+ 1) x (M; +1) shifted Chebyshev operational matrix (SCOM) of
derivative [27]:

4i L {k =1,3,5,..,M;, if Ny isodd,
DW=, =

CiNy’ J=0L =]tk k=135,..,M; —1, if N;iseven,
0, othewise,
when N; is even, D™ can be given as follows
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0 0 0 0 0 0 07
1 0 0 0 0 0 0
0 4 0 0 0 0 o
2 3 0 6 0 0 0 o0
PW=—] o 8 0 8 0 0 0
15 0 10 0 10 = 0 0
M,—1 0 2M,—-2 0 2M,—2 .. 0 0
L 0 2M, 0 2M, 0 2M; 0.
We utilize equation (15) to generalize SCOM of derivatives for fractional calculus
d"p(x) _ .y
I (pW) 1!’(96-); | (16)
where n € N represents the matrix powers for integer calculus. Thus
DM = (D®)",  n=12,.. (17)

Lemma 4.1. Assume Ty ;(x) is an SCPs, then we have DTy ;(x) =0, i=
0,1,2,..,[al —1,a > 0.

Proof. The lemma can be demonstrated by plugging attributes (ii) and (iii) from equation (11)
into equation (13) O

The following theorem applies the fractional calculus to the operational matrix of SCP
derivatives that is given in equation (15).

Theorem [28] 4.2. Let y(x) be a shifted Chebyshev vector defined in ¥(x) =
[Tn,00G0), Ty 1), o, Ty m, ()] and @ > 0. Then

D*(x) = DWy(x), (18)
D@ is the (M; + 1) x (M; + 1) SCOM of order « derivatives in the Caputo concept which
is defined as follows:

0 0 0 0
0 o0 0 0
p@ _ |B (2l 0) B(lal1) B(lal2) .. B(lalMy)
B“('i, 0) B“('i, 1) B“('i, 2) - B“(i', M,)
_B“(Ml, 0) B“(Ml, 1) B“(Ml, 2) B“(Ml,Ml)_
where
: (-1)7*2i(i + k — 1)IT(k — a + %)
BY(i,)) = - : (19)
k=t Ci (N1 )T (k + DTk —a—j+ DIk +j —a+ (i - k)!
5. Fractional Differentiation in Shifted Chebyshev Operational Matrix
In terms of SCPs, a function u(x) defined for 0 < x < N; can be written as
u(x) = Z ¢; Ty, (%), (20)
i=0
where c; denote the coefficients which are given by
Ny
1
¢ = h—f u(x) Ty, i ()wy, (x)dx,i = 0,12, .... (21)
i
0

we study the (M; + 1)-term SCPs in practice, so that
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M;
0, () % ) 6T () = C(), (22)
i=0
where C and (x) are the shifted Chebyshev coefficient and vector, respectively. They are
given by
C = [Co, Ciy ey CN], lp(X) == [TNl,O(x)' TNl,l(x), ey TNllMl (X)],,respectlvely

We may simulate a function u(x, t) defined for 0 < x < N; and 0 < t < N5 which relies
on double SCPs by expanding the above property of the two variable functions as

u(,t) = Z Z g Ty i ()T (0, (23)
i=0 j=
where
Ny N3
1
ay = f f u(x, ©) Ty, ;0 T, ; (O wiy, e, (6, Odtdx, 24)
: ]0 0

such that wy, n, (x,t) = wy, ;(X)wy, ; ().

In practice, we consider the (M; + 1) and (M3 + 1)-terms double SCPs with regard to x, t
such that
M; M3
iy 06 8) = )y T, 1 ()T () = P A (D), (25)
i=0 j=0
where the shifted Chebyshev coefficient matrix and vector A and y(t) are given by

A={a U}iwjl 1:)13 PY(E) = [T, o), Ty 1 (), oo, Ty, (0], respectively.

Therefore, to approximate a three-variable function u(x,y,t) defined for 0 < x < N;,0 <
y < N,and 0 <t < N;that depends on the triple Chebyshev series as follows

w8 = ) D iy T (T j )Ty (0, (26)
i=0 j=0k=0

where
~ Ny (N
Ukij = 5p hkf 1f 2f ‘u(x,y,t) T, i) Tn,, ;) T, i (ODwn, v, n, (X, Y, ) dtdydx, (27)

such that wy, n, n, (X, ¥, t) = wy, i (X)wy, ; (V) Wy, k(1)
In reality, we evaluate the triple SCPs (M; + 1), (M, + 1) and (M3 + 1)-terms with respect
to x,y,t so that
M; M, Mg
aty 1, G610 % DD T Ty OO, DT (©) = () T )@Y (28)
i=0 j=0 k=0
where the Kronecker tensor product is ), the shifted Chebyshev vectors ¥ (x), ¥ (y) and y(t)
are given by
Yx) = [TNl,O(x):TNl,l(x): ---:TNl,Ml(x)],
Y@) = [TNZ,O(y):TNZ,l(y): s Ty m, (3’)]' . (29)
Y(t) = [TN3,0 (), Tny 1 (8, oo, Ty my (t)]’

The block structure of the shifted Chebyshev coefficient matrix U is:

Ugoo Upo1 /M’OOMZ Up10 Up11 /M’OMlMZ

% ;11100 alOl alOM ’LZ110 47’111 /i’le M

U= : : o : : S (30)
UMz00 Umzor 7 Adpgom, UMzto UMzl T U,
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6- Methodology Description
The choice of collocation points has a major effect on the spectral solution's efficiency and
convergence. One of the most S|gn|f|cant elements that is used in approximation is the equally

spaced mesh points x; , 1 =0,1,..., M;. It should be noted that one cannot utilize the

collocation strategy W|th equally spaced nodes for a differential equation with the
discontinuity at x = 0 and x = N; in the area [0, N, ], because the associations abscissas 0
and N; must be utilized as 2 points from the collocation nodes. We utilize the collocation
approach with x; = x4, x5, ..., xy—; nodes to treat the 2D nonlinear TFZKEs; i.e., just by
gathering, this equation only at M3 x (M; —1) X (M, —1) is equally spaced grid
points(0, N3), (0, N;) and (0, N,), respectively. These equations together with ICs and BCs
can be solved using one of the iteration methods to produce (M; + 1) x (M, + 1) X (M3 +
1) nonlinear system of equations.

Put, Py, (0,N;) = span{Ty, o(x), Ty, 1(x), ..., Ty, m, (x)}We recall the equally spaced grid
depends on the Chebyshev generators, P, (0,N;) represents the group of all algebraic
polynomials of order M, WhICh IS any positive number.

We will use equation, x; = —, i = 0,1, ..., M; to design the numerical solution procedure for

(1) relying on SCPs, accordlng to the speufied conditions, in a series or matrix form into the
shifted Chebyshev vectors ¥ (x), ¥(y) and (t) define by equation (29). Similarly, the shifted
Chebyshev coefficient matrix U is given by equation (30).

The space - time fractional derivatives of linear and nonlinear functions can be approximated
as follows:

T2 - @) Tver@ue), ‘
ouP1(x,y,t)

=~ =y (0)™ [pwe] @),

3 P2 | (31)
T2 o 0)* 0w @9,

0x3
*uPs(x,y,t) BT (D) @)
= =) [pve] @ [pPv ).

By applying the proposed method for 2D nonlinear TFZKEs based on equally spaced grid
points in the matrix form that is given in equation (1), we have
¥ O[DL] TpYo) + 1w O0) [Py @v6) + 7,0 O ) [Py ()| ®w k)
+y OO D] ®[Dfwe)] = o (32)
We collocate (32) at M5 x (M; — 1) X (M, — 1) points, as
¥ [P Ty @ () + ¥ v @ (U) ! [DPwed| @w(;) + v, @ () DS )| @ ()
Fyp @ (0) 3 [DPpe)] @ [DRw ()] = 0 (33)
Fori=12,...M; -1, j=12,..,.M,—1and k = 1,2, ..., M;.

where x; (0 <i < M;) and y; (0 <j < M,) are roots of SCP for the space of Ty, ;(x)
and Ty, ;(y), respectively, while t, (0 < k < N3) are the roots of Ty, ,(¢), that construct a

system of M; X (M; —1) X (M, — 1) , the nonlinear system of equations with unknown
extension coefficients z,;; that are derived from ICs and BCs by utilize equations ((2)-(6)),

as follows
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YO UPx)RY(y;) = folxpy;), 0<i<N,0<j<N,

W t)UPO)Y(y) = filypte) 0<j<N,0<k<Ns
'l"(tk)UlP(Nﬂ@lP(}’j) = fZ(Yjvtk)' 0<j<N,0<k<N; (34)
P (EUP ()@Y (0) = f3(xp ), 0<i<N;,0<k<N;

V() UPx)®Y(N,) = folxity), 0<i<N;,0<k<N;

This results in (M5 + 1) X ((N; + 1) X (N, + 1)) a nonlinear mathematical model, which
may be solved using the Levenberg-Marquardt process with U as the variable and an initial
estimate of all zeros to minimize formulas (33)-(34). Consequently, the approximate solution
Up, N, N, (X, Y, t) at the point (xi, Vi» tk) given in equation (28) can be calculated.

The same approach as in [22] can be used to estimate an upper bound of the maximum
absolute errors obtained for the approximation. Therefore, the error bound is an important
aspect of the method's convergence.

7- Hlustrative Examples

In this section, we apply the approach which has been presented in section 6 for solving
the 2D nonlinear TFZKEs in the two cases based on the first kind SCPs. TFZKEs were
initially converted into non-linear algebraic equations (33) and (34). By applying the
Levenberg-Marquardt approach to minimize those equations as a collection of least squares
solutions, using U as the variable. The estimated surface of u is then obtained using this U in

(38) u(x,y,t).

In these two cases, we take y; = 1,7, =y;3 =§ and 2, N;=N,=N;=1, g1 =0, =

Bs = 2 and 3, and using equally spaced mesh points. Tables 1 and 3 show that the maximum
errors are evaluated by solving (2,2,2) and (3,3,3) of TFKZE under SCPs study on x €
[0,N;],y € [0,N,] and t € [0,N5] at @« = 0.67 and a = 0.75 when M; = M, = M; =2 —
10, but Tables 2 and 4 show that the numerical solutions of TFKZE (2,2,2) and TFKZE
(3,3,3) under SCPs study on x € [0,N;],y € [0,N,] and t € [0, N3] a = 0.67 and a = 0.75
when M; = M, = M; = 10 and the results compare with the optimal homotopy asymptotic
method (OHAM) [29], perturbation iteration algorithm (PIA) [30] and variational iteration
method (VIM) [31].

Case 1:
Consider the 2D nonlinear TFKZE (2,2,2) [29]:

1
D&u(x,y,t) + (u?(x,, t))x +3 (u(x,y,1))
So, the exact solution is

L =0, 0 <1 35
+§(u (x,y,t))xyy— , 0<a< (35)

XXX

u(x,y,t) = g)lsinhz (x+y—At) (36)
under the ICs and BCs:

u(x,y,t) = %Asinhz (x+y) (37)

u(0,y,t) = %Asinhz (y — At) (38)

u(Ny, y,t) = g)lsinhz (N; +y — At) (39)

u(x,0,t) = g)lsinhz (x — At) (40)
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4
u(x, Ny, t) = §Asinh2(x + N, — At)

(41)

Figure 1 compares the numerical as well as exact solutions of Case 1 at « = 0.67, 0.75
whereas Figure 2 shows the maximum error values for all data sets, with the best quality for
M; = M, = M; = 10 at almost 3.7 x 107> at @ = 0.67 and 3.6 x 10~%at « = 0.75, and the

worst quality for M; = M, = M; = 2 at well under 2.3 x 1075,

Table 1: Maximum errors obtained for Case 1 (TFKZE(2,2,2)-SCPs) at 1 = 0.001.

Maximum Error

Maximum Error

My =Mz =Ms a =067 a =075
2 2.344918451282476e-05 2.297312760942793e-05
3 2.749039955281599€-05 2.699780172533799-05
4 3.097769048145214e-05 3.028499685707410e-05
5 3.257643191689145e-05 3.185477927975053e-05
6 3.413182884638623e-05 3.333157156296118e-05
7 3.485303128310073e-05 3.403341670914391e-05
8 3.573894703296030e-05 3.488457255431884e-05
9 3.612858609417912e-05 3.526198003008744e-05
10 3.671049747537743e-05 3.582855564614271e-05

Table 2: Numerical solutions obtained for Case 1 (TFKZE(2,2,2)-SCPs) at A=0.001.

pia  OHAM - rpize | ErTOr OHAM  TFKZE- | EMTOf
[30] [29] sops | TFKZE- | PIA[30] oy sope | TFKZE-
x y T SCPs SCPs
a a
a = 0.67 — 067 a=10.75 — 075
0. 0. 0 |531854e 539424e- 514440¢ | 1.40235¢ | 5.32747¢ 5.39530e- 5.18111e | 2.12764e
1 1 2| -05 05 05 -06 -05 05 -05 -06
0. | 5.28631e 5.39094e- 5.05438e | 249475 | 5.29757¢ 5.39191e- 5.09304e | 2.95369¢
3| -05 05 -05 -06 -05 05 -05 -06
0. | 5.25777e 5.38798e- 4.97274e | 3.34028¢ | 5.2703% 5.3888le- 5.01132 | 3.71622¢
4| -05 05 -05 -06 -05 05 -05 -06
0. 0. 0. |295493¢ 3.02730e- 3.02718¢ | 5.30583¢ | 2.96356e 3.02837e- 3.02870e | 7.80483e
6 6 2| -03 03 03 -06 03 03 03 -06
0. | 2.92662¢ 3.02397e- 3.02345e | 9.32833¢ | 2.93717¢ 3.02496e- 3.02506e | 1.07232e
3| -03 03 03 -06 03 03 03 -05
0. | 2.90307e 3.02099%- 3.02007e | 1.23286e | 2.91448¢ 3.02182¢- 3.02167¢ | 1.33788e
4| -03 03 03 05 03 03 03 -05
0. 0. 0 |106822¢ 1.14179- 1.15237e | 7.74379% | 1.07716¢ 1.14303e- 1.15262¢ | 1.07509¢
9 9 2| -02 02 02 -06 02 02 02 -05
0. | 1.04487¢ 1.13792e- 1.15174e | 1.33227¢ | 1.05488¢ 1.13907e- 1.15201e | 1.44666¢
3| -02 02 -02 -05 02 02 -02 -05
0. | 1.02777¢ 1.13447e- 1.15117e | 1.71773¢ | 1.03736¢ 1.13543¢- 1.15144e | 1.77393e
4| -2 02 02 -05 -02 02 -02 -05
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Figure 1: Numerical solution and exact solution for Case 1at N; = N; = N, = 1,M; =
M2 = M3 = 10

Figure 2: Error for Case Lat @ = 0.75, Ny =N; =N, =1, M; = M, = M; = 10.
Case 2:

Consider 2D nonlinear TFKZE (3,3,3) [19]:
Dfu(x,y,t) + (u3(x,y, t))x +2(ud(x,y, t))xxx +2(u3(x,y, t))xyy =0, 0<a<1 (42)
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So, the exact solution
u(x,y, t) = ;Asinh <% (x+y-— )Lt))
under ICs and BCs :
u(x,y,0) = %Asinh( (x + y))
u(0,y,t) = ;Asinh (E (y— )Lt))
u(Ny,y,t) = %Asinh (% (N, +y— At))
u(x,0,t) = %Asinh <% (x — At))

u(x, Ny, t) = g)lsinh (% (x+ N, — /’Lt))

anto N Y

Iragi Journal of Science, 2024, Vol. 65, No. 11, pp: 6589 6602

(43)

(44)
(45)
(46)
(47)

(48)

Figure 3 shows a comparison of the numerical and exact solutions of Case 2 at a« = 0.67,
0.75 and while Figure 4 shows the maximum error values for all data sets, with the greatest
result for M; = M, = M; = 10 at well under 2.6 x 10~7 at « = 0.67 and @ = 0.75, and the
worst achievement for M; = M, = M; = 2 atalmost 2.5 x 1077,

Table 3: Maximum errors obtained for Case 1 (TFKZE(3,3,3)-SCPs) at 1 = 0.001.

Maximum Error

Maximum Error

il = Aol = helg a=0.67 a=0.75

2 2.534725168110781e-07 2.534725885772931e-07

3 2.561893359584975e-07 2.561893928360146e-07

4 2.578436190190780e-07 2.578436970204854e-07

5 2.589316778409925e-07 2.589317506534084e-07

6 2.596969405678235e-07 2.596970219645185e-07

7 2.602632199962289¢-07 2.602632983050076e-07

8 2.606986545373546e-07 2.606987372997648e-07

9 2.610437364801931e-07 2.610438169214349¢-07

10 2.613238086275247e-07 2.613238916645633e-07

Table 4: Numerical solutions obtained for Case 2 (TFKZE(3,3,3)-SCPs) at A=0.001.

OHAM TFKZE- Error OHAM TFKZE- Error
§ . VIMBI "o scps | trkze- | YIMBU Thgl scps | TEKzE-

y a SCPs a SCPs
=0.67 a =067 =0.75 a=0.75
0. 0. 0. 5000912 5.00091 5.000925 | 5.002632 | 5.000914 5.00091 5.000925 | 5.002652
1 1 2| 783e-05 e-05 835e-05 | 799e-08 | 105e-05 e-05 855e-05 | 923e-08
0. | 5.000907 5.00090 5.000925 | 7.503969 | 5.000909 5.00091 5.000925 | 7.503990
3 | 777e-05 e-05 786e-05 | 096e-08 | 430e-05 e-05 807e-05 | 303e-08
0. | 5.000903 5.00090 5.000925 | 1.000530 | 5.000905 5.00091 5.000925 | 1.000532
4 250e-05 e-05 741e-05 859e-07 153e-05 e-05 762e-05 977e-07
0. 0. 0. 3.020038 3.02003 3.020040 | 5.100174 | 3.020038 302004 3.020040 | 5.100194
6 6 2 194e-04 e-04 024e-04 542e-08 425e-04 e-04 026e-04 666€e-08
0. | 3.020037 3.02003 3.020040 | 7.650271 | 3.020037 302004 3.020040 | 7.650292
3 | 5160-04 e-04 019e-04 | 211e-08 | 779e-04 e-04 021e-04 | 418e-08
0. | 3.020036 3.02003 3.020040 | 1.020036 | 3.020037 302004 3.020040 | 1.020038
4 | 895e-04 e-04 014e-04 | 408e-07 | 195e-04 e-04 017e-04 | 526e-07
0. 0. O0.| 4567801 4.56780 4.567804 | 5.226524 | 4.567802 45678e- 4.567804 | 5.226544
9 9 2 | 885e-04 e-04 387e-04 | 736e-08 | 187e-04 04 389e-04 | 860e-08
0. | 4567800 4.56780 4.567804 | 7.839790 | 4.567801 45678e- 4.567804 | 7.839811
3 | 915e-04 e-04 383e-04 | 053e-08 | 293e-04 04 385e-04 | 260e-08
0. | 4567800 4.56780 4.567804 | 1.045304 | 4.567800 45678e- 4.567804 | 1.045306
4 | 089e-04 e-04 378e-04 | 727e-07 | 482e-04 04 380e-04 | 845e-07
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x
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Exact Solution T(xy.t)
Numerical Solution
24 56 4 N ow & o ®3
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Numerical Solution
T = T N I

a =0.75
Figure 3: Numerical solution and exact solution for Case 2at N; = N, = N, = 1,M; =
Mz = M3 = 10.

X 0 0 y

Figure 4: Error for Case 2at a = 0.75, N3y =N, =N, =1, M; = M, = M; = 10.

8. Conclusions

An approximate strategy for successfully solving 2D nonlinear TFZKEs is proposed in this
paper. The Caputo formula describes the fractional derivatives. The proposed operational
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matrix formulation technique is based on the collocation method of SCPs. The numerical
results for (2,2,2) and (3,3,3) of TFKZE -SCPs show that the present approach has accurate
results and good convergence relying on Figures 1-4 by utilizing fewer grid points than other
analytic techniques. The provided numerical technique for solving linear and nonlinear
fractional order models is shown to be very efficient and convenient.
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