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Abstract:

In this paper a new form has been found that gives all natural solutions to the
hyperbola equation x? — dy? = c? where ceN, d is a positive square free
number. It has been depended of Pell's equation x? —dy? =1 and a continued

fraction method for a real number Vd .

Keywords: Diophantine equation, Pell's equation, continued fraction.

207



Journal of Education For Pure Science- University of Thi-Qar
Vol.9, No.1 (March 2019)
Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

1. Introduction
For
m? + n?

u=1+mn @

where m,n € Z such that 1 + mn # 0, the Diophantine equation has infinitely many real solutions [1].
Indeed, when (m, n) € Z then Eq. (1) has infinitely many rational solutions. The integer numbers (m, n)
sometimes give square positive integer number u in Eq. (1). For example, (m,n) €
{(—100,0), (7,0), (0,—50), (1,1)}.
Foru € {22,32,42,52,62, ...}, there are infinitely many natural pairs that can be obtained from Eq. (1)

resulting in the following hyperbola equation

x? —dy? =c? (2)
where d is a positive square free integer and ¢ € N. Note that, there are only one natural pair (m,n) =
(1,1) for u=12.
We denote by (s,, t,.), 7 = 1,2,3, ... to the infinitely many natural solutions of Eq. (2) that depends on the
following equation

x?—dy*=1 (3)

Which is known as Pell's equation and it was named after John Pell. In the seventeenth century Pell [2]
searched for integer solution of this type. He was not the first to work on this problem, Fermat [2,3] found
the smallest solution for d up to 150, John Wallis[2] solved Eq. (3) ford = 151 or 313. Lagrange[2,3]
developed the general theory of Pell's equation, based on continued fractions and algebraic manipulations

with numbers of the form x + v/dy in (1766-1769).

For Eq. (3), we denote by (x,, y,),7 = 1,2,3, ... to all natural solutions. The first non-trivial fundamental
solution (x4, y,) for Eq. (3) can be found using the cyclic method [3], or using the slightly less efficient
but more regular English method defined in [3,4]. The rest of solutions (x,, y;.),r = 2,3,4, ... are easily
computed from (x;,y;). There are another methods to find this fundamental solution, in this paper we
have used a continued fraction method for a real number+/d see remark (2.6), (For further details on Pell
equation see [3,4,5,7]). In theorem (2.9), (x;, y,) has been used to give the form of finding all the rest
natural solutions(x,, y,.),r = 2,3,4, ... for Eq.(3).

2. Preliminaries:

In this section, the basic definitions, theorems and remarks which will be used in this work have been
introduced.
Definition 2.1 [3]: The Diophantine equation is a polynomial equation, usually in two or more
unknowns, such that only the integer solutions are sought or studied (an integer solution is a solution such
that all the unknowns take integer values).

Definition 2.2 [1]: The square-free, or quadrate free integer, is an integer which is divisible by no other
perfect square than 1. For example, 10 is square-free but 18 is not, as 18 is divisible by 9 =32,

Definition 2.3 [6]: The quadratic Diophantine equation of the form x? — dy? = +1 is called a Pell's
equation where d is a positive square free integer. In this paper the Pell equation of the form x? — dy? =
1 was discussed.
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Example 2.4:

i. x2-8y?=1
ii. x?2-13y%2=1
iii. x?2-13=-1

The solutions for equations (i), (ii) are given by (x,y) = (3,1), (x,y) = (649,180) respectively, while
equation (iii) does not have any solution; it is not solvable [6].

Definition 2.5 [6]: The expression of the form

ap +

'+_+...

where a;'s are integers, is called the continued fraction expression to any real number denoted by the

notation [ay; a;, a,, as, ay, ..., 23g,34, d, s, Ay, ..., 2dg, a4, Az, A3, Ay, ... |. This expression will be used
to find the fundamental solution (x;,y;) for vd in Eq. (3).

The following remark has been explained shortly the continued fraction method [2] for finding the
non-trivial fundamental natural solution (x4, y;) to Eq. (3).

Remark 2.6: For Vd in Eq. (3) assume that &y = Vd, ay = |a] . In general,

O = ay + ﬁ ag = lag] Fork =0,1,23, ..

We obtain Vd = [ay; a4, a,,as, ay, ..., 230,31, ay, ag, ay, ..., 2dg,dq, y, a3, dg, - |

For finding (x4, y;), only the numbers [ay; a;,a,,as, ay, ... ] will be used such that

1 X
ﬁ=ao+ 1 =_1
a; + N1

Example 2.7: The continued fraction expression for

1 8
1+— 3 0

where, V7 = [ay; a4,as, ...,239,a1,35, ..., 239,a1, 3, .| = [2;1,1,1,4,2,1,1,1,4, ...]
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Remark 2.8: A continued fraction is purely periodic with period m if the initial block of partial quotients
ay, a4, -, Ay —_q repeats infinitely and no block for length less than m is repeated, and it is periodic with
period m if it consists of an initial block of length n followed by a repeating block of length m. Purely
periodic  continued  fraction - [3ay;ay,..,am_;] .  Periodic  continued  fraction -

[ag; a1, ) At-1, 35 Agy 1y s Arm—1]
the length of the period was denoted by t .

Theorem 2.9 [6]: If (a, b) is a solution to x2 — dy? = 1 where a > land b > 1, then (x,) is also a
solution such that

x+yVd = (a+b\/c7)1
for j = 1,2,3,4,... . Similarly, if (¢, k) is a solution for x? — dy? = — 1 where ¢ > landk > 1,
then (x, y) is also a solution such that

x+y\/_=(c+k\/d_)1
forj = 1,3,57,....

Theorem 2.10 [6]: The equation x% — dy? = 1 is always solvable and the fundamental solution is
(Ax , By ) where k = t or 2t and A, /By is a convergent to v/d . The equation x2 — dy? = 1 is solvable

if and only if the period length of the continued expansion of Vd is odd. The fundamental solution is
(Ay ,Bxy) wherek = t or t+1.

3. The main result

3.1 Finding of the new relation
In the following steps, we give a new form that will be used to find all natural solutions (s, ,t,), r =
1,2,3,... for Eq. (2).
Step 1: We are looking for a natural solution (x,y) = (s; ,t;) to Eq. (2).
Solving the equation x2 —dy? =c¢? = x?2=c?+dy? = x=7F,/c?+dy2
The required natural solution is, x = m
then (x,y) = (s, ,t;) suchthat y = s; +Vdt;, , 6§ = s, —dt,
¥ = (s, + Vdt, )(s1 — \/atl) =52 —dt;* = c?
y+68=(s;+Vdty ) + (s, —Vdty) = 25,
By this step we have been found one natural solution (s, , t;) to Eq. (2) such that
Yy =5+ \/Etl
Step 2: In general, assume that all natural solutions of Eq. (2) are (x,y) = (s,,t,),r = 1,2,3, ..., where
Vr = s, +Vdt,, 8, = s, —Vdt,
¥ + 6, = s, +Vdt, + s, — Vdt, = 2s,
¥6r = (s, +Vdt,)(s, — Vdt,) = 5,2 — dt,? = ¢?

Step 3: Assume that (x;,y,) is the fundamental natural solution to Eq. (3), which has been found by

continued fraction expression for vd in remark (2.6) such that
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a=x+Vdy, , B=x —Vdy
ap = (x1 + \/E}ﬁ) (x1 - \/E}ﬁ) =x% - d}’12 =1
Hereby, we obtain the fundamental natural solution(x; , y;) for Eq. (3) such that
a=x+ \/Eyl

Step 4: All natural solutions (x,,y,), ¥ = 1,2,3,4, ... for Eq. (3) will be given, as follows: We have a =
x; + Vdy,, using theorem (2.9) for i = 1,2,3, ... then

al = (x; +Vdy,)! is a natural
solution for Eq. (3) .

Step 5: From Stepl and Step4, we have y = s; +Vdt;, and a' = (x; + Vdy;)' respectively. All natural
solutions (s, , t,), r = 1,2,3,4, ... to Eq. (2) can be obtained from the following for

s, +Vdt, = ya' where i=0123,.. 4)

3.2 Applying the new form
In this section we have applied our a new form in some examples as follows :

Example 3.3:For find all natural solutions to x? — 3y? = 4 then
x2—-3y?=4 = x=./c?+dy?. Herec? =4, d=3, therefore,let y =2 = x =4, resulting
(s1,t1) = (4,2) such thaty = 4 + 2+/3.
We have x% —3y? =1,
By Step 4 we have used the continued fraction expression of V3 to find (x; ,y;): Assume that @, =
Vd=+v3=17 and a,=[17] =1

+1 V3 1+1 !
adp = a e = _— D g = —
0 0 a a ! V3-1
1 V3+1 V341
a = * = = q =13 =1
"TV3-1 V341 2 '
+1 V3+1 ) 1
= = = J—
N =0 a, 2 a,

2 \/§+1_2(\/§+1)=\/§+

a, = * = 1 = a,=[27]=2
“TV3-1 V3+1 2 ?
1 1
0(2=a2+—=>\/§+1=2+—
as as
1 V3+1
a3 = = =a; = az3=113]=1
R V3+1 Lyl
= _— = R
% = Gs a, 2 a,
2(V3+1
Andsoonthen: 1=ay =a3; =as=a;, =++,2=a, = a4 =ag = - . Hence
V3 =11;1212,..].
The continued fraction expression for V3 = 1 + % = % = i—l
1
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thus, (x;,y1) =(21) = a=2++3.
ByEq. (@) ya' =s, ++3 t, where i =0,1,2,3,..., and r = 1,2,3, ...

yai = (4+2v3)(2+3) =5, +3 ¢,
For i=0, r=1= ya®=(4+2v3)(2+V3) =5, +3 t,

4+2V3 =5 +t;V3 = (s,t) = (4,2)
Fori=1,r=2 = ya'=(4+2V3)(2+V3)'=s,+V3 t,

=14+8V3 =5, +t,V3 = (s5,t,) = (14,8)
Fori=2r=3 > ya?=(4+2v3)(2+V3) =5, +V3 t,

ya? = (44 2V3)(7 +4V3) =53 +V3 ¢t

=52 +30V3 =s; +t3V3 = (s3,t3) = (52,30).

And so on for i = 3,4,5,6, ... and r = 4,5,6, ... we will get the rest of all natural solutions (s,, t,.).

Remark 3.3: All natural pairs (m, n) such that u is a natural square number in Eq. (1) have been found
by using the new form Eq.(4), the natural solution to Eq. (1) when u = 12 is only the pair (m,n) =
(1,1).
If u = 22 in Eq. (1), we have
2 m? + n?

1+mn

4+4mn=m?>+n? > m>—4dmn+n? =4
Add and subtract 4n?, thus
m? —4mn+4n? —4n’ +n? =4 > (m—-2n)2-3n?=4
This equation has infinitely many solutions (s, t,), r = 1,2,3, ...
for r=1,2,3,... then, m—2n=s,, and n=t, so
5,2 —3t.2=4

is a hyperbola equation has a same form in Eq.(2).

If u = 3% in Eq. (1), thus

m? + n?
2=
1+mn
94+ 9mn =m?+n? = m>—-9mn+n?=9
By multiplying both sides by 4, then 4m? — 36mn + 4n? = 36 Add and

subtract 81n?, gives 4m? — 36mn + 4n? + 81n? — 81n? = 36
(2m)? — 2(2m)(9n) + 81n? — 77n%=36

(2m —9n)%2 —77n? =36
Then forr = 1,2,3,... we obtain, 2m —9n = s,., n = t,. such that

5,2 —77t,% = 36
is a hyperbola equation has a same form Eq.(2).

In order to find all pairs (m,n) € N such that u = 22,32in Eq. (1), we will use Eq.(4). Foru =

42,52 62, ... has the same form of Eq. (2).
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Conclusion: We give a new form Eq.(4) to find all natural solutions to the hyperbola Eq.(2) using the Pell
equation Eq.(3) and continued fraction method . By this form all natural pairs (m,n) such that u is a
natural square number in Eq. (1) have been found.
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