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Abstract— Network traffic has risen in recent years to the point that it is 

obviously and astonishingly in 2020, with the increase predicted to double in 

the following days. Up to 23 Teraa bit every month is an incredible amount. The 

Active Queue Management (AQM) algorithm is one of the most significant study 

areas in network congestion control; nevertheless, new self-learning network 

management algorithms are needed on nodes to cope with the huge quantity of 

traffic and minimize queuing latency, used reinforcement learning for automatic 

adaptive parameter with the AQM algorithm for effective network management, 

and present a novel AQM algorithm that focuses on deep reinforcement 

learning to deal with latency and the trade-off between queuing delay and 

throughput; choose Deep Q-Network (DQN) as the foundation for our scheme 

and equate it with Random Early Detection (RED) Results based on Network 

simulation (NS3) simulation suggest that the DQN algorithm has good and 

better results were obtained from RED, where the difference reached a drop 

rate of 2%, and this percentage is considered good, in addition to the 

percentage of throughput and the packet transfer rate of 3% is better in the 

proposed algorithm. 

Index Terms— Adaptive Queue Management, Network congestion, Network Traffic Management, 

Deep Q-Network, Reinforcement Learning. 

I. INTRODUCTION 

It is vital to avoid excessive packet failure rates over the Internet. If a package is 

lost before it reaches its intended destination, it loses all of the energy it used in 

transit. In severe circumstances, this condition will cause congestion to collapse [1]. 

Active Queue Management (AQM) has arisen as the sophisticated network control tool for 

selectively sending and receiving packets for effective management when it comes to 

queuing networks [2]. Unlike passive queue such as First-In-First-Out (FIFO), AQM 

implements the smart drop of network packets to minimize network congestion by adjusting 

the parameters of AQM, such as the possibility of packet-drop adaptation to the 

environment. Online Innovation Task Force (IETF) common usage of and approved AQM 

schemes [3]. Machine Learning (ML) has developed into an essential technology in the 

industries and our quality of life. In fact, Deep Learning (DL) appears to outperform 

numerous ML methods in diverse fields such as effective data coding and modeling 

artifacts (unsupervised learning), as well as usual classification and prediction employment 

(supervised learning)[4]. DL has also been extended to Reinforcement Learning (RL), 

which is an ML type that looks at how the program agent decides to take appropriate action 

on such states to get the highest total reward [5]. In this paper suggest an AQM (RED) 
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implemented deep reinforcement learning framework for effective network control and 

research the trade-off between queuing latency and throughput. Our program is built using 

Deep Q-Network (DQN). Like key Q-network and goal network equipped with experience 

replay [6]. Based on the current state consisting of dequeue_rate, enqueue_rate, drop rate 

and avg_queue_lengh it chooses a packet drop or non-drop operation at the packet 

departure point. Once an event is chosen, a compensation is determined on the basis of the 

many factors to be explained in the following [7]. 

II. RELATED WORK  

Bouacida et al. [14] introduced Learn Queue AQM algorithm focused on wireless 

networking reinforcement learning. Through dynamically modifying a buffer size utilizing 

Q-Learning in a specified period, they change the Q-table and refine the Q-function 

strategy, however check their method for just two and three scenarios deployed. 

Bisoy et al. in [15] proposed an AQM scheme focused on a shallow neural network 

with one secret layer consisting of three neurons to resolve the non-linearity of the 

networking framework and the queuing latency, but their research did not deal with the 

trade-off between throughput and delay performance . 

Reinforcement Learning-Queuing Delay Limitation (RL-QDL) AQM algorithm 

suggested in by Vucevic et al. [8]. RL agents provide topology details from the bandwidth 

broker that handles resource management and QoS provisioning based on what QoS 

requirements are met in egress routers (ERs). This supports Class-Based Queuing (CBQ) by 

endorsing three separate classes: Expedited Forwarding (EF), guaranteed forwarding (AF), 

and Best Effort (BE) trac to provide end-to - end QoS to customers with specific service 

types. With respect to network scheduling algorithms, Chen et al.[9] suggested automated 

computation offloading strategy focused on Deep Reinforcemnt Laerning (DRL) by 

implementing a double DQN on the edge node. Comparing with standard algorithms, their 

solution implied the optimum tradeoff between task latency and drop. 

Xu et al. [10] applied DRL to network trace engineering in by implementing actor-

critical approach with a replay of prioritized experiences. Authors contrasted their algorithm 

with the commonly used baseline solutions, such as Shortest Path (SP), Load Balance (LB), 

and Network Utility Maximization (NUM), and checked that their model performs better 

than specified baseline solutions.  

 Minus Kim B.Eng. [6] proposed the design of Deep Reinforcement Learning based 

Active Queue Management. As a baseline model of the design, selected Deep Q-Network 

since the state transition in networking is discrete and it is able to be expressed as a finite 

Markov Decision Process which is the fundamental principle of reinforcement learning. 

Applying deep learning framework deployed the AQM scheme at the interface of the 

fog/edge device connected to the cloud gateway, and our proposed scheme achieved 

substantial performances such as low queuing delay and jitter on the stochastic IoT 

environment simultaneously maintaining good throughput comparing with widely used 

AQM schemes. 

III. NETWORK SIMULATION-3 SIMULATION 

Ns-3 simulator is a discrete-event network simulator targeted primarily for research and 

educational use. The ns-3 project, started in 2006, is an open-source project developing ns-

3.[6] 
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Ns-3 has been developed to provide an open, extensible network simulation platform, 

for networking research and education. In brief, ns-3 provides models of how packet data 

networks work and perform, and provides a simulation engine for users to conduct 

simulation experiments. Some of the reasons to use ns-3 include to perform studies that are 

more difficult or not possible to perform with real systems, to study system behavior in a 

highly controlled, reproducible environment, and to learn about how networks work. Users 

will note that the available model set in ns-3 focuses on modeling how Internet protocols 

and networks work, but ns-3 is not limited to Internet systems; several users are using ns-3 

to model non-Internet-based systems. [6] 

IV. PROPOSED SYSTEM 

        First give an explanation of Deep Q-Network (DQN) which is the baseline of our 

system. Then describe the design of our system in terms of the state, action, and reward, 

and the algorithm is followed by focusing on how to give a reward to the agent in detail. 

A. Deep Q-Network  

The reinforced learning is achieved through the interaction of the agent with the 

environment in sequential time steps (t = 1, 2, 3, …..) randomly. At each time step, the 

agent tests an action out of set of actions At ∈ A (s) that come from the state St ∈ S. After 

the A(t) action is tested, the agent receives a reward, and a new state is assigned S(t+1). 

Through repeating this method (operation), each notion in the path will be suitable to 

express MDP (Markov Decision Process) Process  shown in Fig 1, as following: 

(s1, a1, r1), (s2, a2, r2)…(sn, an, rn) which s is state, a is action, r is reward.  

Instead of transforming MDP , the Markov characteristic, which has no random memory.  In the 

random operation, the future stats depend on the current state not on the complete path of the actions 

[5]. 

 

 FIG. 1. ILLUSTRATES THE MDP OPERATION. 

In the network waiting queue, packets will enter the waiting queue, and the agent will 

be able to monitor the current state of that queue to decide whether to drop the packet or 

not. It also monitors the next stack and can obtain Reward. RL can be added as a 

representation of the sequence in each step (t). There are two important features of RL, they 

are searching for the experiment and error and searching for the Reward [5]. 

 

 

 

 

https://doi.org/10.33103/uot.ijccce.22.3.6


 65 

Received 15/October/2021; Accepted 13/December/2021 

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 22, No. 3, September 2022             

DOI: https://doi.org/10.33103/uot.ijccce.22.3.6 

 

B. DQN based AQM System Design  

In this section introduce the state, action and reward function design for our AQM 

algorithm based on the DQN. 

Step1: Process of Selecting Action.  

With respect to the state of RL, consider four elements: dequeue rate, enqueue rate, 

drop rate and Avrg_Queue_Len. At each time step t, state st is defined as st = {dequeue 

rate, enqueue rate, drop rate and Avrg_Queue_Len} which is an input of multilayer 

perceptron (MLP) consisting of three hidden layers of 16-32-16 neurons for each layer. For 

selecting an action, main Q-network is used and it returns two probabilities as an output 

(drop/non-drop probability). utilize the explore/exploit approach to discover a better action 

on a given state. This implies that the agent either performs an action based on its own 

selection (exploit) or chooses a random action uniformly based on a specific probability 

(explore).  For the explore/exploit strategy starting from a highly random probability of 

action for the explore/exploit strategy. The exploring probability is set at 90 percent based 

on the round of the episode at the first episode of the network simulation, and it diminishes 

to 0 percent through the episode. Section 3.2 explains the selection process for an action. 

Step2: Reward Engineering 

During the interval Tint, the RL agent waits for the next state st+1 after performing an 

action. A reward function evaluates the chosen action. The most essential aspect of 

constructing the reward function is to optimize the trade-off between queuing time and 

drop-rate, as well as to prevent endless or non-drop packet states. refer learn Queue's 

reward function as a baseline  

 𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑐𝑙𝑖𝑝 ((ϒ ∗  𝑑𝑒𝑙𝑎𝑦_𝑟𝑒𝑟𝑤𝑜𝑟𝑑)  +  ((1 −  ϒ) ∗

 𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑟𝑒𝑤𝑎𝑟𝑑), −1, 1)                (1)  

There are two main components for a reward: delay_rerword and enqueue_reward  for 

queuing delay and packet drop-rate respectively, and the ϒ is scaling factor used to balance 

between  delay_rerword  in Eq. 2. and enqueue_reward 

 delay_rerword is 

 𝑑𝑒𝑙𝑎𝑦_𝑟𝑒𝑟𝑤𝑜𝑟𝑑 =   𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦 −  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑙𝑎𝑦                        (2) 

when desiredQueueDelay is Expected delay and the default is 0, and the current_delay  

is in Eq. 3. 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑙𝑎𝑦 =  𝐴𝑣𝑟𝑔_𝑄𝑢𝑒𝑢𝑒_𝐿𝑒𝑛 / 𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑅𝑎𝑡𝑒                                    (3) 

where = Avrg_Queue_Len is current queue length in bytes, and dequeue_Rate in Eq. 4. 

is the average dequeue rate per sec 

 𝑑𝑒𝑞𝑢𝑒𝑢𝑒_𝑅𝑎𝑡𝑒 =  𝑑𝑒𝑞𝑢𝑒𝑢𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 / 𝑡𝑖𝑚𝑒𝐷𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒                        (4) 

where dequeueCounter is the Packet numbers will not enter the queue, where 

timeDiffrence is set by user. enqueue_reward  in Eq. 5. is defined as: 

𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑟𝑒𝑤𝑎𝑟𝑑 =  (𝑚𝑖𝑛_𝑑𝑒𝑙𝑎𝑦 −  _𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑄𝑢𝑒𝑢𝑒𝐷𝑒𝑙𝑎𝑦)  ∗  𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑟𝑎𝑡𝑒          (5) 

where min_delay in Eq. 6. is define as: 

 𝑚𝑖𝑛_𝑑𝑒𝑙𝑎𝑦 =  𝑎𝑣𝑟𝑔𝑄𝑢𝑒𝑢𝑒𝐿𝑒𝑛𝐼𝑛𝐵𝑦𝑡𝑒𝑠 / 𝑏𝑎𝑛𝑑_𝑖𝑛_𝑏𝑦𝑡𝑒𝑠                       (6) 

where avrgQueueLenInBytes is the current queue length of the device in bytes, band is 

the physical bandwidth (data rate) of Peer-to-Peer (P2P) link connected to the device, and 

enqueue_rate in Eq. 7. is defined as: 

𝑒𝑛𝑞𝑢𝑒𝑢𝑒_𝑟𝑎𝑡𝑒 =  𝑒𝑛𝑞𝑢𝑒𝑢𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟/(_𝑒𝑛𝑞𝑢𝑒𝑢𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 +  𝑑𝑟𝑜𝑝𝐶𝑜𝑢𝑛𝑡𝑒𝑟)           (7) 

where enqueueCounter is the number of enqueued packets and dropCounter is the 

number of dropped packets 

Step3: Training Process.  

https://doi.org/10.33103/uot.ijccce.22.3.6
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Since using DQN as our model, at each time stage t the agent stores an experience et = 

(st, at, rt, st+1) in tuple format to the replay memory. When the number of replay memory 

experiences approaches the mini-batch size, the agent randomly selects samples of the 

memory experiences in a consistent manner, In the first episode, initialize the weights of the 

initializer MLPs, which assigns the weights of the layers from a Gaussian distribution [12], 

and minimize the loss using the optimizer Adam [13] to train the model. 

Fig. 2 shows the flowchart of DQN based AQM training process. In the flowchart, 

tcurr is current time step t, and C is target update step to update the target network 

periodically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2. FLOWCHART OF DQN BASED AQM TRAINING. 
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V. SIMULATION ANALYSIS 

This section validates the validity and performance of the NS3 simulation 

experiment of the designed DQN algorithm, the simulation uses the typical single-

bottleneck network topology as shown in Fig. 3 The network has n senders (S1~Sn), 

receivers (r1 ~ rn), and 1 router (n2). The bandwidth and delay between each sender 

(n1) and (n2) is 100Mbps and 0.1ms, and the bandwidth and delay between each 

receiver and (n2) are 100Mbps and 5ms too. To compare, and analyze the RED 

algorithm and DQN algorithm's queue length, throughput, delay, and packet loss 

rate under changing load, respectively. The performance of the algorithm, the 

simulation time is 100 seconds. Table I shows the queue length and standard 

deviation of the RED algorithm and the DQN algorithm. As can be seen from     

Table I the average queue length of the RED algorithm is larger than that of the 

DQN algorithm. So, the DQN algorithm reduces the drop probability, and reduces 

the delay. 

FIG. 3. SIMULATED NETWORK STRUCTURE. 

VI. RESULT AND DISCUSSION  

1- For Low load (number of sessions (n) = 60)  

The ability of two algorithms (DQN, RED) to keep queue length near to desired 

value is shown in Fig. 4 a,b. Can be observed in Table I, with the DQN method 

having a little advantage. the number N factor is  60 indicates that by increasing the 

number of training classes, higher outcomes may be reached. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4. A. RED ALGORITHM UNDER LOW LOAD. 
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FIG. 4. B. DQN ALGORITHM UNDER LOW LOAD. 

TABLE I. MEAN AND STANDARD DEVIATION OF THE QUEUE LENGTH UNDER LOW LOAD 

Scenario Mean (packet) Standard Deviation (packet) 

RED 68.958 10.33 

DQN 71.319 17.37 

 

2- For Mid load (number of session (n) = 80)  

Table II shows the ability of two algorithms (DQN and RED) to keep queue 

lengths close to desired values shown in Fig 5 a,b  , with the DQN approach having 

a little edge. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5. A. RED ALGORITHM UNDER MID LOAD. 
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FIG. 5. B. DQN ALGORITHM UNDER MID LOAD. 

TABLE II. MEAN AND STANDARD DEVIATION OF THE QUEUE LENGTH UNDER MID LOAD 

Scenario Mean (packet) Standard Deviation (packet) 

RED 74.23 13.187 

DQN 76.222 7.322 

 

3- For High load (number of session (n) = 100  

When changing the number of sessions to 100, it can be seen the ability 

of two algorithms (DQN, RED) to keep queue length near to desired value, 

shown in Fig. 6 a,b can be observed in Table III, with DQN method having a 

little advantage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6. A. RED ALGORITHM UNDER HIGH LOAD. 
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FIG. 6. B. DQN ALGORITHM UNDER HIGH LOAD. 

TABLE III. MEAN AND STANDARD DEVIATION OF THE QUEUE LENGTH UNDER HIGH LOAD 

Scenario Mean (packet) Standard Deviation (packet) 

RED 98.204 14.532 

DQN 97.214 17.01 

 

TABLE V. COMPARE MEAN PACKET, THROUGHPUT AND DROP RATE BETWEEN RED ALGORITHM AND DQN ALGORITHM 

UNDER CHANGE LOAD 

N 
Mean (ckets 

RED) 

Mean packets  

DQN 

Throughput  

RED 

Throughput 

 DQN 
Drop RED Drop DQN 

60 68.958 71.319 4.7446 4.7462 11.00% 10.00% 

80 74.23 76.222 4.5263 4.5654 12.70% 12.10% 

100 98.204 97.214 4.5334 4.5551 16.90% 15.80% 

 

VII. DISCUSSION 

The statistics of the throughput, delay, and drop rate of the RED algorithm and DQN 

algorithm are shown in Table V. It can be found that in the dynamic network environment, 

the performance of the DQN algorithm is better than that of the RED algorithm. 

Through the aforementioned simulations and analysis, the performance of DQN 

algorithm including throughput, delay, and the drop rate is consistent with the expected 

results. Although unilateral performance improvement is not too much, the overall 

performance in different network scenarios is better than the RED algorithm. Therefore, 

DQN algorithm can improve the sensitive parameters of RED algorithm to a certain extent, 

so that the DQN algorithm achieves better network performance and can select appropriate 

parameters deceptively according to different network scenarios (changing the load factor 

network (N) 60-100). 

VIII. CONCLUSIONS  

To boost the parameter settings of the RED algorithm, and allow the algorithm to 

achieve improved network efficiency, the RED algorithm selects the correct parameters 

according to the learning process. This paper discusses an improved RED algorithm, 

https://doi.org/10.33103/uot.ijccce.22.3.6
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known as DQN. The Q-learning algorithm is used in this method to pick the highest 

likelihood parameter for the decrease of packets. The parameters of the RED algorithm are 

immune to faults and can anticipate complex shifts in network networks. The learning 

structure gets the optimum Network Quality Management System. This will tailor the 

highest likelihood of packet drop for the algorithm, ensuring better efficiency of the 

network while preventing congestion. The simulation tests validate the DQN algorithm’s 

benefits, which can be applied in the network to preserve reliability, minimize latency, 

Boost throughput, etc. The overall network output of the DQN algorithm is better than that 

created by the RED algorithm. Throughout our future research, shall find enhancing the 

quality of the improvement of the act. 
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