
Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

HARDWARE IMPLEMENTATION OF AN ENCRYPTION FOR
ENHANCEMENT DGHV

Zainab H. Mahmood 1, Mahmood K. Ibrahem 2

1 AL-Mamoun University College, Baghdad, Iraq
2 College of Information Engineering, AL-Nahrain University, Baghdad, Iraq

zainabh.mahmood@gmail.com 1, mahmoodkhalel@coie-nahrain.edu.iq 2

Received:26/8/2019, Accepted:27/9/2019

Abstract- A fully homomorphic encryption (FHE) scheme is considered as a major cryptographic tool in a secure
and reliable cloud computing environment, as it enables arbitrary arithmetic processing of a ciphertext without
revealing the plaintext. However, due to the very high computation of fully homomorphic encryption system, it stays
impractical and unfit for real- time applications. One way to address this restriction is by using graphics processing
units (GPUs) and field programmable gate arrays (FPGAs) to implement homomorphic encryption schemes. This
paper presents the hardware implementation of enhancement van Dijk, Gentry, Halevi and Vaikuntanathan’s
(DGHV 10) scheme over the integer using FPGA technology for high speed computation and real time results.
The proposed method was simulated via Vivado system generator tools and implemented in FPGA hardware
successfully using NEXYS 4 DDR board with ARTIX 7 XC7A100T . The experimental results show that the FPGA-
based fully homomorphic encryption system is 63 times faster than the simulated version of the proposed algorithm.

keywords: FPGA, Fully homomorphic encryption scheme, Vivado, System generator.

I. INTRODUCTION

Fully homomorphic encryption (FHE) is an important development in the latest year’s cryptographic studies [1]. An FHE

scheme can be used without revealing the content of the corresponding plaintext to perform computations on a ciphertext.

Therefore, a practical FHE system will open the door to many fresh safety techniques and applications that need privacy,

such as cloud-based computing and privacy- preserving search. Gentry suggested the first FHE system in 2009 [1], then

numerous systems were suggested based on various hardness assumptions [2], [3], [4], [5], [6], [7], [8] and certain methods

were created to enhance efficiency [9], [10], [11], [12]. Four main branches of homomorphic encryption schemes have

been developed since 2009: lattice- based, integer-based, learning-with-errors (LWE) or ring-learning- with- errors (RLWE)-

based encryption and NTRU-like FHE schemes [13].

Homomorphic Encryption H consists of four functions. H = {Key Generation, Encryption, Decryption, Evaluation} [14],

[15]:

1) Key- Gen: The client generates a secret keys sk to encrypt plaintexts.

2) Encryption: The client encrypts the plaintext PT by using a secret key sk and generates ciphertext CT that will be

sent to the server , CT= (sk, PT).

3) Evaluation: Server has a function f to be implemented on ciphertext CT.

4) Decryption: New generated ciphertext Eval (f (PT)) will be decrypted by a client using its sk and it gets the original

result, Eval (PT)= (sk, f (PT)) .

In any homomorphic system, it is important to consider the format of the ciphertext to be decrypted successfully after an

evaluation phase. FPGAs are particularly appropriate for applications that required a high processing computation time.

https://ijict.edu.iq 1

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

They are capable of delivering high throughput even at low clock rates due to the inherent parallelism offered by internal

architecture and logic resources. With the advantages of FPGA technology and the accessibility of advanced development

instruments, FPGAs application regions are increasing at a very large pace and this technology is expected to even replace

ASIC in the future [16].

There are few FHE schemes of hardware implementations. Cousins et al. [17], [18] suggested hardware implementation

using the Matlab HDL Coder tool on an FPGA platform; and they do not deliver any outcomes of implementation or

simulation. So, this work is an attempt to integrate all these issues to accelerate FHE based on FPGA.

II. RELATED WORK

In 2016, the FPGA- based computing accelerator was used as part of a co-processor homomorphic encryption processing

unit to execute important computing applications [19]. Advanced design and computation accelerators based on FPGA are

introduced in this study as part of a co-processor homomorphic encryption processing unit. By decreasing the computational

bottleneck of primitive lattice encryption supporting homomorphic encryption schemes, this hardware accelerator technology

makes computing on encrypted information more practical.

In 2017, a software/ hardware co- designed accelerator is proposed to accelerate homomorphic computation by means of

a high- level synthesis flow. This paper a big modular polynomial multiplier configurable in both degree and coefficient

size and suggested a modular polynomial reducer based on polynomial with overall shape to optimize the homomorphic

context [20].

In 2019, design a domain- specific architecture on a heterogeneous Arm + FPGA platform to accelerate homomorphic data

computing. At 200 MHz FPGA- clock, configuration achieves more than 13x speed with regard to the extremely optimized

FV homomorphic encryption system implemented on an Intel i5 processor operating at 1.8 GHz. Xilinx Zynq MPSo Ultra

Scale+ [21].

The contribution of this paper is:

• Accelerate Enhancement of FHE based integer algorithm and implementing it using FPGA technology. The above

special FHE algorithm is selected because the theory is extremely simpler, smaller key size, smaller ciphertext size

and less execution time for comparable performance to other FHE schemes.

• New hardware architecture for Enhanced FHE over the integers is designed using the proposed multiplier and modular

reduction.

• The implementation of Enhancement of FHE based integer was verified for a Xilinx Virtex- 7 FPGA, as well as the

results demonstrate that the efficiency of the proposed design is significantly improved by a factor of 63 over similar

software implementation. The remainder of the paper is structured as follows. Section II: Reviews the related work.

In Section III: the suggested technique (enhancing the fully homomorphic encryption scheme) Section IV describes

the suggested FHE encryption hardware architectures. Implementation and performance result. And finally Section V:

conclusion.

https://ijict.edu.iq 2

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

III. FULLY HOMOMORPHIC ENCRYPTION PROPOSED ALGORITHIM

After looking in DGHV, SDC and SAM fully homomorphic encryption schemes [3], [22], [23], we take note that the

message previous encrypted as one bit, as either 0 or 1, and get a huge ciphertext for one character after converting each

character in plaintext to the binary format, which is the input m of the encryption equation mentioned below. Instead of

converting each message character into (8- bit) binary format, our suggested encryption scheme [24] encrypts each bit

to generate (8- ciphertext) for each plaintext character, the proposed encryption equation take the number or character

directly and encrypt as a whole character: CT = m + 2rp + p.q, We modified on DGHV encryption equation where

CT is the ciphertext, mε b0, p− 1c, r is a noise and q is a constantly large integer, produced in one ciphertext for each

plaintext character. Algorithm of the proposed system (symmetric encryption) The implementation of the proposed method

Enhancement of FHE over Integer scheme [24] is as follows:

• (λ): Chose a random secret key p as a big prime integer.

• Encryption phase (sk,mε [0, p− 1]) : encrypt a message m by private key p.

CT = m+ 2rp+ p.q (1)

where r is a random integer, and q is a constant large integer

• Decryption phase (sk,c): decrypt ciphertext CT

m = CT mod p (2)

• Process Phase(Add Multiplication)

To demonstrate that the suggested algorithm promotes the additive and multiplicative characteristics of homomorphism

Suppose, CT1 = m1 + 2r1p+ p.q, CT2 = m2 + 2r2p+ p.q

Additive Homomorphism:

CT3 = CT1 + CT2 = (m1 +m2) + 2(r1 + r2)p+ 2p.q

m3 = (CT1 + CT2)mod p = m1 +m2

Multiplicative Homomorphism:

CT4 = CT1.CT2 = m1.m2 + (m1 +m2 + p.q)p.q + r1(m2 + r2 + p.q)p+ r2(m1 + p.q)p.

m4 = (CT1.CT2)mod p = m1.m2.

IV. SIMULATION AND HARDWARE RESULTS

This section includes simulation results (using Systems Generator) and hardware results (using Vivado and FPGA board).

A. Systems Generator Results:

The encryption/decryption systems and homomorphic evaluation process are designed and implemented using system

generator and the following sections describe each part in detail.

1) Encryption/ Decryption designed system

The proposed method as described in section III is designed and implemented using system generator blocks as

https://ijict.edu.iq 3

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

shown in Fig. 1 The encryption and decryption algorithm is implemented as subsystems in system generator. The

Four internal constant blocks (shown in Fig. 1) are used to represent the inputs to the proposed system. These inputs

are m (message), p (secret key), r (small integer number), and q (big integer number). The encryption subsystem block

details are shown in Fig. 2 The operation is performed using multiplier, constant-multiplier and addsub blocks. These

blocks are used to perform the encryption operation described in eq. 1. In1, In2, In3 and In4 are connected to m, r,

p and q respectively.

The decryption subsystem block details are shown in Fig . 3 There is no block to perform the mod operation in the

system generator, so the decryption operation (mod as described in eq . 2 is built based on the following equation

Massege = C − P × [C/P] (3)

As described in the above eq. 3, the operation is performed using divider, multiplier, addsub and convert blocks. The

convert blocks are used to extract the fractional parts of the division result. The output of the encryption process (C)

is connected to In1, P input is connected to In2.

Figure 1: Encryption-decryption system using system generator

Case Study 1

Select a prime p =1207645633, and random integer q =100, r =124 and two messages m1 = 72andm2 = 65 Now

calculate CT1: CT1 = m1 + 2r.p+ p.q

CT1 = 72 + 2 ∗ 124 ∗ 1207645633 + 1207645633 ∗ 100
CT1 = 36168517777618473087272

Then calculate CT2 :

https://ijict.edu.iq 4

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

CT2 = m2 + 2rp+ p.q

CT2 = 65 + 2 ∗ 124 ∗ 1207645633 + 1207645633 ∗ 100
CT2 = 36168517777618473087265

Additive Homomorphic Encryption Propriety:

Let two encrypted messages (CT1 + CT2) be added as CT3 :

CT3 = CT1 + CT2

= 36168517777618473087272 + 36168517777618473087265

= 72337035555236946174537

Now decrypt the result of CT3 :

m3 = CT3modp→ m3 = 72337035555236946174537mod1207645633

m3 = 137, thisisequaltom1 +m2(i.e.72 + 65 = 137)

Figure 2: Encryption operation

The case study example is shown in Fig. 4 The system is implemented using the same blocks described above to

clarify the results from each block.

Case Study 2

Choose a prime number p =9321, and random integer q =31, r =13 and two messagesm1 = 60 and m2 = 65

NowcalculateCT1 : CT1 = m1 + 2r.p+ p.q

CT1 = 60 + 2 ∗ 13 ∗ 9321 + 9321 ∗ 31
CT1 = 531357

ThencalculateCT2 :

CT2 = m2 + 2rp+ p.q

CT2 = 65 + 2 ∗ 13 ∗ 9321 + 9321 ∗ 31
CT2 = 531297

https://ijict.edu.iq 5

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

Multiplication Homomorphic encryption propriety:

Let two encrypted messages(CT1 ∗ CT2) be multiply as CT4:

CT4 = CT1.CT2 = 531357 ∗ 531297 = 282342918234

Now decrypt CT4 :

m4 = CT4mod p

m4 = 282342918234mod 9321

m4 = 3900 , this is equal tom1 ∗m2(i.e.60 ∗ 65 = 3900)

2) Homomorphic test of designed system Fig. 5 represent the Additive homomorphic property test in System Generator.

Two encryption subsystem blocks are used to generate two ciphertext CT1 and CT2 for two input messages m1

and m2 respectively. Two adder blocks are added to the system, one is used to obtain the additive result of m1&m2

before the encryption process(display 5 block in Fig. 5), the second one is used to add CT1&CT2(display 4 block in

Fig 5), the result from this adder is used as input to the decryption subsystem block. The results displayed in Fig. 5

(display5 & display3) proved that the Additive homomorphic process is performed successfully.

Fig. 6 represents the multiplicative homomorphic property test in System Generator. Two encryption subsystem blocks are

used to generate two ciphertext CT1andCT2 for two input messages m1andm2 respectively. Two multiplayer blocks are

added to the system, one is used to obtain the multiplication result of m1&m2 before the encryption process(display 5

block in Fig. 6), the second one is used to multiply CT1&CT2(display 4 block in Fig. 6), the output of this multiplier is

used as input to the decryption subsystem block. The results displayed in Fig. 6 (display 5 & display 3) proved that the

multiplicative homomorphic process is performed successfully.

Figure 3: Decryption subsystem using system generator

https://ijict.edu.iq 6

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

Figure 4: Implementation of case study example

B. Hardware results

All the designed systems described in section III above are converted to VHDL code successfully using HDL netlist

option in system generator’s settings. Vivado 2017.4 is used to synthesis, implement design and generate bitstream files for

the converted VHDL code. The generated bitstream file for the encryption-decryption system is downloaded successfully

to the Nexys4 DDR FPGA board as shown in Fig. 7.

Fig. 8, 9 and 10 demonstrate the RTL schematic of the encryption-decryption, encryption subsystem & decryption subsystem

respectively. The results shown in Fig. 8, 9 and 10 show that the designed systems performed the encryption and decryption

operations successfully.

Fig. 11 displays power analysis of (a) Encryption-Decryption system, (b) Additive homomorphic evaluation and (c)

multiplicative homomorphic evolution. As a comparison between them, the power consumption of additive and multiplicative

homomorphic evaluation systems are 0.249 W (73%) and 0.262 (74%) respectively, which are higher than the power

consumption of encryption-decryption system 0.195 (57%) because the encryption system was duplicated in additive

homomorphic evaluation and multiplicative homomorphic evolution designed systems.

https://ijict.edu.iq 7

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

Figure 5: Additive homomorphism evaluation using system generator

Figure 6: Multiplicative homomorphism evaluation using system generator

Table I displays the summary of the design systems utilization of encryption-decryption system, Additive homomorphic

evaluation & multiplicative homomorphic evolution. Table I and Fig. 12 show that the IO blocks utilization of evaluation

systems (73% , 74%) are higher than that utilized in encryption-decryption system (12%) because the resources used in

evolution systems are more than double resources in an encryption-decryption system. Also resource utilization of evaluation

systems take more DSP, LUT, and slices than encryption-decryption system for the same reason.

https://ijict.edu.iq 8

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

TABLE I
RESOURCE UTILIZATION OF THE TARGETED FPGA DEVICE

IO Blocks (210) DSP (240) LUT (63400) Slices (15850)

Encryption-Decryption system 26
(12%)

36
(15%)

5766
(9%)

1736
(11%)

Additive homomorphism
evaluation system

154
(73%)

58
(24%)

8816
(14%)

2667
(17%)

Multiplicative homomorphism
evaluation system

155
(74%)

80
(33%)

7856
(12%)

2468
(16%)

Figure 7: Programing FPGA board with homomorphic encryption bitstream

https://ijict.edu.iq 9

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

Figure 8: RTL schematic for encryption-decryption system

Figure 9: RTL schematic of encryption

Figure 10: RTL schematic of decryption subsystem

https://ijict.edu.iq 10

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

(a) Encryption- decryption system (b) Additive homomorphic evolution

(c) multiplication homomorphic evolution

Figure 11: Power analysis of the designed systems

https://ijict.edu.iq 11

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

(a) Encryption-decryption system

(b) Additive homomorphic evaluation

(c) Multiplicative homomorphic evolution

Figure 12: Utilization summary

V. CONCLUSIONS

In this paper, the design and implementation of homomorphic system (encryption- decryption system, additive homomor-

phism evaluation system, and multiplicative homomorphism evaluation system) are performed in Vivado system generator

tools. All the design systems are downloaded successfully to FPGA board using NEXYS 4 DDR board with ARTIX 7

XC7A100T FPGA. The targeted FPGA board (running at 100 MHz) speed up the processing time to 71 ns, which is about

63 times faster than the powerful CPU. The results show that, the IO blocks used in targeted FPGA device are 12%, 73%

and 74% of encryption- decryption, additive and multiplicative homomorphic evolution systems respectively. The results

proved that the FPGA implementation solved the bottleneck issue of computation time for homomorphic encryption. The

FPGA-based implementation has much reduced power consumption and better results compared to the acceleration of the

CPU. As a future effort towards the design of the enhancement DGHV for cloud computing, our initial development of

the large-number multiplier model demonstrates a promising hardware acceleration.

https://ijict.edu.iq 12

Iraqi Journal of Information and Communications Technology(IJICT)
Vol. 2, Issue 2, June 2019

Zainab H. Mahmood, Mahmood K. Ibrahem

REFERENCES

[1] C. Gentry, "A fully homomorphic encryption scheme" , Dissertation, no. September, p. 169, 2009.
[2] C. Gentry, "Fully homomorphic encryption using ideal lattices" , Proc. 41st Annu. ACM Symp. Symp. theory Comput. - STOC 09, p. 169, 2009.
[3] M. Van Dijk and C. Gentry, "Fully Homomorphic Encryption over the Integers" , pp. 1- 28, 2010.
[4] Z. Brakerski and V. Vaikuntanathan, "Efficient Fully Homomorphic Encryption from (Standard)LWE " SIAM J. Comput., vol. 43, no. 2, pp. 831-

871, 2014.
[5] "Leveled fully homomorphic encryption without bootstrapping" , ACM Trans. Comput. Theory, pp. 309- 325, 2012.
[6] Z. Brakerski, "Fully homomorphic encryption without modulus switching from classical GapSVP" , Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7417 LNCS, pp. 868- 886, 2012.
[7] A. Lopez- Alt, E. Tromer, and V. Vaikuntanathan, "On the fly multiparty computation on the cloud via multikey fully homomorphic encryption" , p.

1219, 2012
[8] C. Gentry, A. Sahai, and B. Waters, "Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based"

, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8042 LNCS, no. PART 1, pp. 75- 92, 2013.
[9] C. Gentry, S. Halevi, and N. P. Smart, Fully homomorphic encryption with polylog overhead, vol. 7237 LNCS. 2012.
[10] Z. Brakerski, C. Gentry, and S. Halevi, "Packed ciphertexts in LWE- based homomorphic encryption" , Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7778 LNCS, pp. 1- 13, 2013.
[11] J. Alperin- Sheriff and C. Peikert, " Faster bootstrapping with polynomial error" , Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 8616 LNCS, no. PART 1, pp. 297- 314, 2014.
[12] R. Hiromasa, M. Abe, and T. Okamoto, "Packing Messages and Optimizing Bootstrapping in GSW- FHE Fully Homomorphic Encryption FHE)

ppt" , 2015.
[13] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, " A Survey on Homomorphic Encryption Schemes: Theory and Implementation" , pp. 1- 35, 2017.
[14] P. V.Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri, " Survey of Various Homomorphic Encryption algorithms and Schemes" ,

Int. J. Comput. Appl , vol. 91, no. 8, pp. 26- 32, 2014.
[15] G. Liu, G. Yang, H. Wang, Y. Xiang, and H. Dai, " A Novel Secure Scheme for Supporting Complex SQL Queries over Encrypted Databases in

Cloud Computing" , Secur. Commun. Networks, vol. 2018, 2018.
[16] E. Ozturk, Y. Doroz, B. Sunar, and E. Savas " , Accelerating Somewhat Homomorphic Evaluation using FPGAs" , IACR Cryptol. ePrint Arch., pp.

1- 15, 2015.
[17] D. B. Cousins, K. Rohloff, C. Peikert, and R. Schantz, " An update on SIPHER (Scalable Implementation of Primitives for Homomorphic EncRyption

) - FPGA implementation using Simulink Recent Developments in the SIPHER SHE Scheme A Review of Fully and Somewhat Implementing Fast
Modulo Add , Subtract and Multiply " , 2012.

[18] D. Cousins, K, Rohloff, and R, S. Bbn, " Sipher: Scalable Implementation of Primitives for Homomorphic Encryption FPGA implementation using
Simulink Motivation for Fully Homomorphic Encryption Our encryption scheme and primitives Examples " , nProc. 15th Annu. Work. High Perform.
Embed. Comput. (HPEC 2011) , no. November, pp. 1- 16, 2011.

[19] D. B. Cousins, K. Rohloff, and D. Sumorok, " Designing an FPGA- accelerated homomorphic encryption co- processor" , IEEE Trans. Emerg. Top.
Comput. vol. 5, no. 2, pp. 193- 206, 2017.

[20] A. Mkhinini, P. Maistri, R. Leveugle, and R. Tourki, " Co-designed accelerator for homomorphic encryption applications" , Adv. Sci. Technol. Eng.
Syst. , vol. 3, no. 1, pp. 426- 433, 2018.

[21] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede, " FPGA- Based high- performance parallel architecture for homomorphic
computing on encrypted data" , Proc. - 25th IEEE Int. Symp. High Perform. Comput. Archit. HPCA 2019, pp. 387- 398, 2019.

[22] I. Jabbar, "Using Fully Homomorphic Encryption to Secure Cloud Computing" , Internet Things Cloud Comput. vol. 4, no. 2, p. 13, 2016.
[23] S. S. Hamad and A. M. Sagheer, "Design of fully homomorphic encryption by prime modular operation" , Telfor J. , vol. 10, no. 2, pp. 118- 122,

2018.
[24] Zainab H. Mahmood, Mahmood K. Ibrahem" Enhancement of Fully Homomorphic Encryption Scheme over Integer for real world application"

submitted to Indonesian Journal of Electrical Engineering and Computer Science, 2019.

https://ijict.edu.iq 13

