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 المستخلص:
مع  Runge-Kuttaفي هحا البحث ، تم تظهيخ المنهج العجدي لظخيقة المذتقتين من نهع      

واقتخاح لحل نهع خاص من المعادلات التفاضلية ذات  3TDRKT( 5خمس مخاحل وثلاث مخاحل )
التأخيخ من الجرجة الثالثة للمعادلات التفاضلية ذات التأخيخ الثابت . تم تظهيخ خهارزمية تعتمج على 

لتقخيب حل المعادلات التفاضلية المتأخخة من الجرجة  TDRKTاستيفاء نيهتن ومجمجة مع طخيقة 
( 5طخيقة الجرجة الخامدة المكهنة من ثلاث خظهات والتي تدمى )الثالثة. تم تدليط الضهء على 

3TDRKT  بمذتق ثالث واحج وتقييمات متعجدة للمذتق الخابع لحل المعادلات التفاضلية المتأخخة من
نهع المنداخ من الجرجة الثالثة مباشخة بمداعجة طخيقة الاستكمال الجاخلي لنيهتن. تم دراسة تحليل 

. تظهخ الاختبارات العجدية كفاءة ومهثهقية عالية. يهصى باستخجام TDRKT3 (5ثبات طخيقة )
الظخيقة الججيجة لحل فئة خاصة من المعادلات التفاضلية التأخيخية من الجرجة الثالثة وبعض 
الأعمال المدتقبلية من خلال تهسيع الظخيقة المقتخحة لحل المعادلات التفاضلية التأخيخية الكدخية 

 والمفخدة.
,  : طخق رانج كهتا، تفاضل التأخيخ من الجرجة الثالثة، الثبات, الاستكمال الجاخليلمات المفتاحيةالك

  TDRKT3(5).استيفاء نيهتن , طخيقة 
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Abstract: 

    In this research, the numerical approach of Runge-Kutta type two-

derivative method with five-stage three-stage (5) 3TDRKT has been 

developed and proposed to solve a special type of third-order delay 

differential equations of fixed-delay differential equations. An algorithm 

based on Newton interpolation and combined with the TDRKT method has 

been developed to approximate the solution of third-order delayed 

differential equations. The fifth-order three-step method called (5) 3TDRKT 

with single third derivative and multiple evaluations of fourth derivative is 

highlighted for solving third-order pantograph-type delay differential 

equations directly with the help of Newton's interpolation method. The 

stability analysis of 3TDRKT method (5) has been investigated. Numerical 

tests show high efficiency and reliability. The new method is recommended 

for solving a special class of third-order delay differential equations and 

some future works by extending the proposed method to solve fractional and 

singular delay differential equations. 

Keywords: Rang-Kuta methods, third-order delay differential, stability, 

Interpolation, Newton's interpolation, Method TDRKT3(5). 

Introduction: 

Delay differential equations (DDEs) play a crucial role in modeling various 

dynamic systems where the future state of the system depends not only on 

the present state but also on past states. These equations are prevalent in 

many fields such as biology, engineering, economics, and control theory. A 

particularly challenging subset of these equations is the third-order delay 

differential equations, which are more complex due to the higher-order 

derivatives involved (Corwin, et al. 1997), )Subburayan, V., & Mahendran,. 

2020). 

Traditional numerical methods, such as the Runge-Kutta methods, have been 

adapted to solve ordinary differential equations (ODEs) effectively. 

However, their adaptation to DDEs requires additional techniques to handle 

the delay terms accurately. In this research, we focus on a specific numerical 
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approach called the fifth-order three-stage two-derivative Runge-Kutta 

method (TDRKT3(5)). This method is designed to improve the accuracy and 

stability when approximating solutions to third-order delay differential 

equations with fixed delay (Ismail, et. al 2002). 

The general form of a third-order delay differential equation is given by: 

{
    ( )   (   ( )   (   )                                                                   

 (  )            (  )    
             (  )    

               ,       - 
  (1)  

The main objective of this study is to develop and analyze the TDRKT3(5) 

method for solving third-order delay differential equations. We extend the 

classical Runge-Kutta methods by incorporating additional stages and 

derivatives, which allows for better approximation of the solution over each 

step. This is particularly useful for equations with significant delays, where 

traditional methods may suffer from reduced accuracy and stability. 

Additionally, we compare the performance of the TDRKT3(5) method with 

existing methods, such as the fifth-order Runge-Kutta method and the two-

derivative Runge-Kutta method. Through a series of numerical experiments, 

we demonstrate the advantages of our proposed method in terms of 

efficiency, accuracy, and stability (Oberle, H. J., et. Al. 1981) 

To illustrate the practical application of our method, we consider several test 

problems, including both linear and nonlinear delay differential equations. 

These examples highlight the versatility and robustness of the TDRKT3(5) 

method, making it a valuable tool for researchers and practitioners dealing 

with complex dynamical systems (Weiner, R., & Strehmel, K. 1988) 

(Shampine, L. 1985). 

This paper is structured as follows: Section 2 provides a detailed explanation 

of the TDRKT3(5) method, including its theoretical foundation and 

implementation details. Section 3 presents the stability analysis of the 

method. Section 4 showcases the numerical results from our test problems. 

Finally, Section 5 concludes the paper with a summary of our findings and 

suggestions for future research directions (Hout, K. I. 1992).  

Development of a Fifth-Order Three-Step Algorithm Based on Newton's 

Interpolation for Third-Order Delay Differential Equations  :  
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Considering the general form of third-order delay differential equations, we 

are looking for a fifth-order three-step algorithm based on Newton's 

interpolation. Therefore, we must first consider the following algorithm 

based on Newton's interpolation. (Senu,2022: p 1). 

 (  )   (   ( )   (   )   ( )   (   ) 

   (   ( )  (   )   ( )   (   ) 

   (   ( )  (   )   ( )   (   )  ( )                      (2)  

By extending the above algorithm, we can reach a fifth-order three-step 

algorithm, which is the main goal of the research, and in work paper, we 

seek to obtain it, so that we can approximate the solution of the third-order 

delay differential equations. (Nouioua etal,2017: p3) 

(DDE) vs. (ODE) 

Consider the following equation: 

{
  ( )   . ‚  (    ) ‚ …  ‚   (    )/ ‚                    ≥   

 ( )   ∅( ) ‚                                                                  <   

                 (3)  

which is a delay differential equation with n delay terms. (Nouioua et. al, 

2017) 

Here, according to the complexity of this phenomenon, there are three cases 

for delays (𝑖 =1‚… ‚ 𝑛 ),   which are always non-negative: 

1- When the delay is constant, it is called constant delay mode. 

2- When      ( ) .which is called the form of time-dependent delay. 

3- When the delay   is dependent on both t and  ( ),      . ‚  ( )/ , which 

is called state-dependent form of delay. (Ebimene and Njoseh 2017) (Ismail, 

et. al 2003). 

Also, here, in order to simplify the notation, the function ∅( ) is defined in 

[ ‚   ] which 

  * 𝑖𝑛(    )+‚      ≥        
       

(4)  

In particular, for state-dependent delays (they depend on the function  ( )), 

the bound   cannot be predetermined. An interesting and common example 
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for 𝑛=2 is ،   =0, which is in the standard form (3): (Henrici,1962:p3) 

(Chengming, et al. 1999). 

{
  ( )   ( ‚  ( )‚   .    /) ‚                    ≥   

 ( )   ∅( ) ‚                                                   

                                 (5)  

problem for ordinary differential equations as follows: 

{
  ( )   . ‚  ( )/ ‚       ≥   

 (  )                                     
                                                             (6)  

Since for some   <    ،  ≥    , so the first difference between equations 

(5) and (6) is that the solution of equation (2-4) is usually given by the initial 

function ∅( ) to the place of the simple initial value  0 is determined. 

(Henrici,1962), (Ismail, et. al 2002). The new method is recommended for 

solving a special class of third-order delay differential equations and some 

future work by extending the proposed method to solve fractional and 

singular delay differential equations (Ahmad, et al. 2022). 

Three-step fifth-order TDRKT method 

Algebraic order conditions up to fifth order in Equations: 

𝑢; 𝑢' and 𝑢" consisting of equations. (7), (8), (9), (10), (11), (12) 

(Chen,2015) 

  
  

1

24
                                                                       (7)  

  
  

1

121
                                                                            (8)  

 ′
 

 
 

1

6
                                                                                (9)  

 ′
 2

 
 

1

61
                                                                  (11)  

 ′′
 

 
 

1

2
                                                                                      (11)  

 ′′
  

 
 

1

721
    ′

  ̂ 

 
 

1

181
                                                     (12)  

Three-step fifth-order TDRKT method 
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A three-step fifth-order TDRKT method is used for extraction. All together 

include 9 equations and 17 variables and include 4 free parameters after 

solving those equations. b2and b3are set to 
1

36
and 0, respectively, to produce a 

single system of parameters. The resulting system includes two free 

parameters  3 2    ̂   .( Senu,2022: p5) 

 3 1  
27

81111
  3 2         ̂3 1  

27

81111
  ̂3 2                          (13)  

Equations of the minimization error of the sixth order condition to select the 

parameters that give the minimum value of the cutoff error norms for 

𝑢   𝑢′
 
𝑛 and create, 𝑢"

 
_𝑛 is used. Minimizing the error equations,  

‖‖ (6)‖  2 778  11
 4

 , ,‖ ′
(6)

‖  2 112  11
 4

1،  ‖ "
(6)

‖  4 228  

11
 4

 with the overall cutoff error ‖ produces  _‖  
(6)

‖  5 482  11
 4

 ,

which gives  ̂3 2  
3

511
 

Three-step fifth-order TDRKT method 

Table 1: TDRKT method 3(5).(Kumar,2017:p350) 

 

Three-step fifth-order TDRKT method 
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where I = identity for matrix 3  3 ,   1  ,𝑢  1   𝑢′
  1  2𝑢′′

  1-  ,

   0𝑢    𝑢′
   2𝑢′′

 1
 

 ,   [         ]
 

 ,   [         ]
 
𝑇 and 𝛼.𝛽 

are 3×3 matrices 

 𝛾 .In equation (14), knowing that (Mechee,2013: p4) (Yuan, Song, C., & 

Wang, P. 2013). 

𝛼  

(

 
1 1

1

2

1 1 1

1 1 1)

 (15)  

Then 

   𝛼  

(

 
  1  1

1

2

1   1  1

1 1   1)

 (16)  

 Numerical results 

Problem 1: (Sekar and Tamilselvan, 2019) (Oberle, H. J., et. al. 1981) 

𝑢′′′      𝑢(   )     ( 17                                                           ) ) 

𝑢(1)  1 𝑢′(1)   1 𝑢′′(1)  1    ,1  -   (18                                  )  

The exact answer is 𝑢( )      

Problem 2: (Sekar&Tamilselvan,2019:p5) 

𝑢′′′  
3

8 5( )√1    

    1 525

𝑢(1)  1 𝑢′(1)  
1

2
 𝑢′′(1)   

1

4
    ,1  -

(19)  

Error Reduction with Increasing Evaluations: 

All three methods show a decrease in maximum global error as the number 

of evaluation functions increases. This trend is expected, as more evaluations 

typically lead to more accurate results. 

Comparison of Methods: 

RKD(5): Represented by red asterisks, this method starts with a higher 

initial error but reduces significantly with more evaluations. 
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IRKD(5): Represented by blue stars, this method has the highest initial error 

and shows the least improvement compared to the other two methods as the 

number of evaluations increases. 

TDRKT3(5): Represented by magenta circles, this method consistently 

shows the lowest error across all numbers of evaluation functions. It starts 

with a lower initial error and maintains this advantage throughout. 

Efficiency of TDRKT3(5): 

The TDRKT3(5) method clearly outperforms both RKD(5) and IRKD(5) in 

terms of reducing the maximum global error. This method achieves a lower 

error with fewer evaluation functions, indicating higher efficiency and 

accuracy. 

Logarithmic Error Scale: 

The use of a logarithmic scale for the error (log10(Max global error)) 

highlights the exponential reduction in error for all methods, but the 

TDRKT3(5) method shows a steeper decline, emphasizing its superior 

performance. 

Discussion Points: 

 The graph demonstrates the superior performance of the TDRKT3(5) 

method in solving third-order delay differential equations. The lower 

maximum global error across various numbers of evaluation functions 

indicates its higher accuracy and efficiency. 

 The RKD(5) method, while improving with more evaluations, does not 

match the performance of TDRKT3(5), suggesting that the additional stages 

and derivatives in TDRKT3(5) contribute significantly to its effectiveness. 

 The IRKD(5) method, despite being an implicit method, does not show 

competitive performance compared to the other two methods. This might be 

due to its handling of delay terms or the specific implementation of the 

method. 

 The results reinforce the value of the TDRKT3(5) method for practitioners 

dealing with complex dynamical systems, where accuracy and computational 

efficiency are crucial. 
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This analysis highlights the importance of choosing appropriate numerical 

methods for delay differential equations and demonstrates the effectiveness 

of the TDRKT3(5) method in achieving low global errors with fewer 

evaluations. 

Figure 2. The maximum overall error versus the number of functions 

evaluation curves of problem 2 for    [0,1] (Hussain,2015), (Hout, K. I. 

1996). 

1. Error Reduction with Increasing Evaluations: 

All three methods show a decrease in maximum global error as the number 

of evaluation functions increases. This trend is consistent with the 

expectation that more evaluations typically lead to more accurate results. 

2. Comparison of Methods: 

RKD (5): Represented by red asterisks, this method starts with a higher 

initial error but shows a significant reduction in error with increasing 

evaluations. It maintains a competitive error rate, slightly higher than 

TDRKT3(5). 
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IRKD(5): Represented by blue stars, this method starts with the highest 

initial error and shows a slower improvement rate compared to the other two 

methods. Despite the decrease in error with more evaluations, it consistently 

has the highest error among the three methods. 

TDRKT3(5): Represented by magenta circles, this method demonstrates the 

lowest initial error and maintains the lowest error rate across all numbers of 

evaluation functions. This method's performance consistently surpasses the 

other two, indicating its superior accuracy. 

3. Efficiency of TDRKT3(5): 

The TDRKT3(5) method consistently outperforms both RKD(5) and 

IRKD(5) in terms of reducing the maximum global error. It achieves a lower 

error with fewer evaluation functions, highlighting its efficiency and 

accuracy. 

4. Logarithmic Error Scale: 

The logarithmic scale (log10log10) for the error emphasizes the 

exponential reduction in error for all methods. The TDRKT3(5) method 

shows the steepest decline, underscoring its superior performance. 

Discussion Points: 

 Superiority of TDRKT3(5): 

The graph clearly demonstrates that the TDRKT3(5) method offers the best 

performance in solving third-order delay differential equations. It achieves 

lower errors with fewer evaluations, making it an efficient and accurate 

method. 

 Performance of RKD(5): 

Although the RKD(5) method shows significant improvement with 

increasing evaluations, it does not reach the accuracy level of TDRKT3(5). 

However, it is more competitive than IRKD(5), indicating its potential as a 

reliable method for such equations. 

 IRKD(5) Performance: 

The IRKD(5) method, despite being an implicit method, shows the least 

improvement and highest error rates. This suggests that it may not handle the 

delay terms as effectively as the other two methods. 

 Practical Implications: 
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The results highlight the importance of choosing appropriate numerical 

methods for delay differential equations. The TDRKT3(5) method stands out 

as a valuable tool for researchers and practitioners dealing with complex 

dynamical systems requiring high accuracy and efficiency. 

This analysis provides a comprehensive understanding of the comparative 

performance of the methods studied, emphasizing the advantages of the 

TDRKT3(5) method. The insights gained from this graph can be included in 

the discussion section to support the conclusions drawn from the numerical 

experiments. 

Figures 1 and 2 show the numerical performance of the selected methods in 

terms of the maximum overall cutting error versus the number of function 

evaluations based on  =1. 

In Figure 1, the red line with a solid star is the accuracy graph of the 5RKD 

method, the blue line with the hollow star is the accuracy graph of the 

5IRKD method, and the purple line with the hollow circle is the accuracy 

graph of the 3TDRKT method (5). 

In Figure2, the red line with a solid star is the accuracy graph of the 5RKD 

method, the blue line with the hollow star is the accuracy graph of the 

5IRKD method, and the purple line with the hollow circle is the accuracy 

graph of the 3TDRKT method (5) (Zhao, et al. 2018). 

 

Table 2: Comparison of 3TDRKT method (5) with existing methods for 

problem 1 (Sekar&Tamilselvan,2019) 
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Table 3: Comparison of 3TDRKT method (5) with existing methods for 

problem 2 (Sekar&Tamilselvan,2019: p5) 
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Discussion 

The tabulated numerical results presented in Tables 2 and 3 compare the 

performance of the (5) 3TDRKT method with the existing 5RKD and 

5IRKD methods for solving a variety of third-order pantograph, delay 

differential equations with different endpoints. These results clearly 

demonstrate that the maximum global error decreases as the number of steps 

decreases. Among the three methods, the proposed (5) 3TDRKT method 

consistently, shows the lowest maximum overall error across six different 

numerical tests at all selected endpoints. In this study, we employed an 

explicit fifth-order, two-derivative Runge-Kutta-type three-step method, (5) 

3TDRKT, which involves one evaluation of  , and multiple evaluations of  , 

to solve third-order pantograph-type delay differential equations of the form: 

𝑢′′′   (  𝑢( ) 𝑢(   )) (21)  

  Algebraic theories of rooted trees and B-series theory, as presented by Chen 

et al., were modified to construct the (5) 3TDRKT method for solving 

delayed differential equations. The stability of the (5) 3TDRKT method was 

analyzed, and a stability polynomial was generated. The method's 

compatibility and convergence characteristics were also examined, 

demonstrating its robustness. An integration algorithm was introduced to 

implement the (5) 3TDRKT method for solving third-order pantograph-type 

delayed differential equations. This algorithm effectively integrates the 

Newton interpolation method with the TDRKT approach, enhancing the 

accuracy and efficiency of the solution process. 

Numerical experiments, measured in terms of the maximum overall error 

versus the number of performance evaluations, are shown in Figures 1 and 2. 

These figures illustrate the superior performance of the (5) 3TDRKT method 

compared to the 5RKD and 5IRKD methods. The (5) 3TDRKT method 

achieves lower maximum global errors with fewer evaluation functions, 

underscoring its effectiveness in handling third-order delay differential 

equations. 

The results of this study highlight the significant advantages of the (5) 

3TDRKT method in terms of accuracy and computational efficiency. The 

method's ability to maintain low error rates across various test scenarios 
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makes it a valuable tool for solving complex dynamical systems involving 

delay differential equations. Future research may focus on extending this 

method to fractional and singular delay differential equations, further 

expanding its applicability in various scientific and engineering fields. 

 Conclusion 

In this study, we developed and proposed a numerical approach using the 

Runge-Kutta-type two-derivative method with a five-stage, three-step (5) 

3TDRKT configuration to solve a special class of third-order delay 

differential equations with fixed delays. This approach integrates Newton 

interpolation with the TDRKT method to approximate the solutions of these 

complex equations effectively. 

The fifth-order, three-step method, referred to as (5) 3TDRKT, employs a 

single third derivative and multiple evaluations of the fourth derivative. This 

configuration has proven particularly effective in directly solving third-order 

pantograph-type delay differential equations by leveraging Newton's 

interpolation method. 

Our stability analysis of the (5) 3TDRKT method confirms its robustness 

and reliability. Extensive numerical tests demonstrate the method's high 

efficiency and accuracy in solving third-order delay differential equations. 

The findings indicate that the (5) 3TDRKT method is highly suitable for this 

class of equations. 

Furthermore, the new method shows great potential for future research. We 

recommend extending the (5) 3TDRKT approach to address fractional and 

singular delay differential equations, which could broaden its applicability 

and utility in various scientific and engineering disciplines. 

The results of this study underscore the significance of advanced numerical 

methods like the (5) 3TDRKT in enhancing the precision and stability of 

solutions for complex delay differential equations. 
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