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the proposed model is indeed better and preferred to its competitors.
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Introduction

A good number of authors have investigated parametric regression model from the probability scenario using
various approaches. Cordeiro, Biazatti, and Santana (2023) introduced a four-parameter Weibull extended Weibull
(WEW) distribution that presents greater flexibility and can model data with bathtub-shape and unimodal failure rate
taking the Extended Weibull PDF as baseline to form the new distribution. The new support for the new distribution is

x > 0, with properties such as quantile function, kurtosis, skewness, moments were discussed. Estimation of the
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parameters was done using method of maximum likelihood. Carlo monte simulation study was carried out to show the
new distribution WEW has consistent MLE’s with lower AIC, BIC and Global Deviance GD from generated data. Also

regression model Y, =ViT7/+5Zi was constructed on Log-Weilbull Extended Weibull (LWEW) distribution for
Y =log X when X has WEW pdf where z, has LWEW Pdf, 7/=(71,7/2...,7/p)T is the vector coefficients and

vV, = (Vil,vi2 Vip )T is the vector covariates for the ith response Y; which models the location parameter gz = viT V.
Two data set was used to show the applicability and superiority of the proposed model over other existing ones
compared.

Biazatti, Cordeiro, Rodrigues, Ortega and De Santana (2022) introduced Weibull-Beta Prime (WBP) distribution from
Beta Prime BP distribution due to wide use of the BP and to provide better fit to complex real data. Some structural
properties of the new distribution such as quantile function, linear representation and moment were obtained. Method of
maximum likelihood estimation was used for parameter estimation. The simulation study carried out shows that all
estimators improve as n increases. Furthermore, the WBP regression model was constructed for censored samples.

Since censored samples are commonly considered as systematic component for the shape parameter & . Considering

systematic  component ozi:exp(viT ),) where viT =(Vi1,vi2,...vip) is the vector of covariates and

A =(/11,...,2,p)T is the vector of unknown parameters. Real data set were used to show the importance and

superiority of the proposed model when compared with some known competing models. Rodrigues, Ortega, Cordeiro
and Vila (2022) proposed Odd Log-Logistic Weibull (OLLW) regression model for censored data to identify factors
that increase the risk of death of hospitalized patients diagnosed with Covid’19.

The properties of the distribution; mode, stochastic representation, closure under changes of scale and of power,
identifiability, tail behavior and moment were discussed. OLLW regression model was defined by two systematic
and 4; for(i=1,..,n) follows gl(li):nil = X, 4, and gz(oci):ni2 = X, where

component for ¢;

Bi= (,Bjo,..., ﬁjp) (] =1,2)are vector length (pj +1)for unknown coefficients functionally independent, p; is the

number of explanatory variables related to the jth parameter, 77;; are the linear predictors and Xij = (Vijl,..., Vi, )are

observation on [, and P, known repressors. From the data set, older age, asthma, diabetes obesity and chronic

neurological diseases were identified as risk factors associated with death of diagnosed Covid’19 patients in the city of
Campinas, Brazil.

Segovia, Gomez and Gallardo (2021) introduced an Extension of Power Maxwell (EPW) distribution called
Exponentiated Power Maxwell and proposed Re-parameterized Exponentiated Power Maxwell (REPM) distribution.
The properties of the new distribution which includes, moment, quantile function, median were discussed. They also

introduced regression framework for applying the model to any quantile of the distribution, where quantile of such
variables is related to a set of covariates say XiT Z(Xil,xiz,..., Xip) through the logarithmic link

|0g,ui(p) = XiTT(p) i=1,2,...n where r(p)z(ro(p),...,rp(p)) are the regression coefficient. The maximum
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likelihood estimation for REPM regression model under classical approach was discussed and simulation study to
assess the performance of the ML estimators for REPM regression model was conducted. Two real data set used to
show the applicability of the model and was compared with other proposed in literature shows the value of AIC and K-
S of REPM lower than the compared ones.

Wongrin and Bodhisuwan (2017) used the generalized linear model to create a new linear regression model called

Generalized Poisson Linear model which was based on a Generalized Poisson-Lindley (GPLi) distribution for seven

parameters. The conditional distribution f (yi/ X,T) for GPLI (G,a,ﬁ, K,7,9, 5), the GPL mean, the probability

mass function Y/XiT ~ GPLi(@, a, B.K,n, ¢, 5) were discussed. the maximum likelihood estimation for the model

parameter estimation was derived. The applicability of the new model was seen in the analyzing a real dataset on the
corona virus-infected patients.

Reis (2023) proposed a new distribution called Pezeta distribution that has support on the interval (0,1). It was obtained

. . 1 . . .. . A -
after transforming the random variable Y = 1— with exponential distribution f(a),i)= Ae”™ . Its properties such
+w®

as; mode, moment, quantile function, random number generation, proof of exponential family, MLE and MLE bias

correction when n is small were discussed. Also, regression model was introduced for the dependent variable with

support at (O,l). The model has a regression structure on the median of the distribution 77; = g(ri)z X B where

p= (ﬂl,..., B )T is the k-vector of unknown parameters X, = (Xil,..., Xix )T is the vector of k explanatory variables

(k < n) which are assumed fixed and known 77; is the linear predictor. Simulation study was conducted to show the

performance of the MLE’s for the proposed regression model |n(1ij = B+ B, Xi, + PeXis + Py X, ... Pezeta
[

regression model was compared with the unit Lindley UL regression model using a dataset. Discriminate between the
two regression models was assessed using AIC, BIC and Hannan Information Criterion (HQIC). The new model
presents the smallest value of these statistics which shows its superiority over the compared one.

Badmus, Akinyemi and Onyeka-Ubaka (2021) introduced a location-scale regression model based on the logarithm of
an extended Raleigh Lomax distribution which has the ability to model survival data than classical regression model
called Log-Beta Rayleigh Lomax (LBRL) regression model. They presented two important classes of the distribution,
firstly Beta Rayleigh Lomax (BRL)distribution using Logit Beta function. Secondly, Log —Beta Rayleigh Lomax
LBRL distribution. Hazard function, reliability function, moment, moment generating function linear combination and

other properties of the new distribution were derived. Based on the LBRL distribution, a linear regression model

linking the response variables Y; explanatory variables X; is defined as Yy; = XiT,B+O‘Zi,i =,2,..,N where the
random error Z; has LBRL density function with /3 :( i B )T the unknown parameters and XiT = (X11---1 Xp)

the explanatory variable vector modeling the linear predictor g =XiTﬂ . The linear predictor vector
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,u=( ,...,yn)T of LBRL regression model is written as x = X/ where X :(Xl,..., Xn) is the known model
matrix. The MLE was used for parameter estimation. Applicability of the new model was shown using breast cancer

dataset referring to time spent (t)and explanatory variables age (Xl), occupation (Xz), martial status (XS), event

statues (X4) and type of treatment (X5 )for n=623 observations. Fitting the above dataset with proposed model and 5

other existing regression model and using model selection criteria AIC, BIC and CAIC the proposed model
outperformed the compared ones.

Eliwa, Attun, Alhussian, Ahmed, Salah, Ahamed and El-Morshedy (2021) deployed the Odd Lindley-G family Oli-G to
proposed a new generalization of Half Logistic HL distribution with only one parameter called Odd Lindley Half
Logistic (OLiHL) distribution. The statistical properties of the new distribution such as raw and central moment,
incomplete moment, moment generating functions, quantile function were discussed. the estimation method used are
MLE, LS, Weighted Least Square and Cramer-Von Mises. Simulation study shows the relative performance of the used

estimation methods. A log-location-scale regression model called log-OLiHL regression model was introduced based

onthe Y = IOg(X) transformation and a suitable re-parameterization on the baseline distribution OLiHL considering
Vi = XiT,B + oz; where the response variable Y; has the Log-OLiHL density, the covariates are linked to location of
y; with identity link function 2, = X, 8 where X = (Xl, ) S Xp)is the model matrix consists of the observation

and the independent variables and /3 =(,Bo,ﬂ1,..., ﬁk)is the unknown regression coefficients. Two datasets were

considered to show the flexibility of the OLIHL distributions against the several one-parameter competitive model and
it showed better modeling ability.
Nasiru, Abubakari, Chesneau (2022) proposed the Bounded Truncated Cauchy Power Exponential (BTCPE)

distribution for modeling dataset on the unit interval

Relevant properties of the BTCPE distribution which includes the distribution of inequalities, quantile function,
moment, moment generating function and order statistics were discussed. The bivariate extension of the new model was
shown. The parameter estimation method used are; MLE, OLS, WLS, Cramer-Von Mises, Percentile estimation,
Anderson-Darling method and maximum and minimum product spacing method. Simulation study was conducted to
compare the estimation methods using bias, RMSE of the estimates. Using 3 dataset, application of the BTCPE

distribution was illustrated and its performance was compared to other competitive distributions defined in the unit

interval based on AIC, BIC criterion. They also define BTCPE quantile regression as g(pi):Zi'é? where

0= (00 N Qp) is the vector of unknown parameter, p; is the ith quantile parameter and Z; = (1, 21 Zinyeens Zip)

are the known ith vector covariates. The log-likelihood for estimating the parameter of the BTCPE quantile regression
was given. Monte Carlo simulation was carried out to examine the performance of the ML estimates of the parameter of

the model using Absolute Bias and RMSEs. It shows that the regression parameter are consistent.
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Nwankwo, Nwankwo and Obulezi (2023) proposed a new three exponentiated Power Akash (EPA) distribution. The

properties of the distribution such as moment, r" incomplete moment were discussed. Maximum likelihood estimation

1
was used for the parameter estimation. Letting Y = |Og(X) where X ~ EPA(C,a,H) and defining @ = — and
o

_H
6 =e 7, the log-Exponentiated Power Akash (LEPA) density for y € R was derived and a parametric regression

!
model for response variable Y, and vector of explanatory variables V, z(vil,viz,...,vip) constructed as

!
Yy, =VB+oz, for i=1,2,...n where s =V'f , and ,Bz( 1,...,ﬂp) is the vector of unknown regression

coefficient and z is the random error, also likelihood of £ was derived. Using a Covid’19 censored data, the
applicability and performance of the new distribution when compared with other competitive ones in the literature were
shown using Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), Consistent Akaike

Information Criterion (CAIC) and Hannan-Quinn Information Criterion (HQIC) measure criteria.

Methods: Log-Transformed Regression from Power Chris-Jerry Distribution

Ezeilo, Umeh, Osuagwu and Onyekwere (2023) introduced the Power Chris-Jerry (PCJ) distribution with PDF given as
gx) = % (1 4 gx2%)x@-1g=0x¢ €))
and CDF

a a
Glx) = 1— (14202 p-0x°

9+2 (2
Where @ > 0 and 8 > 0 are the shape and scale parameters respectively. Essentially, the goal here is to create a new
reparameterized regression model using log-transformation of the PCJ distribution. The baseline distribution
being the one-parameter Chris-Jerry distribution proposed by Onyekwere and Obulezi (2022) and its extensions hamely
Oramulu et al. (2023a, 2023b), Chukwuma et al. (2024), Chinedu et al. (2023a, 2023b), Etaga et al. (2023a, 2023b,
2023c), Tolba et al. (2023), Musa et al. (2023a, 2023b), Anabike et al. (2023), Obulezi et al. (2023a, 2023b, 2023c,
2023d, 2023e), Oha et al. (2024), Onyekwere et al. (2022), Nwankwo B. C. et al. (2023), and Nwankwo, M. P. et al.
(2023).

1 #
Let Y =|Og(X) where X ~ PCJ(O{,Q) defined in equation (2.1). Assume @ =—and & =€ ° , the log-PCJ
o

density for y € R using f(v; o,1) = g() |Z—§| is

y-2u

o 2y—p\ _o[ Y=H

. — e’ o e( o ]
f(y,a,y)_f(ue ]e 3)
ole+2
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Where >0 and geR. If X ~ PCJ(a,H), the Y =log X ~ LPCJ(G, ,u). Similarly, we deploy the same

Y —
technique in equation (2.3) to derive the survival and density function of Z = Al which are
o

s(Z;0,u)= 1+M e (4)

e o +2

®)

Using equation (2.5), we construct a parametric regression model for the response variable Y, and a vector of
explanatory variables V; = (vil,..., vip) as
y, =V'f+oz, i=1,2,....,n (6)

Where 1, =V'S , f =( L reees ,[)’p) is the vector of unknown regression coefficients and z is the random error with

density in equation (2.6), define the survival and density function of Y, /V' as

s(y/v')= 1+—ei(i.i 2l ™
e 7 +2

and

f(y/v)= % ®
O'[e_‘7 + 2}

OZ; —Hi Hitoz; y — 1
Where a)(Zi)ze i (1+e ° J and Z; =21 A
o

2.1 Maximum Likelihood Estimation of Log-PCJ Parameters under Censored Sample
To estimate the parameters in equation (2.6) for right censored data, we defined Y; and C, as the lifetime and non-

information censoring time (assuming independence) and Y; = min(yi ,Ci). Then, the log-likelihood function for

§=(o,p) s
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(®)= ZIog[e ’ +2]+Z|°9 Ze £ (e +2) ot o
ieF ieF ieF ieC e pu +2

Where F and C are the sets of uncensored and censored observations respectively and d is the number of failures. The
MLE £ of the unknown parameter vector can be obtained by maximizing equation (9).
3.0  Simulation Study

The simulation conditions deployed by Ferreira and Cordeiro (2023) are used in this article due to the compatibility
of the two distributions. For the LPCJ distribution under different scenarios, the accuracy of the MLEs is examined. For
1000 repetitions, the acceptance and rejection method is adopted to generate random samples of sizes n=50, 100, 300,
and 600 from the LPCJ distribution. The Average estimates (AEs) of the parameters, Biases, and mean squared error
(MSEs) are calculated. The algorithm for generating random samples uses the acceptance-rejection method. Note that
LPCJ means Log-PCJ.

Table 1: Simulation Measures from the Log-PCJ Regression Model

Initial parameter values (9 3.5) (20 0.5) (7.0 5.0)
& | AE BIAS MSE AE BIAS MSE AE BIAS MSE
0 10.6914 1.6914 9.7092 12,1308 2.1308 14.7143 7.7550 0.7550 3.3489
o | 4.0445 05445 0.4968 0.5762  0.0762 0.0098 5.7678 0.7678 1.0205
100 | 6 | 9.8019 0.8019 2.9971 11.1301 1.1300 4.7523 7.2193 0.2193 1.0605
a | 3.9427 0.4427 0.2925 0.5622 0.0622 0.0058 5.6215 0.6215 0.5974
300 |6 |9.2463 0.2463 0.7356 10.4710 0.4710 1.1512 6.8341 0.1659 0.3155
a | 3.8617 0.3617 0.1615 0.5515 0.0515 0.0033 5.4979 0.4979 0.3180
600 | 6 | 9.0443 0.0443 0.3075 10.2460 0.2460 0.4795 6.6972 0.3028 0.2240
a | 3.8325 0.3325 0.1252 0.5477  0.0477 0.0026 5.4462 0.4462 0.2341

The statistics in Table 1, indicate that the AEs converge to the true parameters and that the biases and MSEs tend to
zero when n increases, which proves the consistency of the LPCJ estimators. Overall, the simulation results suggest that

larger sample sizes and the appropriate choice of & are crucial for accurate parameter estimation of the LPCJ

distribution.

g 1 : — histogram
. PCJ pdf
[T : 8 2

g i —— empirical cdf| o

0.0 0.2 0.4 0.6 0.8 1.0
¥

Fig. 1: Empirical cdf and estimated cdf for Fig 2: Estimated PDF and histogram for generated samples using
the scenario (9, 3.5) samples using the scenario (9, 3.5).
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Figures 1 and 2 reveal the approximation of the acceptance-rejection method. The estimated PDF and CDF of the PCJ
distribution are very close to the histogram and empirical CDF of the generated samples, indicating a good performance
of the method.

4.0  Application to COVID-19 Censored Data
The dataset comprises the lifetime (in days) of 322 individuals diagnosed with COVID-19 through RT-PCR screening

in Campinas, Brazil. These data were previously studied by Ferreira and Cordeiro (2023), and Nwankwo, Nwankwo
and Obulezi (2023). The response variable y; represents the time elapsed from the onset of symptoms until death due to
COVID-19 (failure). Ferreira and Cordeiro (2023), observed that about 66.45% of the observations are censored. The
variables considered, for (i = 1, ...,322) include §;: censoring indicator; O for censored and 1 for observed lifetime;
Vi1 age (in years), and v;, : diabetes mellitus 1 = yes, 0 = no or uninformed. The suggested regression model for
these COVID-19 data is written as

Vi = Bo + Bivin + Bovip + 8z i=1,...,322 (10)
where z; ~ the PDF in equation (2.8).
The Power Lomax (PLO) distribution by Rady, EI-Houssainy, Hassanein and Elhaddad (2016), Power Zeghdoudi (PZe)
distribution (new), Power Suja (PSuj) distribution (new), exponentiated Power Ishita (EPI) by Ferreira and Cordeiro
(2023), Power Ishita (PI) by Shukla and Shanker (2018), exponentiated Weibull (EWe) by Pal, Ali and Woo (2006),
Power Rama (PR) by Abebe, Tesfay, Eyob and Shanker (2019), exponentiated Frechet (EF) by Nadarajah and Kotz
(2003), Power Lindley (PLi) by Ghitany, Al-Mutairi, Balakrishnan and Al-Enezi (2013), exponentiated Power Akash
(EPA) by Nwankwo, Nwankwo and Obulezi (2023), exponentiated Power Lindley (EPLi) by Ashour and Eltehiwy
(2015) are used to compare with the proposed Power Chris-Jerry (PCJ) distribution. Note, that the log- of each
distribution is derived following the procedure in section 2 to obtain LPLO, LPZe, LPSuj, LEPI, LPIl, LEWe, LPR,
LEF, LPLi, LEPA and LEPL.i respectively.

The result from Table 3 shows that the explanatory variables age and diabetes mellitus are significant at the 5%
significance level. Note that in table 3, ¢ is the exponentiated parameter for some of the fitted distributions. The
negative signs of B, and 3, mean that older individuals or those with diabetes tend to have shorter failure times. This
result is in agreement with that obtained from earlier study by Ferreira and Cordeiro (2023. From Table 2, the LPCJ
regression has the lowest criterion values hence confirming that the LPCJ model provides a better fit for the COVID-19
data than the competing regression model using Bayesian Information Criterion (BIC), Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC) and Hannan-Quinn Information Criterion (HQIC) measure

criteria.

Table 2: Metrics of Model Performance for the Log-transformed Regression Models using the COVID-19
Censored data

Distributions AIC CAIC BIC HQIC
LPCJ 428.7153 428.7153 443.5469 434.4763
LPLo 431.8449 432.2016 450.7177 439.3795
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LPZe 432.6857 432.9524 447.7839 438.7134
LPSuj 436.1518 436.4185 451.25 442.1795
LEPI 428.9597 429.3164 447.8325 436.4943
LPI 433.5943 433.8609 448.6925 439.6219
LEWe 429.8493 430.2016 448.722 437.3839
LPR 641.4597 641.7264 656.5579 647.4874
LEF 441.9085 442.2652 460.7812 449.4431
LPLi 430.2784 430.6351 449.1512 437.8130
LEPA 433.6238 433.9805 452.4966 441.1584
LEPLi 430.2784 430.6351 449.1512 437.8130

Table 3: Parameter Estimates of the Log-transformed Regression Models using COVID-19 censored data

Distribution C o ,30 ﬂl ﬁz
LPCJ 1 0.97559 3.2564 -0.0168 -0.2680
(0.0586) (0.2660) (0.0035) (0.2660)
<1.8687x10° | <1.7881x107
LPLo 0.3408 0.5442 -5.4568 0.0193 0.2963
(4.0688) (0.0439) (0.5656) (0.0041) (0.1261)
<3.1327x10° | <1.9895x107
LPZe 1 1.1404 3.2899 -0.0192 -0.2866
(0.0772) (0.2955) (0.0039) (0.1269)
<1.01956x10° | <2.4626x107
LPSuj 1 1.5333 1.9531 -0.0185 -0.2656
(0.0848) (0.2880) (0.0036) (0.1237)
<4.4779x107" | <3.2508x107
LEPI 0.2070 0.3971 4.4367 -0.0181 -0.2439
(0.0887) (0.1461) (0.2365) (0.0038) (0.1162)
<2.8899x10° | <3.6568x107
LPI 1 1.1926 3.2401 -0.0197 -0.2848
(0.0774) (0.3021) (0.0039) (0.1297)
<7.5442x107 | <2.8741x10°?
LEW 0.8878 0.5106 4.5518 -0.0182 -0.2803
(0.7995) (0.3515) (0.3585) (0.0035) (0.1266)

<1.8687x10°°

<2.7473x1072
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LPR 1 1.3356 3.5766 -0.0273 -0.4021
(0.0866) (0.3052) (0.0040) (0.1308)

<6.2066x10™ | <2.2848x10°°

Sample Quantiles
3 2 1 0 1
L L L L L
Quantile residuals

3 2 4 0 1

Theoretical Quantiles age (in years)

Fig 4.3: QQ plot Fig. 4.4: Histogram Fig. 4.5: Quantile residual plot
Figures 4.3, 4.4 and 4.5 are the non-parametric plots of the data set. The potential of the log-PCJ regression modeling
skewed data is one interesting feature explored using the COVID-19 data. The properties of this distribution were
derived and the log-transformation has been used to create a parametric regression model called the Power Chris-Jerry
distribution regression model. The maximum likelihood estimation aided the estimation process for uncensored
samples while the procedure for the estimation of the unknown parameters when data is censored was also shown.
Essentially, the censored COVID-19 data set with the age of patients and diabetic mellitus index was deployed to
justify the importance of the distribution. Furthermore, the distribution was fitted to the data on infant mortality rate
(below age 5 years) reported for some countries by the World Health Organization in 2021. The distribution performs

pretty well in both instances of application.

Conclusion

A great deal of effort has been made to investigate regression modeling using Power Chris-Jerry distribution in this
article. The log-transformed Power Chris-Jerry regression model was developed and its survival function, and other
functional forms were studied. The model parameters were estimated using maximum likelihood method under
censored sample consequent upon the nature of the data deployed. The log-transformed Power Chris-Jerry regression
model (LPCJ) designed in this paper was compared with those of the Log-Power Lomax (LPLO) distribution, Log-
Power Zeghdoudi (LPZe) distribution, Log-Power Suja (LPSuj) distribution, Log-Exponentiated Power Ishita (LEPI),
Log-Power Ishita (LPI), Log-Exponentiated Weibull (LEWe), Log-Power Rama (LPR), Log-Exponentiated Frechet
(LEF), Log-Power Lindley (LPLi), Log-Exponentiated Power Akash (LEPA), Log-Exponentiated Power Lindley
(LEPL.) distributions. The LPCJ outperformed the rest of the models and proves to fit better any skewed data.
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