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Abstract:-

A finite elements technique has been used to determine the natural frequencies

of a cantilever plate mounted on the periphery of a romting dise, The rotating
cantilever plate has been idealized as an assemblage of three nodded wiangular shell
clements with six degrees of freedom at each node. In the analysis the initial stress
effect (geometric stiffness) and other rotational effects except the carioles acceleration
eifect have been included.
The eigenvalues have been extracted by using simultangous itcration technigque. From
the result of computations carried out for various values of the aspect ratio, the speed
of rotation, disc radius and the setting angle. The numerical results have shown a good
agreement compared with the available investigations using other methods.
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1.Introduction
The natural frequencies of

the blades are generally idealized as
cantilever beams, the vibrations of

rotating turbomachinery blades are
known to be significantly higher than
those of the non- rotating blades. The
design speed for turbomachine is
senerally established by drawing a
Campbell diagram for each row of the
blades [1]. The diagram essentially is a
plot of the vibration of the first few
natural frequencies of the blades with
the speed of rotation with possible
resonances. The design speed of the
engine should be away from these
possible resonances points. Obviously.
the correct cstimation of the natural
frequencies of the blades at various
speeds of rotation is important. Since

rotating cantilever beams have been
studied in several investigations,
Suther land [2] has used Myklestad
type method by a suitable modification
of the equations, relations the shear
and the moments of conseculive
conditions on the beam, to take into
account the effect of the centrifugal
forces. Schilhaus [3] has derived the
cquations of motion for the banding
vibration and solved [t by successive
approximations 1o determine the elfect
of rotation on the fundamental
frequency by  considering  the
differential  equation as  Euler
characteristic equation of a variational
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problem  and minimizing  energy
function. Kissel [4] has also
investigated the fundamental frequency
of rotating cantilever beam. The effee
of  rotation on  the fundamental
frequency has been further by Carmnegie
[5]. the first three bending frequencies
of a rotating beam have been obtained
by Yntema [6] by using the Rayteigh
energy method. Hsu Lo [7] and
Bogdanoff [8] have shown that the
effete of the non-liner terms arising
form the coroles acceleration s
negligible. The problem of torsional
vibrations of rotating cantilever bars
has been studied by Bogdanoff and
Horner [9]. Dokainish and Rawtani
[10] used a finite element technique to
determine the modal characteristics of
rolating cantilever plates.  Asimilar
Approach was taken by Ramanurti and
Kietb [I1] to determine the modal
characteristics of a twisted rotating
plate. They wused a strain  epergy
expression for a plate that employs
steady-  slate in- plane stress
components, The steady- state in-plane
siress components were obtained either

analytically  from the  partial
differential equations of stretching
motion or numerically from the

equilibrium condition between the
centrifugal inertia force and the steady-
state in-plane stress. Then,  the
equations of motion were derived by
using the strain energy expression in
which the steady-state in-plans stress
components previously obtained were
employed. Because of the prohibitive
complexities  involved in this
conventional modeling method,  the
procedure of deriving eguations of
molion was rarelv described in detail
in the Literature. Different from the
conventional modeling method, which
employs only cartesian deformations
variable, a new medaling method for
beams undergoing overall motion was
introduced by Kane et al [12], and later
extended by wyoo et al [13]). This
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modeling method employs a  non-
Cartesian  deformation variable that
represents the stretch of the beam
along s neutral axis to  derive
equations of motion directly, The use
of the non- eartesian variable led to the
accurate 1o capture of the stiffening
effect. This modeling method was later
successfully utilized 1o obtain modal
characteristics of rotating beams By
Yoo and Shin [14] similarly; a linear
dynamic modeling method for plates
undergoing  overall molion was
introduced by Yoo [15] and its
accuracy was verified by Yoo and
Chung [16]. A similar modeling
method was also developed for another
two—dimensional elastic bady, a disk,
by flower [17]. The key ingredient of
the modeling method introduced in Ref
[13] and [16] is the use of twa in —plan
stretch variables by which the exact in
-plan strain energy can be expressed in
a quadratic form. The use of the two
stretch variables enables onto derive
linearized equation of motion that
include proper motion -—induced
stiffness variation terms.

2. Theoretical Back G round

The formulation follows a
pattern similar to that in Ref. [11]. Two
Cartesian co-ordinate systems are used,
an absolute fixed system R, (X, 1,Z,)

and & local system R, (X Y2 )(see

Fig. 1} attached 1o the rotating disc.
The potential strain energy U and
kinetic T are, respectively,

o =% Lz' o d(val) D

T=§I [dpfrn'{wu'] AN

Far plate bending problems, according
to Zienkiewicz [15], the strains are
given by
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(e} = {E'“}+ “"“} (3)
‘, 10
g,and £ are strains due 1o in-plane

and bending displacements
respectively and £ is the effect of

bending displacements an mid-surface
strains,
The stresses are given by,

o = {"”1 o (4)

-:r,J
Where |o land (&, }are in — plane

siress  resultants and  bending  and
twisting momernts, respectively,

With the definitions for stresses and
strains L is given by,

U=R+R+R, L 5)

Where PP plane stress, bending
strain energy and P, supplementary
strain energy due to the effect of
bending displacement on mid-surface
strains, more expressions for B, F, and
£ are standard [16].

At rest the co-ordinates of a typical
Point M on  the mid-surface
arelx, w00, Due 1o the displacement

td} = v, w] .(6)

The instantanecus co-ordinates of M are (x+w, ¥+ v, +w) , and then

[
| R}

Z L

i

x [1‘-1—!!
ﬁd’"'=ﬁ”‘+m'=1x EaT

The angular velocity in the R system is

a' =0, 0,0,

X 4x+u
yepevr A7)
z+w

.. (B)

And the absolute velocity of the point M is given by

m"' |y‘l 53 I +x+u
F=_f:_._._=||,‘;-+ Chpsay, #3041
oty

Computing V(ie.V V), canceling
the terms like those proportional 1o
z; which give no centribution when

" +ﬁ||:—-. +H"§—ﬂ1 |:yl +JJ+'|.IT

VG Lx +x+a) =0 (2 +w) (D)

w | |€2, :,+u-| | W 0 [y, + y+v}=L2, (x, + 2+ 1)

Lagrange's equations are applied, and
substituting the result in

Eq.(2) one can write the kinetic energy
as [16],



Oday. 1. Abdullah /Al-khwarizmi Engineering Journal Val.2, No. 2 PP 46-60 (2006)

(1] [u] u) u
T=% Ip TR N }d{mfﬁ% I,ﬂ Vi A pd(vel) +
e 'Hr'.. w’lJ il W‘ W
, . ? + {10}
Tl u ) J.r,+'n." u)
L J-.-"}’f v : [ ] 1 v p(val )+ ; jp ¥+ _1':l [Ay] 5w pal{ved)
£y |Ille !I“ } = i = | i

0 -20, 20,
[4]=| 22, o -0 (11)
-, 29, 0

- [+ -00, -0,
[4]=| -0, Of+Q] -0.0 <o (12)
-00, -00, O+

2.1.Derivation of The Stiffness Matrix displacements w the  polynomial
The polynomials for  the assumed is cubie [15].
displacements wand vare linear in The in = plane nodal displacements are
L Ly and L while for the defined by,
Iqllﬂ'[u‘ L T O 1=_.,]' ey

And the bending nodal displacements are defined by,

19,1 = w8, .8, w8, .8 .w.8, .8, e (14)

After standard finite clements procedure one arrives at

u 0 0 1]
H=[r-f.1w.}m1=[i; 1% 07 2| s

(w) =[N g, L [V, = [N, N, N, T .. (18,19)
Mow b+ B Ll - LB -5 8 (200
Ny =B L+ 20 4 L) -by (L E+2L L L) (21)
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N, =ﬂ,{£f L +%L L L) =a, (L .E.f +% L Ll .27

The other shape functions for nodes 2
or 3 can be written down by a evelic
permutation of the suffixes 1, 2, 3.

L, Lz Ls and the area co—ordinates,
and g, and b, , are defined in Fig.2.
Once one knows the expression for the
strain and the shape functions, then
& the in—plane stiffness  matrix,

andk,, the bending stiffness matrix,

can be easily derived. The integration
is performed by using numerical three
point  integration [17] over the
triangular area.

2.2.Derivation Of Geometric
Stiffness Matrix

Owing to the presence of the
in—plane stresses o), o, and 7,, in the
middle surface caused by rotation, the
additional strain energy stored in the
element is given by P,. This additional
strain energy results in an increase in

the stiffness of the elements by an
amount,

(1]

]
k)= ”{G}’ﬁ; ;;}[Ujﬁdfl (23]

Where [Glis defined by

&l

A =[Glg.} 29
ax |

For details see Ref. [15],

It is easy 1o show that

U=—;q J[k‘#k_r]fi“"]iq" kg g ...(25)

fa}=lg:. 4.1 .-26)

Therefore
U=kt lavkeg  ..D)

LY. Derivation of Mass, Carioles and
Supplementary Matrices, And The
Load Vector

By using Eq. (16 and 18) in Eqg.
(10) and then applying Lagranpe's
equations one obtain,

a/ Ve ar L <N TEVL LN M,
[xarp[ Vag g Fmed 4 kg

(28
With || defined by,

N 0]
[

The element mass matrix is,

[m;]=p [[N] [Nld(val)  ..29)

wad

The element coriolis matrix is

[Cl=p [INITANINId(vol) ...(30)

The element  supplementary  or
rotational stiffness matrix is,

[ked=p [INT [4,)[N]d (vol) ...31).

And the force vector is,
X+ X

{Fh=p [INT 141y, + y divel)...(32)
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2.4.Final Matrices After Assembly
Adding expressions (27) and
(28) and equating the resull 1o zero
gives the final differential eguation of
the strueture after assembly in from,

Mg~ +Cq HK, +K,+K)g=FEY) ...(33)
The matrix &, depends on the initial

stress distnibution. [nitially the stresses
are taken as zero and the equation.

(K, +K,1g=F(Q") . (34)

Is solved for the initial siress
distribution o, Then the solution of,

(K, + Ko (03)+ K, ) g = F(2)...(35)

Gives a new stress distributions . The

stress  values were found to
converge within two iterations.

Finally  the frequencies  and
eigenvectors  are  found  for  the

deformed configuration. The eguation
of motion of the structure, with the
carioies matrix neglected, is

Mo g™ +[K + K (g)+ K, Jg=0 ..(36)

Assuming harmonic vibrations,
g=g, ¢, One has

(K, +K (o) + K~ M,)g, =0...(37)

In which M,and K. +K, +K, are
symmetric and  positive  definite
matrices Eq.  (37) s standard
eigenvalue problem and is solved for
the eigenvalues and cigenvectors by
using a  simullapeous  iteration
technique [18 and 19],

The tapered and skewed plate can also
be modeled by triangular  shell
elements, the variation i thickness
being accounted for hy delining the
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thickness of the element at the three
nedes, For formulating all the matrices
the element thickness can by taken as
the mean of the nodal thicknesses.

3.Check Problem

To check the suitability of the
present triangolar shell elements for
medeling the rotating plate structures,
the problem to determining the natural
frequencies for rotating and stationary
cantilever blade solved by Garngic
[24]. The current results that was
exhibited in Table, (1) measure with
the case study in Ref. [24]. Table. (1)
shows the fundamental natural
frequencies for rotating and stationary
blade. In this table the maximum error
not exceeds (1.7%). The data for the
verification case are:

E=217Gpa, auszammpﬂs&oﬁ%f,
b=28 mm u=03, r=150mm
(=100 my"s’aﬁ r=3 mm

4.Case Study

The aim af this study is to fill
the pap by furnishing the information
about the hehaviour of rotating plate
regarding vibration behaviour having
different skew angle, speed of rotation,
disc radius and thickness subjected 1o
centrifugal loading. Analysis has been
done on flat platea =0. The mesh
sizes (5%S5), (6%4) and (9%4) were
chosen for the analysis for the cases in
which the aspect ratios were (1, 2 and
3} respectively (See Fig. 3). In all
computations the material of the plate
has been assumed to be homogeneous
and isotropic. The material properties
are:

E=210Gpa, a=30mm.i =3 mim
Kg

=3 =785 =1,

(1 mm, p= TES0 .4?,,4.! 0.3
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5.Results and Discussions

The matural frequencies are
computed for plates of differem non-
dimensional speed [ﬁ ﬁamﬂml}. non-
dimensional-radius of disc {F fromOto 3}
s2lling angle ﬂﬂ from to 91}']. thickness
of the plate (1 from2mmiteSmm) and
aspect ratio [jffg =12 and 3]‘.

The variation of the firsi three
non=dimensional frequency of
vibration (&) with (02 ) were shown in
Figs. (4, 5, 6 and 7) for the plates
having [.r ;l of (0, I. 2 and 3)
respectively and {E‘ =0t =3mmn ]

The second set of results will
initiate the tendeney of change in the

{ﬂ] with {ﬁj for different setting
angle {E=1]'.4.5' and 9{]'} were shown
in Figs. (8, 9 and 10) for the plates

having aspect ralios of [ﬁﬁ =1,2 and 3}

respectively and [J:ll 1 }

Figs. (11 and 12) show the variation of
the fundamental natural frequency with
the wvariation of Eﬁ:l for different

thickness (f =2.3.4and Smm) for the
plates  having aspect  ratios  of
{%: = lamd 2} respectively,  and

Eﬁ = D',.i‘ -] ]

All the natural frequencies are
observed o increase with the speed of
rotation and with the increasing radius
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of the disc. An increase in the setting
angle causes a decrease in the natural:
frequencies. It can be recognized that
when the thickness increase the natural
frequencies increases.

Also it can be observed the
speed of rotation znd disc radius are
effect of large part of results, which the
natural frequencies are proportional to
the speed of retation and dise radius.
6.Conclusion

The finile element method has
been applied o study the influence of
various parameters such as skew angle,
aspect  ratio,  speed  of  rotation,
thickness and disc radius on the natural
frequencies of a rotating cantilever
plate.

The conclusions obtained from
the present analysis can be summarized
as follows:

[. The frequencies of all modes of
vibration are independent of skew
angle and disc redius when the
cantilever plate is stationary,

2, The maximum effect of skew angle
ooccurs when skew angle ig {E}= LY :'

3. The plate thickness is very effective
on the natural frequencies for both
cases (stalionary and rotaling plate),

4 The speed of rotation and disc
radius are very effective parameters
on the natural frequencies for
rotating cantilever plate.
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Table. 1 Values of fundamental natural frequency (Hz) for stationary and rolating cantilever plate.

Present Work Ref. [24] Error %
(Q=0) 23.9 236 1.2
(Q2=1007rad /sec) 52.9 52.0 1.7 ,

My
[ "
At - ~-"ﬂ3
g [ = —1 — T
Fra, W e e
!L_ B I.Ir"ilE‘-_:\ 15K, h _—-"_'_'__'_F/
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Fig.1 Cartesian co-ordinate system.

oy = ay | oy

=

Ll B )

L A ]

§—=

1
SyiEo gy

Fig. 2 Area co-ordinates.

o ¥ (3*4) | (6%4) | (5*3)

\“ Nowof 22 50 -1-5:;;5
elements
No. of
), nodes

30 35 | 36

Fig. 3 (9*4), (6*4) and (5*5) mesh used in the shell analysis.
53
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R (0X,1,2,)
R (¥ ¥.2,)

o W =IO

Ulobal Cartesian eo-ordinate system attached to the rotating
dise

Absolute lixed Cartesian co-ordinate system

Local Cartesian co-ordinate system

Kinetic energy

Total potential energy

Absolute velocity of M

Non-Dimensional frequency of vibration, = wa® \{pr/ D
Strains

Strain due to in-plane and bending displacements
Effect of bending displacements on mid-surface sirains
Shew angle, setting angle

Fasisson's ratio

Mass depsity K /!

mress N
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Bending and twisting momeni

Lnitial in-plane stress

Frequency in rotation {rad/ sec)

Frequency at rest (rad /sec)

Speed of rotation {rad /sec)

Components of Qin K,
Non-dimensional speed, =€/,
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