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Abstract:

In this research, the numerical approach of Runge-Kutta type two-
derivative method with five-stage three-stage (5) 3TDRKT has been
developed and proposed to solve a special type of third-order delay
differential equations of fixed-delay differential equations. An algorithm
based on Newton interpolation and combined with the TDRKT method has
been developed to approximate the solution of third-order delayed
differential equations. The fifth-order three-step method called (5) STDRKT
with single third derivative and multiple evaluations of fourth derivative is
highlighted for solving third-order pantograph-type delay differential
equations directly with the help of Newton's interpolation method. The
stability analysis of 3STDRKT method (5) has been investigated. Numerical
tests show high efficiency and reliability. The new method is recommended
for solving a special class of third-order delay differential equations and
some future works by extending the proposed method to solve fractional and
singular delay differential equations.

Keywords: Rang-Kuta methods, third-order delay differential, stability,
Interpolation, Newton's interpolation, Method TDRKT3(5).

Introduction:

Delay differential equations (DDEs) play a crucial role in modeling various
dynamic systems where the future state of the system depends not only on
the present state but also on past states. These equations are prevalent in
many fields such as biology, engineering, economics, and control theory. A
particularly challenging subset of these equations is the third-order delay
differential equations, which are more complex due to the higher-order
derivatives involved (Corwin, et al. 1997), (Subburayan, V., & Mahendran,.
2020).

Traditional numerical methods, such as the Runge-Kutta methods, have been
adapted to solve ordinary differential equations (ODEs) effectively.
However, their adaptation to DDESs requires additional techniques to handle
the delay terms accurately. In this research, we focus on a specific numerical
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approach called the fifth-order three-stage two-derivative Runge-Kutta
method (TDRKT3(5)). This method is designed to improve the accuracy and
stability when approximating solutions to third-order delay differential
equations with fixed delay (Ismail, et. al 2002).

The general form of a third-order delay differential equation is given by:

{y’”(t) = f(t,y(®), y(t —7)

, , . . ")
y(t) =yo0, ¥ () = Yo, y (to) =¥o t € [ty — T, t0]

The main objective of this study is to develop and analyze the TDRKT3(5)
method for solving third-order delay differential equations. We extend the
classical Runge-Kutta methods by incorporating additional stages and
derivatives, which allows for better approximation of the solution over each
step. This is particularly useful for equations with significant delays, where
traditional methods may suffer from reduced accuracy and stability.
Additionally, we compare the performance of the TDRKT3(5) method with
existing methods, such as the fifth-order Runge-Kutta method and the two-
derivative Runge-Kutta method. Through a series of numerical experiments,
we demonstrate the advantages of our proposed method in terms of
efficiency, accuracy, and stability (Oberle, H. J., et. Al. 1981)

To illustrate the practical application of our method, we consider several test
problems, including both linear and nonlinear delay differential equations.
These examples highlight the versatility and robustness-of the TDRKT3(5)
method, making it a valuable tool for researchers and practitioners dealing
with complex dynamical systems (Weiner, R., & Strehmel, K. 1988)
(Shampine, L. 1985).

This paper is structured as follows: Section 2 provides a detailed explanation
of the TDRKT3(5) method, including its theoretical foundation and
implementation details. Section 3 presents the stability analysis of the
method. Section 4 showcases the numerical results from our test problems.
Finally, Section 5 concludes the paper with a summary of our findings and
suggestions for future research directions (Hout, K. 1. 1992).

Development of a Fifth-Order Three-Step Algorithm Based on Newton's
Interpolation for Third-Order Delay Differential Equations:
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Considering the general form of third-order delay differential equations, we
are looking for a fifth-order three-step algorithm based on Newton's
interpolation. Therefore, we must first consider the following algorithm
based on Newton's interpolation. (Senu,2022: p 1).

y® = g(t,y@®), y(t —1),y ),y (t — 1)
= (6, y@®),y(t—1),y (©),y (t—1)
+£,(t,y (), y(t — 1),y ),y (t — 1)y (©) ()

By extending the above algorithm, we can reach a fifth-order three-step
algorithm, which is the main goal of the research, and in work paper, we
seek to obtain it, so that we can approximate the solution of the third-order
delay differential equations. (Nouioua etal,2017: p3)

(DDE) vs. (ODE)

Consider the following equation.

y'(©) = f (¥t =10, y(E—10), t=t

y() = 0(), t <t
which is a delay differential equation with n delay terms. (Nouioua et. al,
2017)

Here, according to the complexity of this phenomenon, there are three cases

™)

for delays (i =1,..., n), t;which are always non-negative:
1- When the delay is constant, it is called constant delay mode.
2- When 1; = t;(t) .which is called the form of time-dependent delay.

3- When the delay t;is dependent on both t and y(t), T; = 14 (t, y(t)) , which

is called state-dependent form of delay. (Ebimene and Njoseh 2017) (Ismail,
et. al 2003).
Also, here, in order to simplify the notation, the function @(t) is defined in
[p, to] which

min

p = 15i5n{min(t - Ti)}' t = tO(\c)
In particular, for state-dependent delays (they depend on the function y(t)),
the bound p cannot be predetermined. An interesting and common example
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for n=2 is «t;=0, which is in the standard form (3): (Henrici,1962:p3)

(Chengming, et al. 1999).

{y'(t) = 6y, y(t-7)),

y(t) = 0(t),

(®)

problem for ordinary differential equations as follows:

{y'(t) =f(ty®), t=t
y(to) = ¥o

(")

Since for somet —t < t, <t =t , So the first difference between equations
(5) and (6) is that the solution of equation (2-4) is usually given by the initial
function @(t) to the place of the simple initial value y, is determined.
(Henrici,1962), (Ismail, et. al 2002). The new method is recommended for
solving a special class of third-order delay differential equations and some
future work by extending the proposed method to solve fractional and
singular delay differential equations (Ahmad, et al. 2022).

Three-step fifth-order TDRKT method

Algebraic order conditions up to fifth order in Equations:
u; u' and u" consisting of equations. (7), (8), (9), (10), (11), (12)

(Chen,2015)

\

be =% ™)
)

bl = — *)
T )

b, =3 ()

b= O
c 7
T )

b, =+ )
T ) T )

bae:W_.' bcde:\T (\Y)

Three-step fifth-order TDRKT method
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A three-step fifth-order TDRKT method is used for extraction. All together
include 9 equations and 17 variables and include 4 free parameters after

solving those equations. byand brare set to ;—?and 0, respectively, to produce a

single system of parameters. The resulting system includes two free
parameters a y.. 4;;.( Senu,2022: p5)

YV . YV .
— Gy .o Gry =m0 07)

Avy =T

Equations of the minimization error of the sixth order condition to select the
parameters that give the minimum value of the cutoff error norms for

un; w' nandcreate, u" _nis used. Minimizing the error equations,

oL
T

29

||||T(?)|| = YVYVYAx e

—¥
||=Y_\\Y)(\~ ‘\

?
'["( )|| = \GYY/\ X

. 7 —¥
Y+ with the overall cutoff error | produces T_||Té )” =0 FYAY X Vo |

: . ~ Y
which gives @,y = ——

Three-step fifth-order TDRKT method
Table 1: TDRKT method 3(5).(Kumar,2017:p350)

2048 128
27 3

80000 2000 | 500
1 1 5 1 35 5 8 25
72 36 108 81 | 324 | 54 | 81 81

Three-step fifth-order TDRKT method
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where | = identity for matrix ¥ xY U ., =[u,,,. hu_,,.hu ] ,

, v 1T T T
U, = [un. hu',.h'u n] Fo = fo faoful Gn =|9n- gn-9gn] 7and a.p
are 3x3 matrices
v .In equation (14), knowing that (Mechee,2013: p4) (Yuan, Song, C., &

Wang, P. 2013).
[0
Y
= )

a=qi, \ (\())
N

Then

1,’:_(1:/6—\ B ' \(\?)

. &) -
. . f —
e Numerical results

Problem 1: (Sekar and Tamilselvan, 2019) (Oberle, H. J., et. al. 1981)
u' = —eTu(t—1), T = m( (V)
u() = u()=-Yu'(") =", te[,h] A
The exact answer is u(t) = et

Problem 2: (Sekar&Tamilselvan,2019:p5)

" Y‘
U —r——, &= + O0Yo

M () [V +t-T
' \ " \ (\ Q)
u(') = \'u(') = ;'u (') -7 t € ['rb]
Error Reduction with Increasing Evaluations:
All three methods show a decrease in maximum global error as the number
of evaluation functions increases. This trend is expected, as more evaluations
typically lead to more accurate results.
Comparison of Methods:

RKD(5): Represented by red asterisks, this method starts with a higher
initial error but reduces significantly with more evaluations.
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IRKD(5): Represented by blue stars, this method has the highest initial error
and shows the least improvement compared to the other two methods as the
number of evaluations increases.

TDRKT3(5): Represented by magenta circles, this method consistently
shows the lowest error across all numbers of evaluation functions. It starts
with a lower initial error and maintains this advantage throughout.
Efficiency of TDRKT3(5):

The TDRKT3(5) method clearly outperforms both RKD(5) and IRKD(5) in
terms of reducing the maximum global error. This method achieves a lower
error with fewer evaluation functions, indicating higher efficiency and
accuracy.

Logarithmic Error Scale:

The use of a logarithmic scale for the error (logl0(Max global error))
highlights the exponential reduction in error for all methods, but the
TDRKT3(5) method shows a steeper decline, emphasizing its superior
performance.

Discussion Points:

« The graph demonstrates the superior performance of the TDRKT3(5)
method in solving third-order delay differential equations. The lower
maximum global error across various numbers of evaluation functions
indicates its higher accuracy and efficiency.

« The RKD(5) method, while improving with more evaluations, does not
match the performance of TDRKT3(5), suggesting that the additional stages
and derivatives in TDRKT3(5) contribute significantly to its effectiveness.

« The IRKD(5) method, despite being an implicit method, does not show
competitive performance compared to the other two methods. This might be
due to its handling of delay terms or the specific implementation of the
method.

« The results reinforce the value of the TDRKT3(5) method for practitioners
dealing with complex dynamical systems, where accuracy and computational
efficiency are crucial.
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This analysis highlights the importance of choosing appropriate numerical
methods for delay differential equations and demonstrates the effectiveness
of the TDRKT3(5) method in achieving low global errors with fewer
evaluations.

Figure 2. The maximum overall error versus the number of functions

evaluation curves of problem 2 for te [0,1] (Hussain,2015), (Hout, K. I.
1996).

-6 T T T T T T
—*k— RKD(5)
—*— IRKD(5)
E T —©— TDRKT3(5) |
= <8 5
e
@
g ot :
o
=)
3
S -0t :
o
=3 -
o S 4
A2} q
-13 1 I I L © I L
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Number of Evaluation Function
1. Error Reduction with Increasing Evaluations:

All three methods show a decrease in maximum global error as the number
of evaluation functions increases. This trend is consistent with the
expectation that more evaluations typically lead to more accurate results.

2. Comparison of Methods:

RKD (5): Represented by red asterisks, this method starts with a higher
initial error but shows a significant reduction in error with increasing
evaluations. It maintains a competitive error rate, slightly higher than
TDRKT3(5).
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IRKD(5): Represented by blue stars, this method starts with the highest
initial error and shows a slower improvement rate compared to the other two
methods. Despite the decrease in error with more evaluations, it consistently
has the highest error among the three methods.

TDRKT3(5): Represented by magenta circles, this method demonstrates the
lowest initial error and maintains the lowest error rate across all numbers of
evaluation functions. This method's performance consistently surpasses the
other two, indicating its superior accuracy.

3. Efficiency of TDRKT3(5):

The TDRKT3(5) method consistently outperforms both RKD(5) and
IRKD(5) in terms of reducing the maximum global error. It achieves a lower
error with fewer evaluation functions, highlighting its efficiency and
accuracy.

4. Logarithmic Error Scale:

The logarithmic scale (log/oi10logl0) for the error emphasizes the
exponential reduction in error for all methods. The TDRKT3(5) method
shows the steepest decline, underscoring its superior performance.
Discussion Points:

« Superiority of TDRKT3(5):

The graph clearly demonstrates that the TDRKT3(5) method offers the best
performance in solving third-order delay differential equations. It achieves
lower errors with fewer evaluations, making it an efficient and accurate
method.

« Performance of RKD(5):

Although the RKD(5) method shows significant improvement with
increasing evaluations, it does not reach the accuracy level of TDRKT3(5).
However, it is more competitive than IRKD(5), indicating its potential as a
reliable method for such equations.

« IRKD(5) Performance:

The IRKD(5) method, despite being an implicit method, shows the least
improvement and highest error rates. This suggests that it may not handle the
delay terms as effectively as the other two methods.

« Practical Implications:

Ya¢
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The results highlight the importance of choosing appropriate numerical
methods for delay differential equations. The TDRKT3(5) method stands out
as a valuable tool for researchers and practitioners dealing with complex
dynamical systems requiring high accuracy and efficiency.

This analysis provides a comprehensive understanding of the comparative
performance of the methods studied, emphasizing the advantages of the
TDRKT3(5) method. The insights gained from this graph can be included in
the discussion section to support the conclusions drawn from the numerical
experiments.

Figures 1 and 2 show the numerical performance of the selected methods in
terms of the maximum overall cutting error versus the number of function
evaluations based on b=1.

In Figure 1, the red line with a solid star is the accuracy graph of the 5SRKD
method, the blue line with the hollow star is the accuracy graph of the
5IRKD method, and the purple line with the hollow circle is the accuracy
graph of the 3STDRKT method (5).

In Figure2, the red line with a solid star is the accuracy graph of the 5RKD
method, the blue line with the hollow star is the accuracy graph of the
5IRKD method, and the purple line with the hollow circle is the accuracy
graph of the 3STDRKT method (5) (Zhao, et al. 2018).

Table 2: Comparison of STDRKT method (5) with existing methods for
problem 1 (Sekar&Tamilselvan,2019)
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h METHODS MAXERR
b=05 b=1 b=3

0.1 TDRKT3(5) 3.741053(-10) 1.504413(-10) 1.673071(-10)
RKDS 1.353748(-10) 1.252840(-9) 3.087611(-9)

IRKDS 1.374666(-9) 1.423022(-9) 1.746218(-8)

0.05 TDRKT3(3) 1.692080(-11) 2279510(-11) 2.394263(-11)
RKDj3 2124079(-11) 3.602357(-11) 0.087669(-10)

IRKDS 4.371625(-11) 4.532508(-11) 9.802641(-11)

0.025 TDRKT3(5) 4.950484(-13) 1.104872(-13) 7467360(-13)
RKDS 0.086243(-13) 1.124933(-12) 1.91823)(-11)

IRKDS 1.358247(-12) 1.436296(-12) 3.038139(-12)

0.0125 TDRKT3(5) 1.576517(-14) 2.370326(-14) 2325757(-14)
RKDS 1.942890(-14) 3.613776(-14) 9.525020(-14)

IRKDS 4.329870(-14) 4.496403(-14) 3.934073(-13)

Table 3: Comparison of 3aTDRKT method (5) with existing methods for

problem 2 (Sekar&Tamilselvan,2019: p5)

[ METHODS MAXERR
h=05 b=1 b=15
01 TDRKT3(S) 2159010(-9) 7860071(=9) L17884(-8)
RKDS 8 T36482(-9) LS373(-9) L995765(-9)
IRKDS 284971(-3) 1TH56(-1) 3662056(-1)
0.5 TDRKT3(S) 6814238(-11) L662375(-10) 4931013(-10)
RKDS 2 536498(-10) 4405230(-10) 6.125804(-10)
IRKDS L03789(-9) 5209%41(~9) 1331209(-8)
002 TDRKT3(S) 695217-1) LSTIE(-12) 4815905(-12)
RKDS 2381408(-12) 4404421¢(-1) 6065370(-12)
IRKDS 9887404(-12) 6.062839(-11) 1S01741(-10)
001 TDRKTS(S) 2 198242(-14) AT9550(-14) LAISH(-13)
RKDS 7.19445(-14) 1 383338(-13) 18829%(-13)
IRKDS 3 UB4-19) 1968203(-12) A809930(-12)
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Discussion
The tabulated numerical results presented in Tables 2 and 3 compare the
performance of the (5) 3TDRKT method with the existing 5RKD and
5IRKD methods for solving a variety of third-order pantograph, delay
differential equations with different endpoints. These results clearly
demonstrate that the maximum global error decreases as the number of steps
decreases. Among the three methods, the proposed (5) 3TDRKT method
consistently, shows the lowest maximum overall error across six different
numerical tests at all selected endpoints. In this study, we employed an
explicit fifth-order, two-derivative Runge-Kutta-type three-step method, (5)
3TDRKT, which involves one evaluation of f, and multiple evaluations of g,
to solve third-order pantograph-type delay differential equations of the form:

U = ftu),ul —o))(%)

Algebraic theories of rooted trees and B-series theory, as presented by Chen
et al., were modified to construct the (5) 3TDRKT method for solving
delayed differential equations. The stability of the (5) STDRKT method was
analyzed, and a stability polynomial was generated. The method's
compatibility and convergence characteristics were also examined,
demonstrating its robustness. An integration algorithm was introduced to
implement the (5) 3STDRKT method for solving third-order pantograph-type
delayed differential equations. This algorithm effectively integrates the
Newton interpolation method with the TDRKT approach, enhancing the
accuracy and efficiency of the solution process.

Numerical experiments, measured in terms of the maximum overall error
versus the number of performance evaluations, are shown in Figures 1 and 2.
These figures illustrate the superior performance of the (5) 3STDRKT method
compared to the SRKD and 5IRKD methods. The (5) 3STDRKT method
achieves lower maximum global errors with fewer evaluation functions,
underscoring its effectiveness in handling third-order delay differential
equations.

The results of this study highlight the significant advantages of the (5)
3TDRKT method in terms of accuracy and computational efficiency. The
method's ability to maintain low error rates across various test scenarios
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makes it a valuable tool for solving complex dynamical systems involving
delay differential equations. Future research may focus on extending this
method to fractional and singular delay differential equations, further
expanding its applicability in various scientific and engineering fields.

e Conclusion

In this study, we developed and proposed a numerical approach using the
Runge-Kutta-type two-derivative method with a five-stage, three-step (5)
3TDRKT configuration to solve a special class of third-order delay
differential equations with fixed delays. This approach integrates Newton
interpolation with the TDRKT method to approximate the solutions of these
complex equations effectively.

The fifth-order, three-step method, referred to as (5) 3STDRKT, employs a
single third derivative and multiple evaluations of the fourth derivative. This
configuration has proven particularly effective in directly solving third-order
pantograph-type delay differential equations by leveraging Newton's
interpolation method.

Our stability analysis of the (5) 3STDRKT method confirms its robustness
and reliability. Extensive numerical tests demonstrate the method's high
efficiency and accuracy in solving third-order delay differential equations.
The findings indicate that the (5) 3STDRKT method is highly suitable for this
class of equations.

Furthermore, the new method shows great potential for future research. We
recommend extending the (5) 3STDRKT approach to address fractional and
singular delay differential equations, which could broaden its applicability
and utility in various scientific and engineering disciplines.

The results of this study underscore the significance of advanced numerical
methods like the (5) 3STDRKT in enhancing the precision and stability of
solutions for complex delay differential equations.
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