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Numerical approximations for a singularly perturbed parabolic
problem of convection-diffusion type with a discontinuous initial
condition
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Abstract:

A individually turbulent parabola problem of convective diffusion type
with a discontinuous initial state is investigated. A certain free error function
corresponding to the discontinuity in the initial state is determined. The
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difference between this analytical function and the solution of the parabola
problem is approximated numerically. A coordinate transformation is used
so that the layer-adapted mesh can be aligned with the inner layer in the
solution. Numerical analysis of the associated numerical method is
presented, which proves that the numerical method is a unified numerical
method. Numerical results are presented to illustrate the point error limits
determined in the research .

Keywords: Convection diffusion- Discontinuous initial condition -
Parameter-uniform approximations.

1. Partial differential equations

In the real world, many physical processes and phenomena are studied by
mathematical models, often by partially derivative equations. A differential
equation containing more than one independent variable is called a partial
differential equation. In fact, partial differential equations appear in
problems that contain the tracks of changing functions with several
independent variables. The general form of a partial differential equation for
the function u(xy, x5, ..., x,,) Is as follows:

Ju ou azu azu
=0 ... )

Flxq,..,x,u
0x,  0x, 0xf  0x,0x,

Where, independent variables and dependentxy, x5, ..., x,,u variables. If in
equation (1) The dependent variable and its derivatives appear linearly, then
the equation is linear and otherwise it is called nonlinear. The highest
derivative order in these equations, the order of the equation and the number
of independent variables are called equation dimensions."

Definition 1. An n-order linear differential operator is a function that is
generally one-dimensional as

(1) A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J.,

1964.
Yo



. D
"4 . S S " P -ISSN 2306-5249
J O B S uy‘ f‘ ‘ Orr||I::e ISSN 2791-3279
Jou rnal of Basic Smence Cg il g AL aanl)

:%} LVEE0/aY ¥ E
\§ o J
dn n-1 d
L= e +P(x)—— = + -+ P, 1(X) + Px) ... (2
And in two-dimensional mode,
n n—-1 n n—-1
L=dxn+l’1(x,y)an -+ qo(x, y) —+q, (%, y)a —
n-1 62
+r11(%y) Jxm ayn—l—m +ot o (xy) 9x dy
+ Py-1(x, Y) +C1n 1(%, Y) +Pn(X'Y) ..o (3)

Defined. If differential operators are defined in (1) and (2) Act on a
function, respectively, producing a differential equation with partial linear
derivatives of one-dimensional order and a partially linear M-order
equationnn.

The linear operator has fixed numbers and functions and hasLafuv the
following properties:

L(au + Bv) = aL(u) + BL(v).

Definition 2. If a partial differential equation is linear only relative to the
highest available derivative order, it is called pseudolinear.

Now, due to the importance of second-order partial differential equations, we
investigate them. The general form of a differential equation with partial
linear derivatives is two-dimensional second order as follows:

2 2 2
Jdu Jdu Jd u ou ou
a—+ b
0x d0x0y dy? 0x y

where the functions of the variables area, b, c,d, e, f,gx,y. The equation
above is a homogeneous equation, whenever it is zero per and

equalg (x, y)xy.2

Yov
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A classification for partially differential equations of the second order two-
dimensional order, which is performed in terms ofabc coefficients, is as
follows:

e If the equation is called ellipticalb? — 4ac < 0.

e If the equation is parabolich? — 4ac = 0.

e I, the equation is called hyperbolich? — 4ac > 0.

2. Elliptical Equations

Elliptical equations usually correspond to stable state behavior. The general
shape of an elliptical equation is as follows:

n

_Zax1<al]ax]> Zb—+cu—f AN )

ij=1
In which the matrix prevalences are the opposite of zero and also
symptomatic(i,j = 1,2, ...,n)A = (a;;).

In order to solve the elliptical equation (4. 1) In a physical amplitude in
which the equation is established, a series of boundary conditions are applied
to the equation in order for a boundary value problem to be obtained 4. In
this case, if the function is found so that it applies to the desired domain in
the equation and establishes the boundary conditions, then an analytical
answer to the question will be the assumed boundary value. For the equation
with the amplitude enclosed with the border, the types of boundary
conditions are defined as follows:

e Dirichlet's bet:

u on the border has a known value, i.e.,I’

u=uonl.

e Newman's:
A normal derivative means that on the border it has a known value,

. 9
I.e.,u—u =n.Vul'
on

YoA
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ou r
=—=qgonl.
q on q
e Rubin's bet or mixed:

The combination of and its normal derivative on the border has a known

a
valueu Z + aqur.
on

Poisson and Helmholtz equations are specific scenarios of elliptical
equations that are as follows:

Vu=Ff f#0 andVu+tu=f, f%0,

: : . 2 :
In which the operator is called a laplasine operator? and acts as follows in
the Cartesian coordinates on the function (an open set is in u: Q - RQR™the

door):
for one-dimensional mode, i.e., forn =1
2 d?u
Vu= Ix?

for 2D mode, i.e., forn = 2

2 2
2 odu 0
Vu=— Lg®)

dOx2  0x2

N 62u
=1 ox?

. 2
And for the next general state, that is, toNn =N and V u =),

definition 3 . If a regular one is integers, it is insurmountic «a =
(ay, ay, ..., az)d. Thenit's called a few andys a. We show the size anda|«|
it is defined as follows:

d

la| = z a;.

i=1

Yed
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Also, if they belong and, then, respectively, are defined as a,zR%a =
(ay, ..,y),z = (21, 2y, ..., 2g)a! z*Follows:

al = alay! .. ayl,
a _— 1,02

a (24;]
Z —Z1 Z1 ...Z1 .
Also, for - Amin is a partial derivative as follows|a| < ma D%v(x) =
6|a|v(x)
ax1ax;? ...axfg'
Consider where the partial elliptical differential operator is linear from order
asL2m follows:

Lu = Z (—1D)lelpe z a,B(x)DPu |, XxX€EQCR™...(6)

|la|sm |Blsm

Border operators By, B, ..., B,,—,are also defined as follows:
Bju = Yjaj<q; DYDY . . . (7)

In second order mode, (6) and (7) Shape (4) With only border condition

= u

Bu=2bj—+cu=g onl,

. ax;
]:1 ]

convert. The differential operator displays the adjunct with the symbol and
we haveLL":

L'u = z (—=1)llpa z aﬁa(x)Dﬁu )
|la|sm [Blsm

As we know, we have green formula:
j(D“u)vdx = (=1)ll juD“ vdx + fh(u, v)ds.
Q Q r

Now, if we apply Greene's formula to the integral, thenfQ vLludx
Y.
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vaudx = ij*vdx+fh(u, vyds .. . (8)
Q Q r

In which theh(u, v) sentences are borderline, which is achieved by applying
the green formula. If it is, the operator is called annexation itselfL =
L*Claﬁ = aﬁaL.

2
Example 1. Two-order differential operator L = —% +1,

Consider. Using component-to-component integration we have forQ €
(0,1):

1 B d*u du 1 dvdu
j;vlu=j0 <—vﬁ+vu>dx=— va]+Jo <aa+vu)dx
duil* r1dv P L/d%vy
= UEO-F EM]O—JO (W‘FU)UdX.

B d*u du dv 1 L/ d?v
LU(-W-l'U)dX: [—UE‘FEU 0+f0 (—W+U>UdX,

h(v,u) L*v
Consequently, it means the operation of the appendix itselfL = L*.

n s\ ~ A
F¥ =—¢F +kF _+gF, = —egFSS+<\/;K+ga>FS+gFt

A

A K 0Js

=gL,F+g —+a—a(d,t) F
b

Where

L,F:=—¢F _+a(d(t),)F, +F,.

Hence, from (3.5) and using gz(d(t), t) = a(d, t) we have:

~oa oF
FAx, t) = gL F + \/;(a(x, t) —a(d,t)) Py

¥
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We will define a set of functions as {zpi} such that Ly, = *;9, €

i=+

i) =

C (Q),i=). Every function in 1};1. region é\F* Is open smooth. Define

two individual functions as follows [']:
3. Parabolic equations
A set of parabolic equations depends on the time of parabolic equations. The

general shape of a parabolic equation is as follows:
n

Z 5} ( 0 ou _6u
ax Cl] Xl,xz, ...,xn, axj = atl

ij=1

In which t represents the time and matrix with the valleysC of c;; a true
symmetric matrix in terms of place and time. The equation above can be
written briefly as follows:

7.[C.Vu] = %, That represents the derivative relative to timetu.

4. Hyperbolic equations

Hyperbolic equations are another class of dependent equations when they
originate from vibration equations and in general, vibrating devices and
wave motion are described by hyperbolic equations.

In order to solve parabolic and hyperbolic equations, in addition to applying
a series of boundary conditions, the conditions of the equation at a specific
time, for examplel | the start time of the desired process are required. By
applying these conditions to parabolic and hyperbolic equations, a primary-
boundary value problem is achieved.

In this thesis, we examine the issue of dissemination-convection. Therefore,
we will introduce this issue in the following. The simplest parabolic
equation is the one-dimensional heat transfer equation, which is as follows:

du ko u
ot opox?’
u(x,0) = f(x), 0<x<lL

0<x<IL, t>0

[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J.,

1964,
¥y



&

Ve ,
- £ S Print -ISSN 2306-5249
J O B E ; ): Al ?JM‘ Al Online-ISSN 2791-3279
~ Journal of BasiC SCIENCE  cussdally (Al

@ AVEE0/aY Ve

\

_/

u(0,t) = p(t), u(L,t) = q(t), t=>0.

Where the density of the object and the constant coefficient is proportional to
the special heat, the initial temperature, and the temperature at the two end of
the rod and the temperature of the rod at the point of length and at the
momentpaf (x)p(t)q(t)u(x, t)xt. Although the above problem is known
as heat problem because of the modeling of heat transfer problem, but this
problem has various applications such as solving infiltration problems such
as water penetration inside the earth, measuring the amount of existing water
and oil mines in underground resources, etc. so such issues are called
intrusion problems. An infiltration equation is a partial differential equation
that describes the change in density in a material that has been intrusive. If
the area is our intended area as well as the boundary of this region, then the
linear standard form of an infiltration equation can also be expressed as
follows:Q Q)

According to the problem(j,j,—‘t1 = Z%‘;,O <x<1,t=0., the initial and
boundary conditions can be considered as follows:
u(x,0) = g(x), 0<x<0,
u(0,t) = @o(t), u(l, ) =@ (), t=0,
where g(0) = ¢,(0),g(1) = @,(0). Equation (9) The simplest form of an
infiltration equation can be generalized in different ways. As an example,
1. By adding multiple spatial variables instead of a spatial variable
du

— = V2 ,
ot

In which it can change in a way that actually determines the dimension of the
problemuu = u(x,y,z, ..., ).
2. By adding the phrase as follows

ou 62u D

_— x’

ot  0x?

3. Considering the diff propagation coefficient in the equation
du 0 [ au]

E_ax

yay
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That is a derivative function so that, perD(x)0 < D(x) < oo, x € Q. If the
propagation coefficient of the equation depends on the density value, that is,
then the equation is nonlinear and otherwise the equation will be
linearD (x, u). If the propagation coefficient of the equation is constant, then
the equation is reduced to the following linear equation.
ou azu
—=D—.
ot 0x?
If convection is used in the equation in partial differential equations in
addition to diffusion expression, the convection equation becomes the
diffusion-convection equation. The diffusion-convection equation is a
partial parabolic differential equation describing those physical phenomena
in which the energy converted into a physical system is caused by two
processes of propagation and convection. Convection means the movement
of molecules within the fluid, while the word diffusion describes the
expansion of particles from high concentration regions to low-concentration
regions.
The simplest mathematical model is a diffraction-convection problem of the
boundary value problem as follows:

—eu' (x) —b(x)u' + a(x)u(x) = f(x), 0<x<l

With boundary conditions in which the positive parameter is too small and
the given functions correspond to the convection factor, the answers are
differential equations corresponding to the propagation factor and
coefficientu(0) = u(l) = 0e(0 < € < 1)abfuuuu’. The coefficient of
function is known to the right sidef. When there are both penetration and
convection factors in a differential equation, we say that the problem is
diffusion-convection. In a diffusion -convection problem, the parameter that
describes the relative impact of convection and propagation components is

called the packet number, i.e., we have: Pe = %.

Applications of partial differential equations, in addition to radiate, are
abundant in engineering, economics and other sciences. There are different
methods for solving differential equations with partial derivatives, including

yie



g . D
J O B S Vi a‘..""""""‘m ?JM‘ 3.‘;.4 (;:ll?:e-!f:sl\ll\lzz370961-?32;799
L Journal of Basic Science cussdally LGl i)
iqa‘j .A\iiG/?\WYi

yaw ~

\

finite difference method, finite elements method, boundary elements method
and non-network methods. Using finite difference method and finite
elements to solve equations requires amplitude segmentation, which
increases the computational volume, especially in 3D mode. These divisions
make it difficult to implement them on equations with irregular geometric
regions with two and higher dimensions, and the matrix obtained from
internalization in these methods is much larger and the volume of operation
increases. On the other hand, inappropriate discrete selection can lead to a
big error in the answer and also the convergence of the answer will be slow.
In contrast to amplitude methods, methods such as the border elements
method, first founded by Berbia in 1978, have a border nature and only rely
on border division. . This feature reduces the dimension of the problem to
the size of a unit and greatly reduces the volume of the device of the
equations and significantly reduces the number of computational
operations. In the boundary elements method, the given differential
equation is first converted to an integral equation using certain functions
under the title of the basic solution, and then the integral equation is solved
by numerical methods. The specific form of the basic answer causes the
creation of individual integrals, which their calculation requires the use of
numerical integration rules of high order. The method of boundary
elements in solving Poisson equations causes amplitude integral in integral
equations. Therefore, one of the most general methods without the need for
domain networking called the Dual Reciprocity Method was proposed by
Berbia and Nardini in 1982. Then, a number of researchers have been used
in various fields of engineering in which the amplitude integral of
heterogeneous sentence is converted to several boundary integrals, and by
finding the approximate private answer, the Poisson equation is converted to
a Laplace equation and the Laplace equation is solved by discrete on the
boundary with the boundary elements method which requires calculating
individual integrals along the boundary. Solving these single integrals is
easy for two-dimensional problems, but it is costly for 3D problems.
Novak and Berbia also proposed a multidimensional reciprocity method that
could more effectively convert amplitude integrals into boundary integrals

Yo
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and then generalized to unstable problems as well as Helmholtz equation.
One of the disadvantages of the boundary elements method is that it requires
solving individual integrals. In addition, the boundary elements method is
suitable only for equations for which the basic answer (weight function)
exists, while calculating the weight function is not possible for all equations.
In 1964, basic answer methods were proposed by Coprodaz and Alexidez to
deal with this problem. This method is basically a network less method and
belongs to the general category of congested border methods in which there
IS no border or domain segmentation. In general , non-network methods
are divided into two categories: amplitude and boundary methods, the basic
response method belongs to the second category. In the basic answer
method, introducing an artificial boundary including the main boundary and
selecting the source points on it prevented the single baseline from being
singled out, and the answer to the problem is expressed as a combination of
the basic unspeakable answers, which is precisely the case in the main
differential equation, in which the calculation of individual integrals used in
the method of boundary elements and the dual confrontation method is
avoided. This method is an efficient numerical method for solving two and
three-dimensional Laplace equations. In recent years, this method has also
been used to solve Poisson equations by finding private answers for
heterogeneous sentences.  In this method, the answer is divided into two
parts: homogeneous and private answer. By approximation of
heterogeneous sentence by radial basis functions, an approximate private
answer is obtained. Depending on the type of basic radial functions selected
on the basic solutions for solving the nonlinear Poisson equation, the answer
is divided into two parts: homogeneous solution and private solution, or by
quasilinear techniques for approximation of heterogeneous sentence, they
convert the Poisson equation into homogeneous equations for which the
basic answer exists.  The basic solutions method for solving nonlinear
Poissen equations on which Newman's conditions dominate has low
accuracy. Therefore, to improve this method Ramachandran and Carver in
1998, they used the concept of Bosani internation using radial basis
functions to approximate heterogeneous sentence. This method uses two

A
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categories of independent linear radial functions to approximate
heterogeneous sentence and in addition to the value of the function,
derivative information of the function is also used. Methods without a
domain network operate based on the internalization of the unknown
function at boundary and amplitude points. A variety of methods without a
domain network  can be referred to as symmetric local method and
asymmetric co-location method. = The asymmetric co-local method was
proposed by Kanza in 1990. In this method, the answer function is
expressed as a linear combination of radial base functions. Although
asymmetric local method is a very simple method, the resulting internode
matrix may be individual. To solve this problem, a symmetric method was
proposed by Faschayor in 1997, which-is based on hermit intern mum, and
the resulting internode matrix is symmetrical and specifically positive and
thus inhospitable. In this method, the answer function is expressed in terms
of  a set of radial base functions and their modified findings under the
influence of differential operators in the equation. Therefore, this method
will have better results than asymmetric local method for equations governed
by Newman's conditions.”

5. Radial basic function and their properties

Interlimency using radial base functions as a method without network is a
powerful tool in multivariate approximation theory. In this section, radial
base functions, its properties and internalization are investigated using these
functions.

Definition 4. The radial function is called a radial functiong:R% - R
provided that there is a one-variable function such as thate: [0, ) - R

¢(x) =), r=|xll

And the common soft zinc is normally]||. ||R® considered Euclidean soft. So,
we have a radial function for

x4l = X2l = P (x1) = p(x3), X1, %, € R%.

(4) G.1. Shishkin, L.P. Shishkina, Difference Methods for Singular Perturbation Problems, CRC Press,

2009.
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Definition 5. (Radial basic functions). Radial basic functions are a
particular type of radial functions and are generally defined as independent
linear functions and are called center points;., = ¢(||x — x;||)¢; =Jj =
1,2,..,N, {x]} One of the properties of these functions is being reliable
under transitions, rotations and reflections. Also, the usual variabler =

||x — x;|| 0 is used in radial base functions and is soft Euclidean distance.
Radial basis functions are the natural generalization of one-variable
polynomial splines to multivariate state. When radial base functions were
used as basic functions for intermingling multivariate data, they showed
favorable characteristics, such as high performance and good quality of
radial base functions that inherently have the ability to work with scattered
data. Another advantage is that they have a higher accuracy order than
traditional methods on a distributed distribution of points.  Radial base
functions in terms of positivity are classified into two categories of positive
functions and conditional positive functions, in terms of smoothness to
infinitely smooth functions and smooth piece functions, and in terms of type
of support to functions with a global support and compact support. Common
radial functions include fully] smooth radial basis functions such as
gaussian, reverse square, multiple inverse squares, multiple square, and
smooth piece radial functions such as linear, cubic and spline with narrow
bar.

Radial function Bailiff ¢ (r)
Gossip o~ (€r)?
Square Gaussian 1
1+ (er)?
Inverse multiple 1
squares 1+ (er)?
Multiple squares 1+ (er)?

YA
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Linear r
Cubic r3
Spline with slim bar r2log(r)

Definition: (Conditional number). Quantity is called a conditional matrix
number in which the function is soft||A]|.||A"1||A]l.]|. The larger the
conditional number of matrix A, the weaker the device is, and the closer this
number gets to one, the closer the device becomes from the primitive state
and closer to the good condition.

Oppah: (Positive semi-modal matrix and positive modal matrix). The
symmetric matrix A is called semi-specific positive, whenever we have a
zero-fitr for each vectorx € C™: xTAX = 0

That's the vectorx”x' song. Whenever it is strictly established, a given

matrix A is positive.

Definition 8. (Smooth function). The function is called smoothly¢: R®* — R

whenever its derivatives are available from any order.

Definition 9. (Function pressed with support). If the function on the region

is defined as being the opposite of zero only at points and is outside of zero,

l.e., it is closed and bound, then it is a function with a compact

supportuQk c Q, kkkkQu.

Definition: (Certain positive radial function). The radial function on a given

is called positiveg: [0, 0) — RR? if and only if separated for each finite set

and from two-to-two points, the matrixX = {x;,x,,...,xy}X € R* and

Apx = (@l = xil),, oy € BV

The specified set of functions is positively displayed PD,with.

As we know, a suitable solution for solving scattered data problems is to

construct a function that is a linear combination of certain pie functions.

Radial base interlimency for assumed values at points of a linear
composition in the form off; = f(x)x;,i = 1,2,...,N

¥4
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s(x):chqb (||x—x]||), x €R? ... (10)

j=1
It is in which coefficients are achieved by applying internalization
conditionsc;s(x;) = f(x;). Relationship (10) Can be written as linear

equations machineAc = f:

dlxs = x11D  @lxs = 220D oo @lx —xnlD\ /€1
bl = xil) - @lllxz —220) oo lllxz —2nl) [ €2

Sy —x1lD dUlxy —xal) o by —xwl)/ \en
£ )
f(’fz) (11)

f(xn)

In which the matrix is the internalization and vector and the unknownAfc
vector. Now, if the modal interning function is positive, then the internode
matrix is positive for any finite number of distinct points and therefore
inhospitable to the solvability of the device (11). Guarantees. Therefore, we
are looking for functions that have the properties listed above. In the
following, we will discuss the definitions and theories that help us to obtain
such functions.
Definition: (Fully function) function on the interval is called completely the
same whenevery: [0, 00) — R[0, )

1. Y € C[0, )

2. P € C*[0,00)

3.IeENU{0}, r>0,(-DYP@r) =0
Theorem 1. If it is completely uneven but not fixed, it is positive for each
set of separate matrix points with certain
doorsy () = ¢(Vr)I0, o) {x; 3L Aa; ; = o (||x; — xj”).
From the above theorem, it is concluded that gaussian radial base functions,
inverse squares and multiple squares are positive inverse because they are
positive for each

[=1,2,.., r>0,
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Y(r) = (p(\/?) LN (—1)l¢(l)(7’) — 2T 5 0,

I1e?!
gb(r) - (P(\/?) T 14 g2 - (1+ 827‘)”1
1 - OO = r (l + %) g2l

V1+¢? V(1 + szr)l%
Also, for multiple and linear square radial basis functions, since we have for
and therefore from the above theorem, itr > 0y (r) > 0y'(r) > 0 cannot be
concluded that these two specific functions are positive.

Theorem 2. If it is completely uneven and not fixed on the surface, it is
positive for each set of separate points of the matrix with certain doo

(1) = ¢p(Vr) € €°[0,0]p(r) > 0r > 09’ (r) (0, ) {x;}}. Aa; ; =

¢(||x; — x;]|)- In addition, for the matrix, it has a negative specific value
and a positive valueN > 2N — 1.

With the help of this theorem, multiple square radial basis functions and
certain linearity are positive. Now, despite all the cases and tools expressed
above, there are functional and useful radial basis functions that do not apply
to the said conditions and therefore are not certain to be positive, such as the
Radial Basis Function of Spline with a narrow bar. In this case to ensure the
reversibility of the device (11) Should be a polynomial with a specific

maximal degree in the phrase
N

s(x) = z cj¢ (||x — xj||) o (12)
j=1
Add. Suppose it represents the space of the variable polynomialsP¢ d and
the maximum degree, which is called the order of the pie functionm — 1m =

> 0.

> 0.

P(r) = p(Vr) =

m(¢p)o. By choosing the base for this space, then the
relationship{py, p,, ..., pg }q
—1+d
q=(" ; ) ... a3)
it is obtained. Now by adding new sentences, the phrase (12. 1) Converts as

follows:
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s(x) =X ¢ (|lx = x;||) + Pm-1(x), Pm—1 € BE ... (14)

q
Prs ()= ) im0,
k=1

Now there is a degree of freedom that is homogeneous with the equationgq
N

Z Cj pk(xj) =0, k=12,..,N,

j=1
This degree of freedom of questiong disappears. Therefore, coefficients by
international conditions and constraintsc;, y, (15) It is determined that the

symmetric linear system concludes the foIIowing.(IflT g) ()C,) = (](;)

Where the matrix is in (11) Given and matrix with doors for and.PN X
qpi(x;)j = 1,2, ..., Nk = 1,2, ..., q Ifitis, we will have certain radial basis
functions positive because if it is based on relationship (13m = 0m = 0). 1)
We have the second sentence of the phrase (14g = 0. 1) Will be removed
and will have the same primary relationship radial base functions (12). 1)
will lead. To check the existence and uniqueness of an answer for (16) First,
we consider the corresponding homogeneous device:
A.c+P.y=0 and PT.c=0
Here are two parts, interstming conditions and torque conditions (18. 1)
Segregated. If Multiply from left in, It results immediately:cT. A.c = 0.
Now to guarantee the existence of an answer We need the matrix for each
finite set of interning points on the subspace containing all the vectors in
(184X = {x;, x5, ..., NJR%c € R"). 1) It applies, moein is positive. It can be
reinstated as follows c”.4.¢ > 0
For X all and with writtenc € RN — {0}PT.c = 0.
Definition: (Certain radial function of the conditional). The function on a
given positive is called conditional order, and if and only if (20¢: [0, ) —
RR%m¢ € CPD,(m)). 1) Establish for all possible selections of finite
pointsX € R4. CPD Represents a set of conditional positive modal
functions.
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Now it must be proved that we have a radial basis for each function or
¢¢p € CPD,;(m) — ¢ € CPD,;(m). Note that we have an arithmetic number
set for each pairm,, m, € NyNym; < m,:
CPD,;(m,) € CPD(m,)
That is, for every positive conditional, minimal that's in (20¢pm = m(¢).
1)¢ Applies to the order called. Therefore, according to the order of each
positive deputy, it will be zeroPD; = CPD(0)¢ € PD,.
Had to talk about solvability of devices (17. 1) and (18. 1) We'll be back.
For each or directly from (19¢ € CPD;(m) — ¢ € CPD;(m). 1) We
conclude that c¢=0. So (17) Converts to relationshipP.y = 0.
Consequently, to secure a one-way answer (17) and (18) Just need matrix
dispersionP. But this property depends on the geometry of the inner
pointsX. In fact, we should note that the matrix is sprinkled if and only for
the relationshipPp € B2 P(x;) =0 1< j <N foreach =P =0
to be established. In this case, although an internalizedP2 sentence can be
constructed uniquely from its function values in pointsX. Then it is said that
the set points are the ystada solverX — P<.
Theorem : For each international problem under adverbs (15¢ € CPD,(m).
A unique answer in the form of (14). It has. Provided that the internalization
points got in with the truth in (21X. 1), be a monolith solver—p4,.
Note that the internalization of radial basic functions is network less. This
key property is inconsistent with many other methods for interpolating
scattered data, such as splines on triangular regions. Therefore,
internalization of radial basic functions for network generation does not
require additional data structures of the algorithm.
In fact, the implementation of the design of radial basic functions
interlimency methods, for the well-distributed X data set with average size
N, is a straightforward task that requires only a few standard methods of
numerical linear algebra. For uneven and very large X distributed sets, a
detailed preprocessing of X data communication is required. In this case,
multi-stage approximation designs are suitable tools.
6-Galerkin method - three-stage wavelet for the convection equation:
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For the convection equation, £ = a(d/dy)and therefore we have(u, =
auy, ) Where a is a positive constant. We keep the spatial variable x
continuous and discretize the time variable with a three-step method, we will

u (t + % =u(t) + %(au‘z‘) and u(t+ At) = u(t) + At(au2+2) .. .(15)

We put the wavelet approximation u;(x,t)in the equation (15) in the above
equation and take the inner product from both sides of the equation
with QII (X),

[ B et DBy OB () = [ et g () By ) B ()l +

% [a [ Eier () (9 (X)dX]
1
f Z we(t 1 D ()P (x)dx
° k-1 2

= ‘L z uk(tn)le(X)®]l(X)dX
k-1
ajo P “k(tn+1)®111<(x)®n(x)dx] .- (16)
k-1 2
jo z Uk (tn+1) P () Pp (x)dx
k-1
B j Z Uk (tn) Dy (x) Oy (x)dx
KT

: j ; Hk (tn+%) Dk () By (%) dX]

have(u(t + 5 = u(t) + = (auf))

+At
2

+ At

d= [ w00, dx

k
Using equation (a), equations (16) can be written as follows:
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1
d“+_ =di+3@DPdy) and dy ?=di+5(aDVd, *) ditt=dp+
At(a DO 2)
7- Galerkin method - three-stage wavelet for Berger's equation:

Here £ = u(d/d,)and therefore we have (u;+uu, = v uyy)
Where v is a positive constant. In this part, we first keep the spatial variable
X continuous and discretize the time variable with a three-step method, we
have:

At At 1o N At
u(t+ ?) =u(t) + £ (—u" uy +vuygy) and u(t+ ?)

At 1 nis n+x
=u(t) + ?(—un+3 w34 v, >)

X

1
1 p4l n+5

u(t+ At) = u(t) + At(=u""2u, 2+vu ?)
Now we discretize the variable x W|th the Galerkin-wavelet method (WGM),
the result IS

2 St (£, ) O (0860 = [ Tir () By 0By (0l

~ [ O w8 Ot ()0 () - B ()dx
k m

1
+v j ZUk(tn)Q)ﬁ((x)@]l(x)dX] .37

k

[ S (t,11) 0 (081 GO dx = [ T ()3 0B (0l
2] Lt (1) 000) ot (€, (9) - B COIx +
v [ Sieun(t,, )87 () By (x)dx
[ Biert(tnsn) B (0B () dx = [ Ty uk(tn)@,k(x)csnzx)dx
+At [— oy (tn+%) B3 (30) (T n (6, )0 (9) - B (OClx +

v [ Siee(t,, D95 00y (X)dx]
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can be written as follows:

nti A 1
a3 = d3+§<—2’ZZ<uk)“ ()" [ 03O GID} ()

1
FV@Y Y " [ 0y (90} (dx
k
— qn

u
+At
3

2 Z Z(uk)n (Um)™ AL + v(2))? Z(ukr’ A2

8- Order reduction method for linear chaotic single problems:

To describe this method, we first consider a single chaotic two-point
boundary value problem in the following form:

ey () +a®) y' () +bXy) =fx) , x€l[pq] .. (18)

Where ¢ is a small positive parameter and  and o are known constants.
Suppose a(x and f(x) and b(x) are continuously differentiable functions in
[p , q]. In addition, we assume that a(x) > M >oand M are constant
throughout the [p , q] interval.
9- Order reduction method for nonlinear chaotic singular problems:

In this section, we extend the order reduction method to a class of
nonlinear perturbed singular two-point boundary value problems.

For this purpose, we consider a group of two-point turbulent singular
nonlinear boundary value problems in the following form:

ey () + [a(y®)] +b(x,y®) =f(x) , x€ [p,ql (19
Where ¢ is a small positive parameter and § and o are known constants. We
assume that f(x) and b(x,y) and a(y(x))are continuously differentiable
functions in the interval [p, q].
We assume: Equations (19) have the same solution, so that a boundary
layer appears with a width at x = p.
10-Description of the order reduction method with an example:
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To demonstrate the order reduction, we apply this method to solve two
discrete linear and non-linear perturbed problems. These examples have been
chosen because they have been extensively discussed in the cited references.
Example: Consider the following homogeneous chaotic singular problem:

ey'(x)+y'(x) —y(x) = , x€lc,1] andy(c)=1 , y(1)
=1
The exact answer to this question:
m mqXx m moXx
() = [(e™2 — 1)e™* + (1 — e™1)e™2*] [em2—emi]
Whichism, = (=1 —=vV1+4¢)/(2e) s my=(—=1+V1+4¢/Q2¢).
From step 1, the simplified problem is as follows:
Yo (x) = yo(x) =2 , y(1)=1
The solution of the reduced problem is y,(x) = e*7 1.
From step 2, two first-order equations equivalent to equation (29-2),
z'(x) —y(x) =o and ey’ (x) + y(x) = z(x)
From step 3, we have: z(1) = €y, (1) + a(1)y.(1)
That’s means: z(1) = & + 1 We replace y(x) with y,(x)in relation , we get
z'(x) = y.(x) =eo
Therefore, the pair of initial value problems corresponding as follows:
(i) z'(x)=e*1?
with the condition z(1) = e+ 1
(@) ey () +y(x) =z(x)
with the condition y(e) =1
11-Numerical results

In this section, we present numerical results for two test samples. The exact

answer to both examples is unknown. We estimate the global convergence

orders of Pand the global parameter-uniformity convergence orders of
PNMysing his second method [2, Chapter 8]: for each

. - Y7
seS:={V Y Y } calculate the solutions YNM and Y™V "Mwith
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(3.18) on Shishkin® meshes Q¥ and Q"V"M . Then, calculate the maximum
two-mesh global difference as follows:

NM N,M GYN,YM I
D, ||Y -Y ey, QYNYMIVSES

When YNMrepresents the bilinear interpolation of the discrete solution
YNMon the mesh QNM. For each € € S, the order of global convergence

YN,YM
£

N.M
PNMis estimated based on PM'M = log, < De ) Ve € S The uniform two-

mesh global differences D¥*and the uniform orders of global convergence

N,M NM . NM pNM . Al
with P**are calculated D n;agng , PP = log, ( ,N,M)

Table 1 Example 1: Maximum two-mesh global differences and convergence
order using scheme [6°], where coordinate transformation (3.5) is not used.

N N
N=M _ N=M ' 4 N=M N=M N=M
= 32 B =128 =512 =1024 = 2048
= 64 = 256
YYYYE YOYPE VYOYYE YAVPE VYAPPE Y. XYAE
DN,M
_nY —.Y —nY —nY —.Y —.Y
Y YYA
PNM . ¥. )V, —).¥08 +44F¥ Y IYA ) V¥Y 'YE
Shishkin °

[6] J.L. Gracia, E. O’Riordan, Numerical approximation of solution derivatives of singularly perturbed
parabolic problems of convection—diffusion.type, Math. Comput. 85 (2016) 581-599.

YVA



Print -ISSN 2306-5249

I’ . . .
J O B S Vi Al ej-w‘ Alas Online-ISSN 2791-3279

>

’* Journal of Basic Science  assdally L sl

‘gm\ -A\iiG/?\'~\'i

J

Computed component y

Computed solution

(a) Approximation fory.
05 [l
° WmWW;;%WU(!’!’f{’f')’f'f{!mu]f
Il HHHW #
| h .wJW
45 |

03 g
0.2 0.6

0.1 04

y L 0.2
Time Variable 0 o

Space variable

(b) approximation for i .

Figure 1. Example 1: Numerical approximation to y and @ with ¢ = 271?and

N=M=64.
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Example 1. Consider the following test problem:
—eligs + (s, O + 4, = ¥s(O —s)t+t, (s,0) € (+,)) x (+,.¢],
a(s, ) ==Y, <x< Y, 0(s,0) =),y <s <),
a(,t) ==y, 00,t) =), <t< e,

(~ﬁ'—(s—~.V)‘)

¥

a(s,t) = . Note that a,(d,0) = 0 is the characteristic curve:

d(t) = ——=— It has been proved in [6] that coordinate transformation

(3.5) is not required to obtain a global approximation when it depends only
on a variable t. Hence, we first check whether this transformation a =
a(s,t)is needed or not. In Table 1, we see that without mapping, the
method is not parameter uniform.

Example. Consider the test problem:
—eligg + (\ + s')ﬁs +(s+0+0 ="V —s)t+t, (50 € () x (9],
u(s,*) ==Y, <s< V(s ) =)0 <s<),
() ==Y u()t)=) <t< o

Note that the source term is present in this example, and then the problem
(3.25) is approximated by the numerical method (3.18) on the Shishkin mesh

tY

QMM For this example we have I(t) = (cost— *.)sint)e .
Moreover, observe d.(d,0) # 0 and b(d, 0) # 0. In Table 3, we see that
the numerical approximations converge almost to the first order.
Table 2 Example 1: global differences of two-uniform mesh and order of
convergence using numerical method(3-18).

YA



\_

Ve :
- : 5 Print -ISSN 2306-5249
J O B E ; } Al é‘JM‘ Al Online-ISSN 2791-3279
~ Journal of Basic Science sl il sl

\

Q@ 2V EE0/aY Y E
® i [)
§ = TPry ooy )

N=M=32 N=M=64 N=M=128 N=M=256 N=M=512 N=M=1024 N=M=2048

g=20 3.503E-02 4.546E-02 1.531E-02 5.169E-03 2.067E-03 1.005E-03 4.955E-04
-0.376 1570 1567 1322 1.041 1.020

g=2"1 4.422E-02 1.495E-02 5.041E-03 2.017E-03 9.795E-04 4.827E-04 2.396E-04
1.564 1569 1322 1.042 1.021 1.010

£=272 1.426E-02 4.795E-03 1.927E-03 9.318E-04 4.585E-04 2.274E-04 1132E-04
1573 1315 1.048 1.023 1.012 1.006

g=2"4 1.986E-03 7.580E-04 3.886E-04 1.967E-04 9.897E-05 4.964E-05 2.486E-05
1.390 0.964 0.982 0.991 0.996 0.998

g=2"6 8.317E-03 3.022E-03 9.091E-04 3.251E-04 1.625E-04 8.126E-05 4.063E-05
1.461 1733 1.483 1.000 1.000 1.000

g=278 1.610E-02 8.733E-03 3.419E-03 1.081E-03 3.076E-04 1.008E-04 4.369E-05
0.882 1353 1.662 1.813 1610 1.206

g=2"10 1.325E-02 9.919E-03 5.841E-03 2.769E-03 1111E-03 4.467E-04 1.897E-04
0.418 0.764 1.077 1317 1315 1236

g=2712 9.178E-03 5.996E-03 3.206E-03 1.437E-03 6.355E-04 3.306E-04 1.718E-04
0.614 0.903 1158 1177 0.943 0.945

g=2"1 6.754E-03 4.265E-03 2.232E-03 1121E-03 6.165E-04 3.434E-04 1.895E-04
0.663 0.934 0.994 0.863 0.844 0.858

g=2"24 5.397E-03 3.502E-03 1.916E-03 1.130E-03 6.769E-04 3.823E-04 2.149E-04
0.624 0.870 0.762 0.739 0.824 0.831

g =226 5.396E-03 3.501E-03 1.916E-03 1.130E-03 6.770E-04 3.823E-04 2.149E-04
0.624 0.870 0.761 0.739 0.824 0.831

DN-M 4.422E-02 4.546E-02 1.531E-02 5.169E-03 2.067E-03 1.005E-03 4.955E-04

pNM -0.040 1570 1.567 1322 1.041 1.020

Conclusion:

In this thesis, a single turbulent parabolic problem of convection-diffusion
type with discontinuous initial conditions was investigated. A special
complementary error function is identified that corresponds to the
discontinuity in the initial conditions. The difference between the analytical
function and solving the parabolic problem is numerical approximation. In
this research, a coordinate transformation was used, so that a layer
compatible network can be aligned with the inner layer in the solution.
Numerical analysis was presented for the related numerical method, which
proves that the numerical method is a uniform parameter numerical method.
Numerical results were presented to show the boundaries of point error
created in the thesis.
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