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Abstract:

The desired goal of that research is to investigate the numerical calculations
of the impacts of the inclined magnetic field a cross the peristalsis influx of
non- Newtonian hyperbolic tangent fluid at a porous medium and an
asymmetric sinusoidal channel. The work was done by applying the
numerical uniform perturbation method with assumptions based on the
length of the longitudinal wave and adding to the small Reynolds number for
the purpose of solving non-linear constitutive equations in two dimensions
and in the Cartesian form of continuity, motion and energy. In addition to the
concentration equations, for small Wiesenberg number, the solution was
found for both the stream function and the temperature distribution as well
as the concentration equation. They were discussed and a graphic using the
mathematical program "Mathematica'" soft wire.

Keywords: Hyperbolic tangent, Inclined magnetic field, Porous Medium,
Concentration, Weissenberg number.

1. Introduction

The study of PDEs incepted that in the 18th century AD. With a squad of
scientists like Euler, Dalembert and Lagrange, which appears in problem
regarded to Sound, Energy, Fluid influx, elasticity and others. As a result of
the importance of the magnificent role played by PDEs and to realize the
solution of numerous of the mathematical physical, while engineering
problems in an advanced mathematical mode, it was vital to found easier and
further comprehensive methods for finding their solutions. PDEs are used in
numerous phenomena in diverse Sciences and engineering and the target
convey something from the PDEs and use them in applications. The rapid
development in diverse types of sciences led to the wide spread use of
mathematics, especially in Applied Sciences and this led to differential
equations starting to play substantial role in those science. This was the
beginning of the use of differential equations in natural sciences, because the
laws of physics and chemistry are generally linked to a limited number of
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known variables with the passage of time, the field of the use of differential
equations expanded to include other science such as biomedical engineering,
economics and engineering in its various branches. Every linear PDEs
consists of one of the following types: parabolic, hyperbolic and elliptic
equation. That is parabolic equations depict heat flow and diffusion
processes and the following formula is fulfill B2 — 4Ac = 0, the equations
of the hyperbola are half of the vibrating movements, the wave movements
and the following formula is fulfill B2 — 4Ac > 0, the ellipse equations
describe steady state phenomena and fulfill the following formula B? —
4Ac < 0 (Evans, 2022). The concept of peristalsis flow was developed for
industrial objectives such as salutary fluid transfer, blood pump within heart
lungs device and transfer of corrosive liquids when the osculate of the fluids
for the machinery are forbidden. With all these contributions, a few
theoretical with experimental studies have been done next the Seminal feet
we cite them as an example (Hage & Hummady, 2022; Mekheimer, 2008;
Nadeem et al., 2013). In some private cases of non-Newtonian fluids, a
number of neoteric studies on peristalsis transfer of MHD have been
achieved (Hayat, Rafig, et al., 2016; Kumar, 2016; Mohaisen & Abedulhadi,
2022) ,further studies on the effect of inclined magnetic field just mentioned
examined Walter's B fluid as a non-Newtonian fluid and they wear proceed
by employing No slip conditions, however in real processes there is
constantly a assured degree on slip. Peristalsis reactivity with an effect of
inclined magnetic field has received lots of interest, think over the
significance of effects of inclined magnetic field in Walter's B fluid (Ali et
al., 2016; Jaafar et al., 2024; Khan et al., 2021; Munirathinam et al., 2018;
Seth et al., 2018). At present, researchers tend to investigate the action of the
inclined magnetic field for peristalsis transport on Non-Newtonian fluids due
to the phenomena of conviction, in other words, the dual diffusion of both
heat and concentration. We note many of these studies in the
references(Alshareef, 2020; DUONG, 2023; Ibraheem & Hummady, 2023;
Nadeem & Maraj, 2013; OZBAG, 2022). Based on the existing literature,
the target of the presented research is to examine Numerical computation for
the effect of inclined magnetic field on hyperbolic tangent peristalsis flow
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suspension in a porous medium. The mathematical formula was created and
the constitutive equations were discussed at the small Reynolds number with
long wavelength assumptions in section 2, and integrated study of the model
was presented in section 3. In section 4, we completed the study by
discussing the computational results and graphs.

2. Mathematical Model

Our study intent at a Non-Newtonian hyperbolic tangent fluid with
electrical conductivity and incompressibility in an asymmetric duct with a
porous medium and walls with the sine waves of width d; + d,. In a two-
dimensional Cartesian Coordinate system where the influx along
axis X and axis Y is perpendicular to it and the fluid flows in an inclined
magnetic fieldB-. Here we will neglect the effect of both the induced electric
and magnetic fields. According to figure 1, the propagation wave speed
constant of the wave C straight the walls of this curved channel is written in
the following formula:

y = Hy(X,F) = dy +aysin(5 (X = cD) &
y =H,(X,t)=—-d, —a, sin(ZTH (X =cb) +0)
In which a,, a,,d; ,d,,A,c,t,® are presented the amplitudes of the wave,
breadth of the channel, the wavelength, the wave speed, the time and the

phase difference inthe range(o < @ < m), moreover a,,a,,d; ,d, and @
satisfies the frame.
a? + b? + 2a;b;cos @ < (dy + dy)? (2)
The controlling equalization for hyperbolic tangent fluid is formulated as
follows (Jaafar et al., 2023) .
7= —[5 tanh(FY)n]Y (3)
§ =M, + (M- + M) )
Where M,,, M., I" andY are presented, Zeroth shear rate viscosity, power
law index , and time constant respectively thus Y is defined as :

. 1 LR 1
Y = EZiZnYinYin = ’ET[ (5)
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Where m is the second invariant strain tensor. We consider the controlling

equation (3), for the situation in which M, equals to zero and T'Y less than
one. The component of extra stress tensor, it can be formulated as follows:

7= —[a (17)"|¥

T=-M[1+n(1V -1) |V (6)

The equation of continuity, motion, thermal energy and concentration are defined in fixed
frame as:

=0 (7)

ou  _ou , _ou op 07T 0Txy _ _ . u
p(a+ —+v5)=——ri——x_x—#—aBchosB**(ucosB**—vsmB**)—Mok—(S)

s Kot (e S I Gl Qi ) 2 §inB* (i % 5sin B*) — Mo 2

p(af+ +v y) T 35 + 0B¢ sinB** (i cos B vsin B™) ]V[oku (9)
_ 0T _0dT « (0°T 92T , 0°T ou , 0v o%u 0%v

pen (G4 a8+ 030) 2 (G + 21+ 20) + 96 (42 2 (59 +25)

(10)
gt , ot , 9t _ 92¢c DiK7 (02T | 92T
st T YT Ve T Dr(axz ayz)+a(ﬁ+ﬁ) (11)
velocity, transverse velocny, transverse coordmate, pressure, Viscosity,
material constant, permeability parameter, constant inclined magnetic field,
electrical conductivity, mass diffusion, mass concentration, thermal diffusion
ratio and the mean temperature.
Where
Tex = =2 M, [L+0(TY - 1)] ()
Ty = —2M,[1+n(TY —1)] ( +2) (12)

ox
Ty = =2 M,[1+n(r7 - 1)] (52)

by using
Uu=—&v= —S o= (13) with wave
frame (x, y), the motion is steady with these expressions:
X=X—-ct, Y=y, U=u—-¢,V=7,P(X,Y) =P(x,y,0),
T(X,Y) = ’I_—'(.’f,}_/', D; E(X)Y) = E(f)}_/!t_) (14)
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which are used the dimensionless quantities to find a non- dimensional
analysis as below (Hayat, Shafique, et al., 2016) :

b2 V u v H H
d k PCd d
P:plio': Z;Re_ 1;5_ 1;
MOA dl M° A
O AT o Te g B
Ha=d\p: |5~ 1=7-,W —dl,ﬁ =0 (15)
t_c_ 9_7_"—7_"0 e c? by _ MCp
AT T T p(r =T Kk
= e . pkrDr(Ty~T-)
_cl—Co'SC_pDT St _MTm(cl —co)

Using egs.(14) , (15) , in egs. (3) — (12) in wave frame that is taken the

following form:
ou ov

Sa + — =0 (16)
(Sua—u +v a_u): IR I _ aTxy_
d dy dx dx dy
H? cos B**(ucos B** — V sin f**) —Dia (17)
ov ov op 5 0Txy a1y,
Re(6u6—+v@)——a—6 —ax _50}1 +
HZ2 § sin f**(u cos B** — V sin f**) —6i (18)
re 0 ae)_ 6629+029 N
e\Wrgx Y0¥ 5, )= " pF axz 9y?
Yy 2 0y )2 2 (9? ‘l’y 321/)
Re| ( +1)OQ+Vaﬂ = 662Q+OQ+
e| by dy |~ Sc|~ ax? ' ay?
,0%0  2%0
[6 0x? + 6y2] (20)
After a few steps we get :
Y, awy opP 0Ty OTyy
Red (1 5 o 2 ) =~ -0 T - T
H2 cos f** ((lpy+1) cos f** + 5, sin ,Bxx) — Dillly (21)
oy, I, P _dr, ot
R 3 — g2 XY VY
e <L|Jy 0x s dy dy 0 0x 0 dy *
SHZ sin p** ((1/)y+1) cos B** + 5, sin ,Bxx) — Disz (22)
R5( 9+5 69>_1 52620+629 4
O\Wrgx T 5, ) =57\ % a2 T 557
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Ec [(6;3 +62 22) 4 g2 (ﬂ;) +26 (2L w)] (23)
. N2 00 52070 270
e\ Wy + )5 - Yooy | T 5|0 a2 Ty
Sr [52ﬁ+ o6 (24)
And
. 0%
Tyx = —2 (1 +n(w,Y — 1)) <ﬁ> )
Ty = —2 (1+n(we —1)) (6312 62%), (25)

2
Tyy =25 (1+n(we¥ - 1)) <g ;p)

a*Pp\* (0% oy 0%y \*\?

_ 2 R A ) 2

- <28 <axay> ’ (ay : 6x> +ee (ayax>

where H, , W, , R, and S are the Hartman number, Weissenberg number,
Reynolds number and wave number, respectively. Substituting the

assumptions of long wavelength in agreement with very small Reynolds
number into the equations (21) - (25), we get:

oP arxy

= m(y, + 1) (26)

=

2
where 7,, = (1 — n) — + nl, (a 1l))

1 2 2 Qxx 1
m=n_1 HZcos?p _D_a

aP

5 =0 (27)

20 _ _p,(2r)*

e =B (32) (28)
where Br = E, Pr

220 9%6

ay? = oSy (29)

Elimination of P between egs.(21)&(22) yields:

2 2.1\ 2
g_;=%<(1_n>37f+nm(37f) )_m(¢y+1) (30)
We differentiate both sides of equation (30) with respect to y, we have:

Yya



: A
"4 a " Print -ISSN 2306-5249
J O B S L) eﬂﬁ\ o:lrne ISSN 2791-3279
“~ Jou rnal of Basic Smence Crapdad) g (S Anl)

‘;qi? .b\fio/?\' Ve
\ - J
a2 (92y . nw, (3%P\2 oz
(G () ) -m Gt =0 31)
We mention here the dimensionless boundary conditions that control the

flow:

F
Y=—=aty=h; =1+ asin2nx,

2
¢:—§aty:h2:—d—bsin(an+q§) (32)
W
6y =—1,aty=hyandy = h,,

6=1,0=1,aty=h; ,6=0,0=0,aty=nh,

The dimensionless mean flow is deified as (Seth et al., 2018):
Q=F+1+d,F=["udy (33)
3. Perturbation Solution
We have a system of non-linear PDEs, egs.(28),(29),(30) and (31) which is
difficult to solve it exactly. Then let use the perturbation method to solve it,
for small values of W, numbe(W, « 1) and the temperature for small values
of Brinkman number (B, «< 1) as below:

¥ = e + Wothy + O(W,)?
6 = 6o + W6, + O(W,)? (34)
Q= Q- + W0, + 0(W,)?

Inserting equation (34) into egs. (28) , (29), (30) and (31) with corresponding
boundary conditions ( equation (32)) then collecting the coefficients (
W, & B,) yields the zeroth and the first order systems.

3.1 Zeroth Order System (W)

Ny O

ot~ ™oy (35)

1 2 2 %% 1
m=n_1 H;Cos?f _D_a

AR
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5 =5 (%) 36)
%0 820-
E T O oz (37)
_F oy _ _ _ _
lpo_zyay_ 1,90—1,90—1aty—h1 (38)
_ _F oy _ _ _
l/)c’_ Zpay_ 1,6°—O,Q°—Oaty—h2 (39)
3.2 Zeroth Order Solution

Solution of equations (35), (36) and (37) are given as:

_ e~Vmy (e2Vmyc14C2)

Yo = - +C3 + yC4 (40)
c1=— (Fo+h1-h2)m
T —2eh1Vmygeh2vmy chiVmh 1t eh2Vmh 1y m—eh1Vmh2m—eh2vmh2/m
2 = ehVm+h2vm g h1—h2)m
T —2eh1Vmygeh2Vmy oh1Vmp 1 /m +eh2VMh 1y m—ehIVmh2m—eh2Vmh2m
€3 = — (h1+h2)(2ehtVm_zeh2vm 4 chivmpg, /4 eh2Vmp /m)
© 2(—2ehVmygeh2Vmy ghivimp 1 /m 4 eh2Vmh 1 m—eh1Vmh 2 im-eh2vmh2y/m)
C4 2ehVm_joh2vm  Jhivmpg. iy eh2vmpg iy
— —2eh1Vmygeh2Vmy e h1Vmh 1 /m 4 eh2Vmh 1m—eh1VMh2ym—eh2Vmh2ym
1 1
m =t (a2« (CostpD? = (a1)
3.3 First Order System (W,)
oty | (n )% ((\P\ _ 0% _
ay* + (1—n) ay? (( 6y2) ) m dy? =0 (42)
61 _ _op (%) (%
ayr ZBr(ay)(ay) (43)
2%2q 92%6
=SS i
Yo=2,20=-1,0,=1,0,=1laty=h (45)
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1/)1=—%,%=—1,91=0,91=0aty=h2 (46)

3.5 The Solution of the Energy Equation

0 = C11 + yC22 + m(((%mz — 18C1C2n + 9C1C2n? + 9A2CIwe +

9A1C2we — 18A2C1nwe — 18A1C2nwe + 9A2C1n*we + 9A1C2n%we +
9A1A2we? — 18A1A2nwe? + 9A1A2n*we? +

—2+DaHa2+DaHa?Cos[2f]
Da

3/4\/
16C12C22n2we?)(9C22e” —i4m EcPr +

—24+DaHaZ+DaHaZ2Cos[23] J—2+DaHa2 +DaHaZ2Cos[2f]
Da Da

3/4- J 3/4\/
18C1C2e% yj “i+m EcPr 4+ 9C12¢°% " 7 “14n EcPr
(47)

3.6 The Solution of the Concentration Equation

0 =A11+yA22 + 9(_11+n)2 (((9C1C2 — 18C1C2n + 9C1C2n? + 9A2C1we + 9A1C2we —

18A2C1nwe — 18A1C2nwe + 9A2C1n%we + 9A1C2n%we + 9A1A2we? — 18A1A2nwe? +
9A1A2n?we?

(48)

4. Discussion with Numerical Results

In order to better analyze this issue, we will supply a graphical evaluation of
the results we acquired in the exact solution section. This section includes
two- dimensional diagrams of the solutions for velocity and temperature
distribution, in-addition to the pressure gradient. It is clear from figures (1-7)
of the velocity profile that the flux behavior in this channel is axial flow. In
addition, the ultimate value of the velocity profile is noticed in the core of
the channel and progressively reductions towards the walls of the channel.
Figure (1) presents the behavior of the velocity when the parameter (n)
increases, as the velocity is decreasing function in the center of the channel
and its left wall while increasing in its right wall. In Figure (2), as the
parameter (Ha) increases, we notice that the velocity decreases at the center,
while it gains a ultimate value at the channel walls. Figure (3) shows the
graphical result of the velocity for characteristic values of the dimensionless
parameter (a), as the flow decrease occurs in the center of the channel and its
left wall. By increasing this parameter, an opposite behavior is observed

VeY
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towards the right wall of the channel. Also the effect of parameter G
figure (4), is due to its apposite behavior to the velocity in the center of the
channel and near the right wall, since the velocity decreases in the center and
eventually earns its ultimate value, but at the same time it increases near the
right wall of this channel. Figure (5) depicts the impact of parameter (b) on
the velocity profile, where it reaches a maximum at the left wall of the
channel and a minimum at the center of the channel and its right wall. Figure

(6) reveals the behavior of parameter(‘f’), in which the maximum velocity is
at the center and the right wall of the channel and it gradually decreases and
becomes zero at the left wall of the channel. Figure (7) clearly display the

action of parameter (We) where the velocity increases the middle of the
canal and gradually reductions at the boundary walls. In Figures (8-19) it is
illustrating the variation in temperature distribution with different parameters
with reference to the Law number (n). Eckert number (Ec), Prandtl number,

(Ha), (3), Darcy number(Da), Implitude wave number(®) width number (d),

phase difference parameters(¢), and weissberng number (We) from figures
(8), (14), (15 and (16), the increasing of the values of

(), (@), (@), (b) it decreasing it is balance at the center of channel but,
for incensing of canal width in two sides, the temperature continuous to rise
at near the walls boundary. While the temperature a slight drop in the center
but, continuity increaser when its value is decreasing, see Figures (9), (10),

(11), (12), (13), (17) and (19). The width number (d)does not affect by
change of valve but, a slight drop in the center of channel in each it is
explain in figure (18). Figures (20 - 33) represent the Variance of

concentration (Y across the canal for dissimilarity values of the
parameters’ (0, Ec, B, Se) Sry Da, B, Hay We, @, 67, b, and d) ¢ can e
observed that for all the figures (22, 23, 24, 25, 26, 27 and 33), the

concentration (Q) near canal do nearly concurrent follow the wall waves,
what are major arisen by the center for the an asymmetric channel, when the

parameters(Ee> P Sc: Sy Day B, Hoand We) \ore precisely, the decrease
Yy
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accurse strikingly at the walls of the canal, the concentrations (Q) increase at
the boundary of the Channel walls. Figure (20) explain that an increase in

Low number (n) the concentration increasing. The

parameters(a' 6%,b,¢ and d) goes not influence by change of values but, a
slight drop in the Center of channel in each change, it is explain in figures
(28, 29, 30, 31 and 32).

Velocity Figures

FIGUREL.Behaviar of the law number (n) | FIGUREZ2.Behaviar of the Hartman number

in a wave frame of the sketch of axial (H,) in a wave frame of the sketch of axial
velocity distribution velocity distribution (n=2, B=n/6, Da=2,
( Ha=1,B=n/6,Da=2,a=0.5,d =0.08, a=0.5, d'=0.08, b=0.4, &= 7/6, F0=0.3, F1=1,
b=0.4, &= /6, F0=0.3, F1=1, d=1, d=1, We=0.6,x=1 )
W,=0.6,x=1)

FIGURES. Behavior of the implitude FIGURE4. Behavior of the width number (

wave of upper wall (a ) in a wave frame a*) in a wave frame of the sketch of axial
of the sketch of axial velocity distribution velocity distribution (n=2,

(n=2, Ha=1,3=n/6,Da=2,d '=0.08, b=0.4, Ha=1,p=n/6,Da=2,a=0.5, b=0.4, &= 7/6,
&= 1/6, F0=0.3, F1=1, d=1, W,=0.6,x=1) F0=0.3, F1=1, d=1, W,=0.6,x=1) )
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FIGURES Behavior of the implitude wave FIGUREG. Behavior of the phase difference

of lower number( b) in a wave frame of the
sketch of axial velocity distribution (n=2,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, ®=1/6,

(¢ ) in a wave frame of the sketch of axial
velocity distribution (n=2,
Ha=1,3=n/6,Da=2,a=0.5,d =0.08, b=0.4,
F0=0.3, F1=1, d=1, W,=0.6,x=1)

F0=0.3, F1=1, d=1, W=0.6,x=1)

FIGURETY. Behavior of the Weisberg number

velocity
distribution (n=2, Ha=1,B=n/6,Da=2,a=O.5,d*:0.08, b=0.4, &= /6, F0=0.3, F1=1, d=1,x=1)

( p) in a wave frame of the sketch of axial

Yeo
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Temperature Figures

FIGURES. Behavior of the law number (n)
in a wave frame of the sketch of temperature
distribution ( Ec=1, Pr=1,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, @=
n/6, F0=0.3, F1=1, d=1, W.=0.6, x=1 )

FIGUREY. Behavior of the Eckert number
(E.)in a wave frame of the sketch of
temperature distribution (n=2, Pr=1,

Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, @=

/6, F0=0.3, F1=1, d=1, W¢=0.6, x=1 )

FIGUREL0. Behavior of the Prandtle
number (p.)in a wave frame of the sketch
of temperature distribution (n=2, Ec=1,
Ha=1,p=n/6,Da=2,a=0.5,d '=0.08, b=0.4,
&= 1/6, F0=0.3, F1=1, d=1, W=0.6, x=1
) )

FIGURE11. Behavior of the Hartman number

temperature distribution (n=2, Ec=1, Pr=1,
B=n/6,Da=2,a=0.5,d =0.08, b=0.4, = 7/6,

(H,)in a wave frame of the sketch of

F0=0.3, F1=1, d=1, W,=0.6, x=1 ) )
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FIGUREL2. Behavior of the angle of
magnetic field (8)in a wave frame of the
sketch of temperature distribution (n=2,
Ec=1, Pr=1, Ha=1,Da=2,a=0.5,d =0.08,

b=0.4, &= /6, F0=0.3, F1=1, d=1,
W,=0.6, x=1 )

FIGURELS3. Behavior of the Darcy number
(D,)in a wave frame of the sketch of
temperature distribution ( n=2, Ec=1, Pr=1,
Ha=1,p=n/6,a=0.5,d =0.08, b=0.4, &= /6,
F0=0.3, F1=1, d=1, W.=0.6, x=1 )

FIGURE14. Behavior of the implitude
wave of upper wall (a)in a wave frame of
the sketch of temperature distribution
(n=2, Ec=1, Pr=1,
Ha=1,p=n/6,Da=2,d =0.08, b=0.4, &=
n/6, F0=0.3, F1=1, d=1, W¢=0.6, x=1 )

FIGURE1S. Behavior of the width number
(d*) in a wave frame of the sketch of
temperature distribution (n=2, Ec=1, Pr=1,
Ha=1,=n/6,Da=2,a=0.5, b=0.4, &= /6,
F0=0.3, F1=1, d=1, W=0.6, x=1 )
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FIGURELY. Behavior of the phase difference (¢)
in a wave frame of the sketch of temperature

FIGURELG. Behavior of the implitude wave of
lower number (b)in a wave frame of the sketch
of temperature distribution ( n=2, Ec=1, Pr=1,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, &= /6,

F0=0.3, F1=1, d=1, W=0.6, x=1 )

distribution ( (n=2, Ec=1, Pr=1
Ha=1,f=n/6,Da=2,a=0.5,d =0.08, b=0.4
F0=0.3, F1=1, d=1, W,=0.6, x=1 )

> 5 10°

e —— ]

FIGUREL9. Behavior of the weissberng number

(w,) in a wave frame of the sketch of

FIGURELS8. Behavior of the width number (a)
in a wave frame of the sketch of temperature

temperature distribution (n=2, Ec=1, Pr=1
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, &= 71/6

distribution (n=2, Ec=1, Pr=1
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, =
7/6, F0=0.3, F1=1, W.=0.6, x=1 )

F0=0.3, F1=1, d=1, x=1 ))

Concentration Figures
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FIGUREZ20. Behavior of the law number (n ) | FIGURE21. Behavior of the Eckert number (E.
and for all fixed values of parameters ( ) and for all fixed values of parameters (n=2,
Ec=1, Pr=1,5¢=2,Sr=3, Pr=1,5¢=2,Sr=3,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, ®= | Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, =
n/6, F0=0.3, F1=1, d=1, W=0.6, x=1 ) /6, F0=0.3, F1=1, d=1, W.=0.6, x=1 )

FIGUREZ22. Behavior of the Prandle FIGURE23. . Behavior of the Schmidt
number ( 2.) in a wave frame of the sketch | number (s, ) in a wave frame of the sketch of
of consecration distribution (n=2, consecration distribution (n=2, Ec=1,

Ec=1,Sc=2,Sr=3, Pr=1,Sr=3, Ha=1,p=n/6,Da=2,a=0.5,d =0.08,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, b=0.4, @= /6, F0=0.3, F1=1, d=1, W=0.6,
&= 1/6, F0=0.3, F1=1, d=1, W=0.6, x=1 ) x=1)

FIGURE24. Behavior of the Soret number | FIGUREZ25. Behavior of the Hartman number

('s,) in a wave frame of the sketch of (H, ) in a wave frame of the sketch of
consecration distribution ( n=2, Ec=1, consecration distribution (n=2, Ec=1,
Pr=1,Sc=2, Pr=1,Sc=2,Sr=3,p=n/6,Da=2,a=0.5,d =0.08,

Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4, | b=0.4, ¢=n/6, F0=0.3, F1=1, d=1, W,=0.6,
vea
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FIGUREZ26. Behavior of the angle of
magnetic field (g)in a wave frame of the
sketch of consecration distribution ( n=2,

Ec=1, Pr=1,S¢=2,Sr=3, Ha=1,

Da=2,a=0.5,d =0.08, b=0.4, &= 7/6,

FIGURE27 Behavior of the Darcy number
(D, ) in a wave frame of the sketch of
consecration distribution (n=2, Ec=1,

Pr=1,Sc=2,Sr=3, Ha=1,3=n/6,a=0.5,d =0.08,
b=0.4, &= /6, F0=0.3, F1=1, d=1, W¢=0.6,

F0=0.3, F1=1, d=1, W,=0.6, x=1 ) x=1")
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FIGUREZ28. Behavior of the implitude wave
of upper wall (a)in a wave frame of the
sketch of consecration distribution (n=2,
Ec=1, Pr=1,Sc=2,Sr=3,
Ha=1,p=n/6,Da=2,d =0.08, b=0.4, &= /6,

FIGUREZ29. Behavior of the width number
(d*)in a wave frame of the sketch of
consecration distribution ( n=2, Ec=1,
Pr=1,Sc=2,Sr=3, Ha=1,=n/6,Da=2,a=0.5,
b=0.4, &= /6, F0=0.3, F1=1, d=1, W,=0.6,

F0=0.3, F1=1, d=1, W,=0.6, x=1) x=1)
S — ~ o
1 10° / \ 110 / \‘\
< 10° b=0.4 \ < 10° ’! — (b:;—r ‘
b=0.7 < 10° ’ (p:fg_r \\
1= 10° : _____ ¢=17 ‘
w 10 i !

FIGURE30 Behavior of the implitude wave
of lower number (' ») in a wave frame of the
sketch of consecration distribution (n=2,

Ec=1, Pr=1,Sc=2,Sr=3,

FIGURES31. Behavior of the phase difference
(¢)in a wave frame of the sketch of
consecration distribution (n=2, Ec=1,
Pr=1,Sc=2,Sr=3,
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Ha=1,p=n/6,Da=2,a=0.5,d =0.08, &= /6,
F0=0.3, F1=1, d=1, W,=0.6, x=1)

Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4,
F0=0.3, F1=1, d=1, W.=0.6, x=1 )

S ——
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FIGURE32. Behavior of the width number
(@) in a wave frame of the sketch of
consecration distribution (n=2, Ec=1,
Pr=1,Sc¢=2,Sr=3,
Ha=1,p=n/6,Da=2,a=0.5,d =0.08, b=0.4,

FIGURES33. Behavior of the weissberng
number (w,)in a wave frame of the sketch of
consecration distribution ( n=2, Ec=1,
Pr=1,5c=2,Sr=3,
Ha=1,B=n/6,Da=2,a=0.5,d =0.08, b=0.4, ®=

®=7/6, F0=0.3, F1=1, W=0.6, Xx=1 ) /6, F0=0.3, F1=1, d=1, x=1 )

7. Conclusion

According to the nature of the relevant complex constitutive equations
showing the impact on the Peristalsis flux of inclined Magnetic field of
hyperbolic tangent non-Newtonian fluid in a porous medium and an
asymmetric sinusoidal channel, the regular Perturbation method used in this
study provided clear success in dealing with such a model of equations, as it
gave accurate solutions in peristalsis flux without any conditions imposed on
all physical quantities that emerge in the foundational equations. For this
study, the axial velocity function, temperature distribution and concentration
equation were obtained, in addition to performing a parametric analysis
through graphs using the (Mathematica) mathematical program, and the
results extracted are the following:

1- When the augmentation in the values of the parameters (¢)and (W,)
Leads to an augmentation in the value of the vector velocity the middle of
the channel, while an augmentation in the values of the parameters
(n,Hg, a)and(d"), leads to decrease in the value of the velocity, but, when
the value of the parameters (D,, d) and () changes, no effect appears on the
value of the velocity.
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2- In the case of the temperature characteristics function, the increasing
values of the parameters (b, a, n) and (d*) lead to an decrease in the
temperature in the core of the canal and its increase at the walls, but the rise
in the values of the parameters (E.PB., H, fB,D, ¢)and (WW,) means
increasing in the temperature.

3- The concentration an augmentation in the boundary of the canal walls as
augmentation of the parameter(n), while the an augmentation in the value of
the parameters ( E., P.,S.,S,,Hy, 8,D4, W, ) give rise to decrease in the
value of the concentration.

4 - When the value of the parameters (a, b,d",®, d ) changes, no effect
appears on the value of the concentration.
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