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Cone Beam Computed Tomography (CBCT) has emerged as a valuable imaging 

modality for various medical applications due to its ability to provide three-

dimensional information with minimal radiation exposure. However, CBCT 

images often suffer from inherent limitations, such as increased noise, artifacts, 

and reduced spatial resolution. This paper presents a comprehensive review of 

image processing techniques employed to enhance the quality of CBCT images, 

addressing the challenges posed by acquisition hardware and image 

reconstruction algorithms. The review covers a range of preprocessing and post-

processing methods, including denoising, artifact correction, and resolution 

improvement techniques. These methods encompass various mathematical 

algorithms, machine learning approaches, and hybrid models, which aim to 

mitigate the imperfections present in CBCT data while preserving diagnostically 

relevant information. Additionally, this paper discusses the application of deep 

learning methods, convolutional neural networks, and generative adversarial 

networks in CBCT image enhancement. These advanced techniques have shown 

promise in tackling the complex nature of CBCT data and optimizing image 

quality. 
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Introduction 

Modern CBCT equipment generates superb, 

high-resolution, three-dimensional images of the 

oral anatomy, simplifying and confirming dental 

implant planning and surgical placement. The 

diagnostic landscape is continuously evolving due to 

the introduction of new technology in dentistry, 

which enables dentists to diagnose in three 

dimensions [1]. Since the development of CBCT, 

patients have profited from improved diagnosis and 

treatment planning, as well as eventually safer and 

more predictable procedures. As computers and 

scanning technology have advanced, it has emerged 

as a crucial diagnostic tool for researchers and 

practicing dentists in the quickly evolving field of 

digital dentistry. Additionally, CBCT's use in 

periodontics, endodontics, orthodontics, 

temporomandibular joint diseases, airway 

assessment, and oral and maxillofacial surgery have 

been extensively documented recently [2][3].  

Considering the same objectives, the required 

radiation dose for CBCT is less than that of CT. The 

existence of grey level non-uniformities in 

reconstructed CBCT images is a contributing factor 

to the creation of artifacts [4]. These distortions may 

cause image deterioration and result in incorrect or 

misleading diagnoses. It is anticipated that 

healthcare conventional practices will be both 

disrupted and transformed by artificial intelligence 

(AI) [5][6] .The adoption of medical technology has 

historically been led by radiation oncology, a 

tradition that necessitates knowledge of both the 

theoretical and practical elements of a specific 

technology. In addition to providing a pictorial essay 

explaining the numerous CBCT defects and 

artifacts, this article may aid in understanding the 

factors contributing to CBCT image deterioration. 

Therefore, the purpose of this study is to provide a 

broader understanding of state-of-the-art deep 

enhancement techniques used in cone-beam CT 

(CBCT) image. It also seeks to provide a summary 

of discoveries that are clinically relevant and 

constructive suggestions for further research.   

CBCT WORKING MECHANISIM 

Cone Beam Computed Tomography (CBCT) 

expands upon the basic ideas of conventional CT 

scanning. With CBCT, the patient is exposed from 

one side while an image detector rotates around the 

patient to measure the attenuated X-rays on the other 

side [7] (see Fig. 1). Exposure can be either 

continuous or pulsed during the rotating scan; pulsed 

exposure is increasingly used in dental CBCT to 

shorten effective exposure times and lower patient 

doses [8]. 

The X-ray attenuation follows the fundamental 

physics laws of radiation dose and the atomic 

makeup of the patient's anatomy in the field of view 

(FOV). Compton scattering and the photoelectric 

effect are two significant interactions that regulate 

the fundamental equilibrium for contrast 

representation in the images. While photoelectric 

effect is the main source of visual contrast, when X-

ray photon energy increases, its contribution 

decreases significantly. When tube voltages 

increase, there is a corresponding decrease in picture 

contrast. Simultaneously, the impact of scattering 

grows, accompanied by a spectrum shift towards 

higher-energy X-rays. [9]..  

Figure 1 Illustrates the fundamental principle of a CBCT 
scan [10]. 

 

The reproduction of 3D image is the key to 

CT imaging in the computational space. To solve  

the numerical opposite issue, this strategy intends to 

reason the three-layered guide of material-explicit 

lessening values inside the patient from the x-beam 

shadow signals recorded during openness. 

Customarily, standard CBCT scanners have 

depended on customary logical reproduction 

techniques, which are established on the guess of the 

Radon reverse change at first presented by 

Feldkamp et al. in 1984 [11].Iterative reconstruction 

techniques have gained popularity recently due to 

their ability to improve image quality and minimize 

artefacts [12].  

This strategy shows potential in mitigating a 

major CBCT challenge: the standard CBCT C-arm 

type gantry design's vulnerability to motion artefacts 

as a result of the scan time [13], which is relatively 

long. Artificial intelligence (AI)-based deep learning 

(DL) techniques represent a new development in 

picture reconstruction [14]. By utilizing large 

datasets of standard clinical or technical phantom 

images, these state-of-the-art methods address the 

reconstruction issue and produce improved image 

quality [14]. However, using AI-based 

reconstruction techniques has several challenges. 

The learning data must be sufficiently representative 

and span a wide range of patient anatomy and 

contrast occurrences. This ensures that the 

reconstruction method may be applied to any 

imaging circumstance and produces reliable and 

accurate image quality for every patient [15]. 

CBCT scanners employ a special exposure 

geometry to guidon x-ray beam in the direction of 

the specific dental area inside the scan field of view 
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(FOV) in the shape of a cone or pyramid. In this 

context, a "cone" is a beam where the diameters are 

about equal in the axial (x, y) directions but not in 

the vertical (z) directions (see Fig. 1). Modern 

CBCT scanners include flat-panel detectors (FPD), 

which are arranged as a pixel matrix composed of 

amorphous silicon thin-film transistors (TFT) or 

complementary metal-oxide semiconductors 

(CMOS) in order to gather the visual signal  [15]. 

Both TFT and CMOS indicator innovations work 

based on the backhanded transformation idea. Here, 

consumed x-beams are first changed in the locator's 

glimmer layer into light photons. Following that, 

photodiodes ingest these photons and read the whole 

photodiode pixel grid. This technique makes a 

solitary crude information projection picture from a 

particular precise course, which is then joined with 

different projections from the CBCT crude 

information [16]. 

The shine material that changes x-beam 

energy into light photons is either thallium-doped 

cesium iodide (CsI:Tl) or terbium-actuated 

gadolinium oxysulfide (Gd2O2S:Tb). Nowadays, 

FPD innovation, which is replacing obsolete picture 

intensifier (II) or charge-coupled gadget (CCD) 

based finders ,offers various imaging benefits, 

including high spatial goal, an expansive powerful 

scope of sign levels, a smooth plan, and a successful 

imaging chain [17]. These benefits are additionally 

upgraded by CMOS innovation, which gives 

significantly higher goal, quicker picture readout, 

and lower electronic clamor contrasted with existing 

shapeless silicon indicator models. This creation 

opens the chance of additional enhanced sweeps and 

further developed clinical picture quality [18]. 

The projection x-ray raw data must pass 

through several pre-processing steps before it can be 

utilized to reconstruct images. These pre-processing 

procedures take into account various features of the 

exposure settings and detector in order to address 

certain restrictions. Fixing the detector's dark current 

issues and pixel defects and gain utilizing offset and 

gain correction are important changes [17]. This 

fast-rotating CBCT scan yields a high frame rate of 

raw data projections. However, this increased speed 

may cause certain signals from the previous 

projection image to appear in the readout of the 

subsequent image. To address this potential latent 

picture signal, any residues from the projection 

image data are removed using afterglow correction 

[18]. 

Exposure factors are features of the x-ray 

beam, including the x-ray spectrum (which depends 

on the tube voltage and beam pre-filtration), the size 

of the focal spot, the focus-to-detector distance, and 

the scatter distribution at the detector surface (which 

depends on the patient geometry, scan, and 

spectrum). These parameters influence the sharpness 

of the image and the tube output. Additionally, the 

detector response, which is dependent on the 

specific design of the detector and readout 

electronics, and other physical aspects of the scan 

are taken into account when evaluating exposure 

[19]. 

Compared to multi-slice CT scanners, one of 

the main financial benefits of CBCT technology is 

reduced x-ray output requirements. Dental 

panoramic x-ray scanners and CBCT scanners 

usually run at comparable x-ray tube current and 

spectrum output levels [10]. Like panoramic 

equipment, the installation footprint for CBCT 

requires a minimal space, regardless of the presence 

of a cephalate. As a result, making the switch from 

panoramic to CBCT imaging does not need 

significant changes to dental offices. In contrast to 

the supine sleeping position, many CBCT gantry 

designs allow patients to be positioned in a standing 

or sitting position, which helps to minimize the 

equipment footprint [20]. 

The architecture of vertical CBCT gantries 

frequently resembles that of panoramic equipment, 

possibly combining both features (such as 

cephalometric imaging). In addition, they have 

sophisticated digital detectors, workstations for 

picture processing and reconstruction, and related 

software. Comprehensive upgrades are not 

necessary because the electrical supply and heating, 

plumbing, and air conditioning (HPAC) 

requirements for CBCT scanners match those of 

panoramic x-ray equipment [20]. As a critical 

component of optimizing medical exposure, medical 

imaging using x-rays stresses minimizing the 

exposed anatomical region in accordance with 

radiation safety standards. Restricting the exposure 

volume improves image quality while also adhering 

to safety regulations. This is especially important for 

dental CBCT imaging, since most current scanners 

come equipped with the capability to choose 

different FOV sizes [21]. 

This also effects the patient's radiation 

exposure and enables indication-specific 

optimization of the imaging FOV. The voxel size 

utilized in picture acquisition is also determined by 

user adjustments made to the FOV size and image 

quality settings. According to sampling principles, 

the observed spatial resolution is directly related to 

the collected voxel size. Comparing to larger voxel 

sizes, smaller voxels offer a more accurate portrayal 

of minute details in dental structures, however they 

require greater radiation dose to retain the same 

signal-to-noise ratio (SNR). The square root of the 

relative voxel volume drops and the relative dosage 

increase needed to maintain SNR are inversely 

related, according to Poisson statistics. For example, 

halving the dose with the same picture noise is 

possible with a four times bigger voxel volume [21]. 

One of the vital advantages of CBCT 

imaging is its capacity to produce a great 3D 

perception and multi-planar reformats of volumetric 

image information. This capacity is improved by the 

making of isotropic or almost isotropic image 

information, where the voxel aspects are generally 
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equivalent in each of the three bearings (x, y, and z). 

Isotropic imaging information works with the 

translation and investigation of the multifaceted 3D 

life systems of the jaw district by offering steady 

picture quality autonomous of the bearing where the 

reformatted cuts are anticipated [21]. 

When 3D image information has been post-

handled, there are a plenty of different applications 

past cross-sectional perspectives. Among these 

choices are reciprocal multiplane projections of the 

temporomandibular joint, virtual all-encompassing 

perspectives (bended multiplane reformat), 

cephalometric, and customary dental perspectives. 

All CT imaging procedures, including CBCT for 

dentistry, are innately mathematically exact. This 

proposes that the reproduced pictures precisely 

portray the 3D x-beam constriction circulation of the 

item without including wandering projection 

calculation or differing amplification proportions of 

superimposed structures along the focal bar pivot, 

rather than conventional dental imaging or the 

obtained crude information projections of CBCT 

(before reproduction). Hence, straight estimations 

can be made reliably and precisely utilizing 

multiplane CBCT picture information [22]. 

Truncation impacts, which are brought about 

by FOV comparative with the total encompassing 

life structures, further debilitate the low-contrast 

goal of CBCT (see Fig. 1). Either the patient's 

constricting designs are inside or outside the FOV, 

the rotating x-beam pillar goes through them all 

during CBCT checks. Subsequently, highlights 

outside the FOV cause signal misfortunes in the 

crude information projection pictures that are gotten, 

which appear as difference irregularities in the 

images that are recreated. Truncation relics show as 

a piece of lighter-than-anticipated dark scale voxels 

on the edge of the FOV in the event that they are not 

changed [23]. The lesser number of raw-data 

projections (usually hundreds) in dental CBCT as 

opposed to multi-slice CT acquisitions (usually 

thousands of projections) is another factor reducing 

the precision of soft-tissue contrast. However, the 

unique feature of dental CBCT is its crisp 3D 

depiction of bony tissues; hence, efforts are being 

made to improve image reconstruction techniques 

and scanner hardware to overcome the poor contrast 

of soft tissues [22]. 

 

IMAGE PRODUCTION 
 

The creation of a CBCT image involves three 

crucial steps: 1. X-ray generation, 2. X-ray 

detection, and  3. Image reconstruction The x-ray 

producing and detecting specifications found in 

CBCT systems that include proprietary changes to 

these parameters [24]. 

X-Ray Generation  

1. Patient Stabilization: Three patient positions are 

available with cone-beam machines: supine, 

standing, and seated. Immunization of the 

patient's head is essential to avoid image 

degradation from head movement, regardless of 

orientation [25]. 

2. X-ray Generator: Each projection image 

produced by scan rotation is the result of 

successively capturing attenuated x-ray rays. 

Even though it is theoretically simple, 

continuous radiation emission exposes patients 

to more radiation. When pulsed x-ray beams are 

timed to coincide with detector sampling, the 

exposure duration is cut in half, considerably 

reducing the radiation dose to the patient. Certain 

devices (including Accustom, CB Mercu-Ray, 

Iluma Ultra Cone, and PreXion 3D) expose users 

to radiation continuously, which causes 

fluctuations in dosimetry. According to the 

ALARA principle, patient size should be taken 

into account while adjusting exposure variables 

[26]. 

3. Volume of Scan (Field of View): FOV or scan 

volume dimensions are determined by the size, 

shape, beam projection geometry, and 

collimation capacity of the detector. The FOV 

form can be spherical or cylindrical (NewTom 

3G, for example). Collimation restricts the 

amount of x-rays that reach the target area. A 

CBCT unit's maximum FOV height is used to 

classify it: Small volume (5 cm), Inter-arch (7–

10 cm), Maxillofacial (10–15 cm), Single arch 

(5-7 cm), and Craniofacial (>15 cm). Long-range 

FOV scanning is difficult because large-area 

detectors are expensive. Bio image registration 

or mosaicking, which combines information 

from two different scans, and offsetting the 

detector location to scan half of the patient's ROI 

in each offset scan are two methods. [27]. 

Figure (2) clarifies the CBCT unit 

classification based on FOV. This classification is 

crucial in establishing the range and suitability of 

CBCT scans. Big FOV scans (Figure 2.A) are very 

useful for cephalometric analysis since they include 

the complete craniofacial skeleton. Medium field of 

view (FOV) scans (Figure 2.B) provide a balanced 

image for in-depth analysis by concentrating on 

imaging particular areas, such as the mandible, 

maxilla, or both. Focused or restricted field of view 

scans (Figure 2.C) offer high-resolution pictures in 

constrained areas, facilitating a more thorough 

examination of particular interest areas. The data 

from several focused FOV scans are combined to 

create stitched scans (Figure 2.D), which 

superimpose numerous images to create bigger 

regions of interest. This method, referred to as 

"stitching," improves coverage overall and advances 

a more thorough comprehension of the body being 

studied. The image highlights how important FOV 

categorization is for customizing CBCT imaging to 

meet each patient's unique diagnostic requirements 

[28]. 
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Figure 2: CBCT Unit Classification Based on FOV [28] 

 

X-ray Detection 

Based on the type of the x-ray detector, CBCT 

units can be divided into two groups: flat-panel 

detectors (FPDs) and Image Intensifier 

Tube/Charge-Coupled Device (IIT/CCD) units. In 

the IIT/CCD arrangement, a fiber optic coupling 

connects an x-ray IIT to a CCD, resulting in larger, 

bulkier devices that generate spherical volumes, or 

circular base image areas. By using a solid-state 

sensor panel connected to an x-ray scintillator layer 

as an indirect detector, FPDs, on the other hand, 

creates rectangular volumes. Although both 

technologies are used, FPDs are the preferred choice 

for modern CBCT devices because of their 

improved dynamic range and performance. 

Generally based on cesium iodide scintillators on 

amorphous silicon transistors, FPDs provide 

benefits over IIT/CCD systems, including higher 

resolution and no geometric aberrations [17].  

The pixel size and detector matrix have an 

impact on voxel size, which is a critical factor in 

determining spatial resolution in CBCT imaging. 

For the best diagnostic quality, resolution and dose 

must be balanced because smaller pixels improve 

resolution but may also increase image noise. The 

focal spot size and the geometric arrangement of the 

x-ray source affect geometric sharpness, which 

affects spatial resolution. Bit depth determines the 

grayscale, or the system's capacity to display small 

contrast changes. Detectors having a bit depth of 12 

or higher are used in modern CBCT systems, 

providing a broad range of grayscale to accurately 

represent attenuation [29]. 

 

Image Reconstruction 

The reconstruction process in CBCT 

involves two stages, as depicted in Figure 3 [15]:  

1. Preprocessing Stage: After multiple planar 

projection images are acquired, this stage is 

carried out at the acquisition computer. These 

images are adjusted for intrinsic pixel flaws, 

changes in detector sensitivity, and unequal 

exposure. Frequent image calibration is essential 

to fixing these flaws. 

2. Reconstruction Stage: The reconstruction 

computer is used for the ensuing data processing 

procedures. The photos that have been rectified 

are then transformed into a sonogram, which is a 

composite image made up of several projection 

images. The vertical axis in a sonogram indicates 

projection angles, and the horizontal axis shows 

individual rays at the detector. The Radon 

transformation creates the sonogram, with each 

row denoting a distinct projection angle. 

Multiple sine waves with different amplitudes 

are combined to create the sonogram, which 

shows objects projected onto the detector at 

constantly shifting angles. The filtered back-

projection algorithm is used to rebuild the final 

image from the sonogram; the Feldkamp 

algorithm is a popular option. Once all slices are 

reconstructed, they are integrated into a single 

volume for visualization.  

 

 

Figure 3: Image acquisition and reconstruction [28] 

 

Reconstruction times vary according to 

hardware specifications (processing speed, data 

throughput from acquisition to reconstruction 

computer), software used (reconstruction 

algorithms), and acquisition parameters (voxel size, 

picture field size, and number of projections). In 

clinical settings, prompt reconstruction, ideally less 

than five minutes, is crucial to enhancing patient 

flow [28]. 

RELATED STUDIES 

There are numerous studies that have employed 

various approaches to enhance the quality of CBCT 

images. Sisniega et al. (2015), for example, 

discussing the limitations of traditional CT imaging 

for traumatic brain injury diagnosis, and introduces 

cone-beam CT imaging as a promising alternative 

[30]. The difficulties with cone-beam CT imaging, 

such as veiling glare, lag, scatter, and beam 

hardening artefacts, are discussed by the writers. 

This paper's primary contribution is a thorough 

framework for artefact correction that combines 

beam hardening, lag, and veiling glare corrections 

with an incredibly quick GPU-accelerated MC 

scatter correction technique.  

Sisniega et al. (2015) also reported that the 

proposed framework achieves high accuracy in 

artifact correction, resulting in improved image 

quality and diagnostic accuracy. Specifically, the 
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authors reported that the proposed framework 

reduced scatter artifacts by up to 90%, beam 

hardening artifacts by up to 80%, and veiling glare 

artifacts by up to 70%. Additionally, according to 

the authors, the framework increases the precision of 

CT imaging in the diagnosis of traumatic brain 

injury, especially when it comes to the low-contrast 

imaging task of detecting tiny parenchymal 

bleeding, which calls for a high level of picture 

uniformity and contrast resolution. It is crucial to 

remember that the accuracy of the framework could 

be impacted by a number of variables, including the 

particular imaging technology and the subject being 

photographed [30].  

Moreover, Ferreira et al. (2015) evaluated the 

accuracy of various CBCT enhancement filters in 

detecting vertical root fractures (VRFs) in teeth with 

and without metal posts [31] . In order to compare 

the various filters' diagnostic values (sensitivity, 

specificity, and accuracy), statistical analysis was 

employed in this study. The findings demonstrated 

that the filter chosen had an impact on the 

diagnosis's accuracy. In terms of precision, the 

sharpen-mild filter proved to be better than the 

sharpen filter; nonetheless, there was no significant 

difference between the two filters. The investigation 

also discovered that the accuracy of the diagnosis 

was not considerably impacted by the teeth's metal 

supports. Nevertheless, in teeth with metal posts, the 

addition of enhancement filters did not increase the 

diagnostic's accuracy.  

Thakur et al. (2016) studied the quality 

improving of the dental CBCT images by reducing 

noise and enhancing contrast and brightness [32] . 

Three stages make up the creators' proposed 

strategy: histogram extending for brilliance 

improvement, versatile middle channel for sound 

decrease, and Bi-Histogram Adjustment method 

with bowing initiation capability for contrast 

upgrade. The examinations performed on an 

uproarious low differentiation CBCT picture are 

introduced in the review. The results show the 

adequacy of the proposed technique in bringing 

down commotion and further developing brilliance 

and difference. PSNR (top sign to-commotion 

proportion) and SSIM (primary similitude list) 

values for Improved with Bowed Character, 

Versatile Middle Channel, and Gamma Histogram 

Adjustment at various gamma values (0.1-0.9). The 

subsequent picture quality was surveyed utilizing 

the most elevated SSIM worth of 0.9999 for 

Improved with Twisted Personality and a gamma 

worth of 0.4. In the paper's decision, the future 

extent of study is examined. This remembers 

researching the recommended calculation for 

various picture modalities and elective sound 

decrease channel methods. 

Yang et al. (2016) also studied the picture quality 

of CBCT, shading-corrected CBCT, and virtual 

monoenergetic CT (VMCT), which was created by 

synthesizing CBCT and planning MDCT, utilizing 

an electron density phantom [33] . As demonstrated 

by the results, shading-corrected CBCT and original 

CBCT were found to have lower image quality than 

VMCT in terms of contrast-to-noise ratio (CNR) and 

Hounsfield unit (HU) integrity. The study found 

that, without requiring an increase in dose or scan 

duration, the suggested strategy of utilizing planned 

MDCT to realize VMCT for picture quality 

improvement in on-board CBCT is workable and 

efficient. The authors proposed that improving the 

on-board CBCT picture quality can help with daily 

patient setup and adaptive dose delivery, allowing 

for more assurance in the precision of radiation 

therapy patient treatment.  

 Liang et al. (2017) described the problem of ring 

artifacts in CT images, which can occur due to 

various factors such as non-uniformity of the 

detector, beam hardening, and scatter  [34]. The 

suggested technique entails estimating and 

removing the ring artefact component from the 

image iteratively until convergence is reached. The 

outcomes demonstrate how well the suggested 

technique works to eliminate ring artefacts while 

maintaining image structure.  Through the use of 

both simulated and actual data, the authors assess 

their method and demonstrate its practicality and 

attractiveness for radiation therapy guided by 

CBCT.  Nevertheless, there are a number of 

drawbacks to the suggested approach, including the 

requirement for prior knowledge of the ring artefact 

pattern and the possibility of overcorrecting the 

image. 

Additionally, Kida et al. (2018) proposed a new 

method for improving the image quality of CBCT 

using a deep convolutional neural network (DCNN) 

[35]. The meaning of CBCT in picture directed 

radiation therapy (IGRT) was featured by the 

creators. By and by, in light of the fact that to the 

remaking's utilization of shortened and disperse 

polluted projections, it has serious concealing 

antiquities. To tackle this issue, the creators made a 

DCNN strategy that gains an immediate planning 

from the first CBCT pictures to the matching 

arranging CT (pCT) pictures, bringing about 

excellent CBCT pictures. Utilizing a dataset of 20 

head and neck malignant growth patients who had 

CBCT and pCT checks, they evaluated the DCNN 

approach. A complete variety (television) strategy 

and a conventional separated back projection (FBP) 

technique have been contrasted with the 

recommended technique. The differentiation to-

commotion proportion (CNR) and underlying 

comparability record (SSIM) upsides of the DCNN 

approach were more prominent than those of the 

other two strategies, showing predominant picture 
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quality. Between the fat (109) and muscle (57) 

Hamis Feld Units (HU), there was a tremendous 

distinction in the RMSD of the SNU between the 

pCT and the first CBCT. One clarification could be 

that there is a higher proportion of fat than muscle 

near the skin's surface. The fat locale is where 

concealing relics are all the more unmistakably seen 

accordingly. On the other hand, negligible varieties 

were noted in the RMSD of the SNU between 

muscle (11) and fat (13) HU and the RMSD of the 

ROIm's mean pixel values between muscle (14) and 

fat (11) HU for the I-CBCT. 

Mik et al. (2018) also presents a method for 

classifying tooth types on dental cone-beam CT 

images using a DCNN [36] . The authors suggested 

employing rectangular areas of interest (ROIs) that 

encircle a tooth from an axial slice to classify teeth 

into seven kinds using a DCNN-based approach. 

They used a dataset of 1,000 CBCT images to train 

and test their algorithm, and they were able to 

classify tooth types with 91.5% accuracy. 

Additionally, the authors looked into how data 

augmentation affected classification performance 

and discovered that using samples with various 

contrasts and rotations increased classification 

accuracy overall. They come to the conclusion that 

their suggested approach may prove to be an 

invaluable resource for dentists in the identification 

and management of dental issues. 

Kida et al. (2019) proposed a method for 

enhancing the image quality of CBCT using deep 

neural networks based on CycleGANby translating 

[37]. A deep neural network called CycleGAN is 

capable of learning the translation mappings 

between two unpaired and misaligned image 

domains. The suggested method can generate high-

quality images with better soft-tissue contrast, less 

noise, and less artefacts when CBCT images are 

planned fan-beam CT images. Five distinct models 

with the same structure and hyper-parameters were 

used to test the methodology. Less than 10 HU of 

allowable variability was shown by the results. The 

results imply that the suggested technique may be a 

helpful one for improving CBCT pictures in medical 

imaging  .The fact that the suggested approach was 

only tested on a small number of cases and its 

applicability to additional circumstances was not 

completely assessed presents one possible drawback 

of this study.  

Sorkhabi (2019) presented a new methodology 

for evaluating alveolar bone density using 3-D deep 

CNNs of CBCT images [38]. The authors stress the 

need of precisely classifying alveolar bone density 

when planning dental implant therapy and provide a 

technique that can effectively capture the bone's 

trabecular pattern. The suggested method produced 

an average precision score of 84.63% and 95.20% in 

hexagonal prism and cylindrical voxel forms, 

respectively. The study comprised 207 surgery 

target locations and 83 patients. Classification of 

alveolar bone was completed in 76 milliseconds. 

Hatvani (2019) likewise introduced another way 

to deal with working on the goal of dental CT 

examines. The creators note that current super-goal 

methods for three dimensional pictures are either 

computationally wasteful or require a huge data set 

of realized low-goal and high-goal picture matches. 

Conversely, their tensor-factorization-based 

approach offers a quick arrangement without the 

utilization of realized picture matches or severe 

earlier suppositions [39] . A low-resolution image is 

broken down into a series of basis images using the 

tensor factorization method, and a high-resolution 

image is then rebuilt using the basis images.  

The authors propose that their methodology 

could be extended to other domains including 

remote sensing and surveillance, in addition to 

various forms of medical imaging. 

Yun et al. (2019) proposed a new method for 

automatically reconstructing high-contrast 

panoramic images from dental cone-beam CT data 

[40]. The three essential strides of the proposed 

technique are picture age, picture upgrade, and 

dental curve thickness recognition. The creators 

fragment the dental curve and decide its thickness in 

the dental curve thickness distinguishing proof stage 

utilizing a profound learning-based philosophy. The 

picture union stage utilizes this data to make an all-

encompassing picture with insignificant curios and 

great differentiation. To make an all-encompassing 

picture, a few CT cuts are joined in the picture blend 

process. To deliver a great picture, the creators 

utilize a clever technique that records for the dental 

curve's thickness and the X-beam source's area. To 

additional increment the all-encompassing picture's 

quality, various picture handling strategies are 

applied in the last step of the picture improvement 

process. These techniques incorporate sound 

decrease, contrast extending, and histogram 

leveling. To deliver an excellent picture, the creators 

utilize a clever technique that records for the dental 

curve's thickness and the X-beam source's area. To 

additional increment the all-encompassing picture's 

quality, various picture handling methods are 

applied in the last stage, picture upgrade. These 

techniques comprise of sound decrease, contrast 

extending, and histogram leveling.  

Moreover, Puvanasunthararajah et al. (2021) 

conducted a systematic review study of the PubMed 

and Web of Science databases [41]. Out of the 382 

papers they found, 40 fulfilled the necessities for 

incorporation and were added to the audit. The 

picked papers were partitioned into two essential 

gatherings: research-based Blemish techniques and 

business Blemish strategies. The creators found that 
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utilizing Blemish strategies on CT sweeps can 

improve the norm of RT treatment arranging. In any 

case, because of downsides like the consideration of 

extra mix-ups (like different ancient rarities) or the 

disintegration of picture quality (like obscuring), 

none of the explored or recommended Blemish 

approaches was completely satisfactory for RT 

applications. The concentrate additionally saw that, 

contingent upon the specific methodology utilized, 

the impact of Blemish approaches on CT Hounsfield 

Unit esteems and shaping of locales of interest 

varied. It reached the resolution that more review is 

expected to resolve the issues with Blemish 

strategies in clinical imaging.  

Zhuoran Jiang et al (2021) presented a method 

for improving the quality of under-sampled CBCT 

projections using a CNN [42]. The under-sampled 

CBCT projections were made better by the 

suggested approach, which employed a CNN. High-

quality CT scans of the same patient serve as the 

training set for the network. The network then 

reconstructs the under-sampled CBCT projections 

using these earlier images as a guide, producing 

images with higher quality and lower noise. The 

technique could lower imaging dose and increase 

radiation therapy planning precision.  

An extensive literature evaluation of deep 

learning (DL) techniques for enhancing CBCT 

image quality in the context of adaptive radiation 

treatment (ART) was carried out by Rusanov et al. 

in (2022) [43]. The review summarizes the key 

findings of publications published between January 

2018 and April 2022, focusing on study design and 

deep learning methodologies. The authors draw 

attention to the difficulties in using CBCT imaging 

for online ART, such as noise, low soft-tissue 

contrast, and image artefacts. The several DL 

techniques for creating synthetic CTs and the 

projection domain techniques used in the literature 

on CBCT correction were also covered. In addition, 

the review highlights gaps in the research by 

summarizing clinically relevant objectives related to 

dosimetry accuracy and image quality. 

Abbate et al. (2022) also presented a study on the 

condylar remodeling (CR) that occurs in response to 

forces and stress acting on the temporo-mandibular 

joint after orthographic surgery [44]. The objective 

of the research is to examine and evaluate, both 

statistically and qualitatively, the adaptation 

mechanisms that take place in CR after maxillary 

displacement. The study analyses the morph oologic 

and densitometry changes in the condyles of twelve 

patients who underwent orthographic surgery using 

3D imaging, digital modelling, and workflow 

technologies. The study's findings revealed several 

statistically significant changes in the parameters 

under investigation. A decrease in bone density was 

observed in all individuals (p = 0,002 per side). The 

study sheds light on the processes of reshaping 

following orthographic surgery and emphasizes the 

value of taking into account a variety of factors when 

researching chronic pain. The research also 

highlights the promise of digital modelling, 

workflow, and 3D imaging technologies in the field 

of orthographic surgery.  

Jiang et al (2022) proposed a new approach to 

improving image quality in CBCT using deep 

learning techniques [45]. The suggested technique 

produces high-quality CBCT images in the 

projection domain and increases scatter estimate 

accuracy by utilizing several spectral CT labels 

along with the Pix2pix GAN algorithm. The 

difficulties with CBCT imaging, such as low 

contrast-to-noise ratio and scatter contamination, are 

demonstrated in this work. To convert scatter-

contaminated projections to scatter signals, a deep 

learning model was trained using the Pix2pix GAN 

technique in the suggested method. According to the 

authors, the suggested technique generates high-

quality CBCT pictures in the projection domain and 

accomplishes correct scatter estimate. 

Kang et al (2023) presented a method to enhance 

the quality of CBCT images while preserving their 

structural information [46]. A cluster wise 

contrastive learning-based GAN model that makes 

CT-like pictures from CBCT pictures was proposed 

by the creators. Utilizing a clever blend of 

misfortunes and a component extractor pre-prepared 

on their preparation dataset, the researchers prepared 

their model on unpaired CT and CBCT datasets. 

Utilizing different measures, they evaluated the 

nature of the pictures created and found that their 

model delivered CT-like pictures that were 

observably better compared to those delivered by 

various standard models. The creators call attention 

to that their technique is computationally 

productive, doesn't need matched CT and CBCT 

datasets, and jelly the primary data of the info CBCT 

pictures, among different benefits over existing 

methodologies.  

Ryu et al (2023) proposed a system that is used 

to improve the image quality of CBCT scans [47]. 

Multi-stage enlistment methodology and an 

organization design including a completely thought-

out shortfall capability and a multi-planar 2.5D U-

Net-based network. Curios that are trying to fix with 

a solitary planar organization can be eliminated 

utilizing the multi-planar methodology. They utilize 

three 2.5D single-planar U-Nets that are found the 

middle value of over the three created volumes. The 

U-Nets are prepared in the pivotal, coronal, and 

sagittal bearings, separately. This technique has the 

advantage of diminishing streaking relics, which are 

apparent in the two directions yet can be trying to 

distinguish in one. They utilized both quantitative 

and subjective techniques to survey the adequacy of 
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their proposed procedure. While the subjective 

appraisal uncovered discernibly higher scores for 

antiquities, clamor, goal, and generally picture 

quality, the quantitative measures affirmed 

predominant quality in the result photographs when 

contrasted with the first CBCT.  

RESULTS AND DISCUSSIONS 

CBCT, which provides three-dimensional 

information with low radiation exposure, has 

become a vital imaging modality in a variety of 

medical and industrial applications. However, low 

contrast, noise, and artefacts are common problems 

with CBCT pictures that affect the accuracy and 

reliability of diagnosis and treatment planning. A 

range of augmentation strategies have been put out 

in the body of existing work to address these 

problems. This article offers a comprehensive and 

well-evaluated summary of the most current 

advancements in CBCT image enhancing methods. 

The strategies that were found can be categorized 

into four main groups: (1) methods based on 

filtering; (2) methods based on histograms; (3) 

methods based on models; and (4) methods based on 

deep learning. Every category has distinct 

advantages and disadvantages, and the choice of 

method depends on the particular use and properties 

of CBCT images. Although filtering-based 

techniques like wavelet and median filtering are 

notable for their ease of use and computational 

efficiency, their ability to retain image edges and 

features may be limited. 

While histogram-based techniques like contrast 

stretching and equalization might enhance image 

contrast, they also run the risk of adding noise and 

artefacts. By taking into account previous 

knowledge and restrictions, model-based techniques 

like statistical and iterative reconstruction can 

enhance the quality of the image; however, they may 

necessitate additional processing resources and skill. 

Convolutional neural networks (CNNs) and 

generative adversarial networks (GANs), two deep 

learning-based techniques, have demonstrated 

encouraging outcomes in CBCT picture 

improvement. These techniques are capable of 

adapting to various imaging modalities and 

situations, as well as learning the intricate and 

nonlinear correlations between the input and output 

images. But they also need a lot of training data, and 

they could be sensitive to the variety and caliber of 

the data.  

In general, the particular application and the 

trade-off between processing resources and image 

quality determine which CBCT image enhancement 

technique is best. Subsequent investigations ought to 

concentrate on crafting more resilient and effective 

methodologies that can tackle the constraints of 

existing approaches and enhance the therapeutic 

usefulness of computed tomography imaging. 

 

Table 1. The Comparisons between state-of art studies 

Results ROI and Noise Type  Method Year Ref. No. 

90% Reduces of scatter artifacts  
Traumatic brain injury 

diagnosis 

Ultra-fast GPU-

accelerated MC scatter 

correction method 

2015 [30] 

95% Reduces of scatter artifacts 
Vertical root fractures in 

teeth 

Statistical analysis to 

compare the diagnostic 

values 

2015 

 
[31] 

Noise reduction, contrast 

enhancement, 

Noisy low contrast CBCT 

image 

Adaptive median filter, 

bi-Histogram 

equalization, and 

histogram stretching 

2016 [32] 

Shading-corrected CBCT with 

94% 
Virtual monoenergetic CT  Electron density phantom 2016 [33] 

Rising from 87.12% to 95.50% CBCT image 

Iteratively estimating and 

subtracting the ring 

artifact 

2017 [34] 

CBCT, reducing from 216 to 11 

HU for one parameter and from 

247 to 14 HU for another.  

Head and neck cancer 
Deep convolutional 

neural network  
2018 [35] 

91.5% 
Enclose a tooth from an axial 

slice 

Deep convolutional 

neural network 
2018 [36] 

84.63% and 95.20% Improved soft-tissue contrast 
Deep neural networks 

based on CycleGAN 
2019 [37] 

84.63 % Alveolar bone density 
3-D Deep convolutional 

neural network 
2019 [38] 



Hassan Mazen Majeed /NTU Journal of Engineering and Technology (2024) 3 (2) : 21-32 

 

30 

 

PSNR:1.2 dB for LRTV and 1.5 

dB for TF-SISR. 

Low-resolution dental CT 

scans 
Tensor-factorization 2019 [39] 

Mean:11.03 ± 2.46   
 

Thickness of the dental arch 

Deep learning to segment 

the dental arch and detect 

its thickness. 

2019 [40] 

SSIM: 0.8262  

CTart: 0.2382 

PSNR for CTcor: 22.1685 dB 

Commercial MAR methods  Hounsfield Unit values 2021 [41] 

PSNR 37.02±1.930 
Under-sampled CBCT 

projections 

Convolutional neural 

network 
2021 [42] 

MAE: 32.70 ± 7.26 vs. 42.04 ± 

8.84 HU 

Image artifacts, noise, and 

limited soft-tissue contrast 
Deep learning methods 2022 [43] 

Mean loss of 32.8% Temporo-mandibular joint  Condylar remodeling 2022 [44] 

PSNR at 30.49 dB Head and abdominal 
Deep learning techniques 

Pix2pix GAN algorithm 
2022 [45] 

PSNR at 25.863±2.073 
Structural information of the 

input CBCT images 

Batchwise contrastive 

learning-based GAN 

model using various 

metrics 

2023 [46] 

MAE decreased from 142.6 to 

138.1 

Axial, coronal, sagittal 

directions, and three 

generated volumes 

Deep learning methods 

for artifact removal in 

dentistry 

(2023) [47] 

 

 

CONCLUSION 

Although, CBCT is a useful imaging technique 

for a range of industrial and medical applications, it 

has low contrast, noise, and artefacts. This review 

study has compiled and examined the most current 

developments in CBCT image improvement 

techniques based on covering model-based, 

filtering-based, histogram-based, and deep learning-

based approaches. The best technique will depend 

on the particular application and the properties of the 

CBCT pictures. Every type of approaches possesses 

pros and cons of its own. Although filtering-based 

techniques are straightforward and computationally 

inexpensive, they cannot be sufficient enough at 

maintaining the image's edges and features. While 

histogram-based techniques can enhance image 

contrast, they also run the risk of adding noise and 

artefacts. By utilizing restrictions and past 

information, model-based approaches can enhance 

the quality of the images; nevertheless, they can 

necessitate greater processing power and 

experience. In CBCT image augmentation, deep 

learning-based techniques have demonstrated 

encouraging results; nevertheless, they need a large 

training data and may be sensitive to the caliber and 

variety of the data. Overall, the precision and 

dependability of diagnosis and treatment planning 

have increased because to developments in CBCT 

image enhancing techniques. Nevertheless, stronger 

and more effective approaches are still required to 

overcome the shortcomings of the existing strategies 

and raise the therapeutic usefulness of CBCT 

imaging. Subsequent investigations have to 

concentrate on crafting methodologies that can 

adjust to diverse imaging scenarios and modalities, 

and that can be incorporated into therapeutic 

procedures. 
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