DOI: http://doi.org/10.32792/utq.jceps.09.01.21

Finding All Natural Solutions of the Hyperbola Equation by a new Form

Evan A. Huzam1 , Adnan Y. Na'ma1

1University of Thi-Qar, Faculty of Education for pure Science, Thi-Qar, Iraq.

Abstract:

In this paper a new form has been found that gives all natural solutions to the hyperbola equation $x^2 - dy^2 = c^2$ where $c \in N$, d is a positive square free number. It has been depended of Pell's equation $x^2 - dy^2 = 1$ and a continued fraction method for a real number \sqrt{d} .

Keywords: Diophantine equation, Pell's equation, continued fraction.

1. Introduction

For

$$
u = \frac{m^2 + n^2}{1 + mn} \tag{1}
$$

where $m, n \in \mathbb{Z}$ such that $1 + mn \neq 0$, the Diophantine equation has infinitely many real solutions [1]. Indeed, when $(m, n) \in Z$ then Eq. (1) has infinitely many rational solutions. The integer numbers (m, n) sometimes give square positive integer number u in Eq. (1). For example, $(m, n) \in$ ${(-100,0), (7,0), (0, -50), (1,1)}.$

For $u \in \{2^2, 3^2, 4^2, 5^2, 6^2, \dots\}$, there are infinitely many natural pairs that can be obtained from Eq. (1) resulting in the following hyperbola equation

$$
x^2 - dy^2 = c^2 \tag{2}
$$

where d is a positive square free integer and $c \in N$. Note that, there are only one natural pair (m, n) = (1.1) for $u = 1^2$.

We denote by (s_r, t_r) , $r = 1,2,3,...$ to the infinitely many natural solutions of Eq. (2) that depends on the following equation

$$
x^2 - dy^2 = 1\tag{3}
$$

Which is known as Pell's equation and it was named after John Pell. In the seventeenth century Pell [2] searched for integer solution of this type. He was not the first to work on this problem, Fermat [2,3] found the smallest solution for d up to 150, John Wallis^[2] solved Eq. (3) for $d = 151$ or 313. Lagrange^[2,3] developed the general theory of Pell's equation, based on continued fractions and algebraic manipulations with numbers of the form $x + \sqrt{dy}$ in (1766–1769).

For Eq. (3), we denote by (x_r, y_r) , $r = 1,2,3, ...$ to all natural solutions. The first non-trivial fundamental solution (x_1, y_1) for Eq. (3) can be found using the cyclic method [3], or using the slightly less efficient but more regular English method defined in [3,4]. The rest of solutions (x_r, y_r) , $r = 2,3,4, ...$ are easily computed from (x_1, y_1) . There are another methods to find this fundamental solution, in this paper we have used a continued fraction method for a real number \sqrt{d} see remark (2.6), (For further details on Pell equation see [3,4,5,7]). In theorem (2.9), (x_1, y_1) has been used to give the form of finding all the rest natural solutions (x_r, y_r) , $r = 2,3,4, ...$ for Eq.(3).

2. Preliminaries:

 In this section, the basic definitions, theorems and remarks which will be used in this work have been **introduced**

Definition 2.1 [3]: The Diophantine equation is a polynomial equation, usually in two or more unknowns, such that only the integer solutions are sought or studied (an integer solution is a solution such that all the unknowns take integer values).

Definition 2.2 [1]: The square-free, or quadrate free integer, is an integer which is divisible by no other perfect square than 1. For example, 10 is square-free but 18 is not, as 18 is divisible by $9 = 3^2$.

Definition 2.3 [6]: The quadratic Diophantine equation of the form $x^2 - dy^2 = \pm 1$ is called a Pell's equation where d is a positive square free integer. In this paper the Pell equation of the form $x^2 - dy^2 =$ 1 was discussed.

Example 2.4:

- i. $x^2 8y^2 = 1$
- ii. $x^2 13y^2 = 1$
- iii. $x^2 13 = -1$

The solutions for equations (i), (ii) are given by $(x, y) = (3,1)$, $(x, y) = (649,180)$ respectively, while equation (iii) does not have any solution; it is not solvable [6].

Definition 2.5 [6]: The expression of the form

where a_i 's are integers, is called the continued fraction expression to any real number denoted by the notation $[a_0; a_1, a_2, a_3, a_4, \ldots, \overline{2a_0, a_1, a_2, a_3, a_4, \ldots, 2a_0, a_1, a_2, a_3, a_4, \ldots]}$. This expression will be used to find the fundamental solution (x_1, y_1) for \sqrt{d} in Eq. (3).

 The following remark has been explained shortly the continued fraction method [2] for finding the non-trivial fundamental natural solution (x_1, y_1) to Eq. (3).

Remark 2.6: For \sqrt{d} in Eq. (3) assume that $\alpha_0 = \sqrt{d}$, $\alpha_0 = [\alpha_0]$. In general, $\alpha_k = a_k + \frac{1}{\alpha_{k+1}}, \ a_k = \lfloor \alpha_k \rfloor$ For $k = 0, 1, 2, 3, ...$ We obtain $\sqrt{d} = [a_0; a_1, a_2, a_3, a_4, ..., a_{a_0}, a_1, a_2, a_3, a_4, ..., a_{a_0}, a_1, a_2, a_3, a_4, ...]$

For finding (x_1, y_1) , only the numbers $[a_0; a_1, a_2, a_3, a_4, \dots]$ will be used such that

$$
\sqrt{d} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \frac{1}{\ddots + \frac{1}{a_5}}}}}} = \frac{x_1}{y_1}
$$

Example 2.7: The continued fraction expression for

$$
\sqrt{7} = 2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}} = \frac{8}{3} = \frac{x_1}{y_1}
$$

where, $\sqrt{7} = [a_0; a_1, a_2, ..., a_{a_0}, a_1, a_2, ..., a_{a_0}, a_1, a_2, ...] = [2; 1,1,1,4,2,1,1,1,4, ...]$

Remark 2.8: A continued fraction is purely periodic with period m if the initial block of partial quotients $a_0, a_1, ..., a_{m-1}$ repeats infinitely and no block for length less than m is repeated, and it is periodic with period m if it consists of an initial block of length n followed by a repeating block of length m . Purely periodic continued fraction \rightarrow $[\overline{a_0; a_1, ..., a_{m-1}}]$ \therefore Periodic continued fraction \rightarrow $[a_0; a_1, ..., a_{t-1}, \overline{a_t; a_{t+1}, ..., a_{t+m-1}}]$

the length of the period was denoted by t .

Theorem 2.9 [6]: If (a, b) is a solution to $x^2 - dy^2 = 1$ where $a > 1$ and $b \ge 1$, then (x, y) is also a solution such that

$$
x + y\sqrt{d} = (a + b\sqrt{d})^j
$$

for $j = 1, 2, 3, 4, \ldots$. Similarly, if (c, k) is a solution for $x^2 - dy^2 = -1$ where $c > 1$ and $k \ge 1$, then (x, y) is also a solution such that

$$
x + y\sqrt{d} = (c + k\sqrt{d})^j
$$

for $i = 1, 3, 5, 7, \ldots$.

Theorem 2.10 [6]: The equation $x^2 - dy^2 = 1$ is always solvable and the fundamental solution is (A_k, B_k) where $k = t$ or 2t and A_k/B_k is a convergent to \sqrt{d} . The equation $x^2 - dy^2 = 1$ is solvable if and only if the period length of the continued expansion of \sqrt{d} is odd. The fundamental solution is (A_k, B_k) where $k = t$ or $t + 1$.

3. The main result

3.1 Finding of the new relation

In the following steps, we give a new form that will be used to find all natural solutions (s_r, t_r) , $r =$ 1,2,3, … for Eq. (2).

Step 1: We are looking for a natural solution $(x, y) = (s_1, t_1)$ to Eq. (2). Solving the equation $x^2 - dy^2 = c^2 \implies x^2 = c^2 + dy^2 \implies x = \pm \sqrt{c^2 + dy^2}$. The required natural solution is, $x = \sqrt{c^2 + dy^2}$

then $(x, y) = (s_1, t_1)$ such that $y = s_1 + \sqrt{d}t_1$, $\delta = s_1 - \sqrt{d}t_1$ $\gamma \delta = (s_1 + \sqrt{d}t_1)(s_1 - \sqrt{d}t_1) = s_1^2 - dt_1^2 = c^2$

$$
\gamma + \delta = (s_1 + \sqrt{d}t_1) + (s_1 - \sqrt{d}t_1) = 2s_1
$$

By this step we have been found one natural solution (s_1, t_1) to Eq. (2) such that

$$
\gamma = s_1 + \sqrt{dt_1}
$$

Step 2: In general, assume that all natural solutions of Eq. (2) are $(x, y) = (s_r, t_r)$, $r = 1,2,3,...$, where

$$
\gamma_r = s_r + \sqrt{dt_r}, \delta_r = s_r - \sqrt{dt_r}
$$

$$
\gamma_r + \delta_r = s_r + \sqrt{dt_r} + s_r - \sqrt{dt_r} = 2s_r
$$

$$
\gamma_r \delta_r = (s_r + \sqrt{dt_r})(s_r - \sqrt{dt_r}) = s_r^2 - dt_r^2 = c^2
$$

Step 3: Assume that (x_1, y_1) is the fundamental natural solution to Eq. (3), which has been found by continued fraction expression for \sqrt{d} in remark (2.6) such that

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

$$
\alpha = x_1 + \sqrt{d}y_1, \ \beta = x_1 - \sqrt{d}y_1
$$

$$
\alpha \beta = (x_1 + \sqrt{d}y_1)(x_1 - \sqrt{d}y_1) = x_1^2 - dy_1^2 = 1
$$

Hereby, we obtain the fundamental natural solution(x_1 , y_1) for Eq. (3) such that

 $\alpha = x_1 + \sqrt{d}y_1$

Step 4: All natural solutions (x_r, y_r) , $r = 1,2,3,4, ...$ for Eq. (3) will be given, as follows: We have $\alpha =$ $x_1 + \sqrt{d}y_1$, using theorem (2.9) for $i = 1,2,3,...$ then

$$
\alpha^i = (x_1 + \sqrt{d}y_1)^i
$$
 is a natural

solution for Eq. (3) .

Step 5: From **Step1** and **Step4**, we have $\gamma = s_1 + \sqrt{d}t_1$, and $\alpha^i = (x_1 + \sqrt{d}y_1)^i$ respectively. All natural solutions (s_r, t_r) , $r = 1,2,3,4, ...$ to Eq. (2) can be obtained from the following for $s_r + \sqrt{d}t_r = \gamma \alpha^i$ where $i = 0, 1, 2, 3, ...$ (4)

3.2 Applying the new form

In this section we have applied our a new form in some examples as follows : **Example 3.3:**For find all natural solutions to $x^2 - 3y^2 = 4$ then

 $x^2 - 3y^2 = 4 \Rightarrow x = \sqrt{c^2 + dy^2}$. Here $c^2 = 4$, $d = 3$, therefore, let $y = 2 \Rightarrow x = 4$, resulting $(s_1, t_1) = (4,2)$ such that $\gamma = 4 + 2\sqrt{3}$. We have $x^2 - 3y^2 = 1$.

By Step 4 we have used the continued fraction expression of $\sqrt{3}$ to find (x_1, y_1) : Assume that $\alpha_0 =$ $\sqrt{d} = \sqrt{3} = 1.7$ and $a_0 = |1.7| = 1$

$$
\alpha_0 = a_0 + \frac{1}{\alpha_1} \Rightarrow \sqrt{3} = 1 + \frac{1}{\alpha_1} \Rightarrow \alpha_1 = \frac{1}{\sqrt{3} - 1}
$$

\n
$$
\alpha_1 = \frac{1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{\sqrt{3} + 1}{2} \Rightarrow \alpha_1 = [1.3] = 1
$$

\n
$$
\alpha_1 = \alpha_1 + \frac{1}{\alpha_2} \Rightarrow \frac{\sqrt{3} + 1}{2} = 1 + \frac{1}{\alpha_2}
$$

\n
$$
\alpha_2 = \frac{2}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{2(\sqrt{3} + 1)}{2} = \sqrt{3} + 1 \Rightarrow \alpha_2 = [2.7] = 2
$$

\n
$$
\alpha_2 = \alpha_2 + \frac{1}{\alpha_3} \Rightarrow \sqrt{3} + 1 = 2 + \frac{1}{\alpha_3}
$$

\n
$$
\alpha_3 = \frac{1}{\sqrt{3} - 1} = \frac{\sqrt{3} + 1}{2} = \alpha_1 \Rightarrow \alpha_3 = [1.3] = 1
$$

\n
$$
\alpha_3 = \alpha_3 + \frac{1}{\alpha_4} \Rightarrow \frac{\sqrt{3} + 1}{2} = 1 + \frac{1}{\alpha_4}
$$

\n
$$
\alpha_4 = \frac{2(\sqrt{3} + 1)}{2} = \sqrt{3} + 1 = \alpha_2 \Rightarrow \alpha_4 = [2.7] = 2
$$

\n
$$
= \alpha_1 = \alpha_2 = \alpha_3 = \alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 = \alpha_8 = \alpha_9 = \alpha_9 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 = \alpha_9 = \alpha_9 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 = \alpha_9 = \alpha_9 = \alpha_1 = \alpha_1 = \alpha_2 = \alpha_3 = \alpha_3 = \
$$

And so on then: $1 = a_1 = a_3 = a_5 = a_7 = \cdots$, $2 = a_2 = a_4 = a_6$ $\sqrt{3} = [1; 1, 2, 1, 2, \dots].$

The continued fraction expression for $\sqrt{3} = 1 + \frac{1}{1} = \frac{2}{1} = \frac{x_1}{y_1}$

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

thus,
$$
(x_1, y_1) = (2, 1) \Rightarrow \alpha = 2 + \sqrt{3}
$$
.
\nBy Eq. (4) $\gamma \alpha^i = s_r + \sqrt{3} t_r$ where $i = 0, 1, 2, 3, ...$, and $r = 1, 2, 3, ...$
\n
$$
\gamma \alpha^i = (4 + 2\sqrt{3})(2 + \sqrt{3})^i = s_r + \sqrt{3} t_r
$$
\nFor $i = 0$, $r = 1 \Rightarrow \gamma \alpha^0 = (4 + 2\sqrt{3})(2 + \sqrt{3})^0 = s_1 + \sqrt{3} t_1$
\n
$$
4 + 2\sqrt{3} = s_1 + t_1\sqrt{3} \Rightarrow (s_1, t_1) = (4, 2)
$$
\nFor $i = 1$, $r = 2 \Rightarrow \gamma \alpha^1 = (4 + 2\sqrt{3})(2 + \sqrt{3})^1 = s_2 + \sqrt{3} t_2$
\n
$$
= 14 + 8\sqrt{3} = s_2 + t_2\sqrt{3} \Rightarrow (s_2, t_2) = (14, 8)
$$
\nFor $i = 2$, $r = 3 \Rightarrow \gamma \alpha^2 = (4 + 2\sqrt{3})(2 + \sqrt{3})^2 = s_2 + \sqrt{3} t_2$
\n
$$
\gamma \alpha^2 = (4 + 2\sqrt{3})(7 + 4\sqrt{3}) = s_3 + \sqrt{3} t_3
$$

\n
$$
= 52 + 30\sqrt{3} = s_3 + t_3\sqrt{3} \Rightarrow (s_3, t_3) = (52, 30).
$$

And so on for $i = 3,4,5,6, ...$ and $r = 4,5,6, ...$ we will get the rest of all natural solutions (s_r, t_r) . **Remark 3.3:** All natural pairs (m, n) such that u is a natural square number in Eq. (1) have been found by using the new form Eq.(4), the natural solution to Eq. (1) when $u = 1^2$ is only the pair (m, n) = $(1,1).$

If $u = 2^2$ in Eq. (1), we have

$$
2^{2} = \frac{m^{2} + n^{2}}{1 + mn}
$$

4 + 4mn = m² + n² \Rightarrow m² - 4mn + n² = 4

Add and subtract $4n^2$, thus

$$
m^2 - 4mn + 4n^2 - 4n^2 + n^2 = 4 \Rightarrow (m - 2n)^2 - 3n^2 = 4
$$

This equation has infinitely many solutions (s_r, t_r) , $r = 1, 2, 3, ...$
for $r = 1, 2, 3, ...$ then, $m - 2n = s_r$, and $n = t_r$ so

$$
s_r^2 - 3t_r^2 = 4
$$

is a hyperbola equation has a same form in Eq.(2).

If $u = 3^2$ in Eq. (1), thus

$$
3^{2} = \frac{m^{2} + n^{2}}{1 + mn}
$$

9 + 9mn = m² + n² \Rightarrow m² - 9mn + n² = 9
By multiplying both sides by 4, then 4m² - 36mn + 4n² = 36
subtract 81n², gives 4m² - 36mn + 4n² + 81n² - 81n² = 36
(2m)² - 2(2m)(9n) + 81n² - 77n²-36

$$
(2m)^2 - 2(2m)(9n) + 81n^2 - 77n^2 = 36
$$

(2m - 9n)² - 77n² = 36
Then for $r = 1,2,3,...$ we obtain, $2m - 9n = s_r$, $n = t_r$ such that

$$
^2 - 77t_r{}^2 = 36
$$

is a hyperbola equation has a same form Eq.(2).

 S_r

In order to find all pairs $(m, n) \in N$ such that $u = 2^2$, 3^2 in Eq. (1), we will use Eq.(4). For $u =$ 4^2 , 5^2 , 6^2 , ... has the same form of Eq. (2).

Conclusion: We give a new form Eq.(4) to find all natural solutions to the hyperbola Eq.(2) using the Pell equation Eq.(3) and continued fraction method. By this form all natural pairs (m, n) such that u is a natural square number in Eq. (1) have been found.

References

[1] A.Negebauer, Elementary Algebra and Number Theory. Poland, Szczecin: Sp.z o.o, 2011.

[2] A.Tekcan, " Continued fractions expansion of \sqrt{D} and Pell equation $x^2 + Dy^2 = 1$." Mathemtica Moravica 2011: 15(2), 19-27.

[3] H.M. Edward, Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory. Springer-Verlag, vol. 50., 1977.

[4] K. Matthews," The Diophantine Equation $x^2 + Dy^2 = N$, $D > 0$ " Expositions Math 2000: 18, 323– 331.

[5] P. Steven Hagen, "A Density conjecture for the negative Pell equation, Computational Algebra and Number Theory. Math. Appl 1992: 325, 187–200.

[6] R.A.Mollin, Simple continued fraction solutions for Diophantine equation, 2001.

[7] R.A.Mollin, Fundamental Number Theory with Applications, (Discrete Mathematics and Its Applications). Chapman & Hall/ CRC, Boca Raton, London, New York, 2008 .