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Abstract 

In this study the inverse of two patterned matrices has been 

investigated. First, for a Toeplitz-type matrix, it is proved that the exact 

number of independent cofactors is (n +2)/4 when n is even number 

and          when n is an odd. Second, when the matrix is reduced to 

a Jacobi-type matrix Bn , two equivalent formulae for its determinant are 

obtained, one of which in terms of the eigen values. Moreover, it is 

proved that the independent cofactors     of    are explicitly expressed 

as a product of the determinants of      and     . So, the problem of 

finding the exact inverse of    is reduced to that one of finding the 

determinants of   , i = 1, 2, …, n.  

 

1- Introduction  
One of the important problems involved in the 

analysis of such models is to find the exact inverse of 

these covariance matrices in explicit form which 

leads to the computation of determinants and other 

related characteristics such as their eigen values and 

spectral representation. Such computations are 

tedious especially when the order n of the matrix is 

large [2]. 

There is a large literature on inversion of covariance 

matrices (e.g. [3,2,4]). The problem has been 

approached either numerically to find fast algorithms 

or analytically to find explicit forms for the entries of 

the inverse. Naturally, analytical solution leads to 

numerical one. 

Now, let    be an (n x n) symmetric, positive definite 

matrix.    is said to be a patterned matrix if its 

entries exhibit a structured form, for example the 

Toeplitz matrix, the Jacobi matrix, …. These 

patterned matrices are frequently encountered as 

covariance matrices of structured dependent errors or 

observations in statistical models or autoregressive 

and moving average time series models as well as in 

many other stochastic models
 
[1]. 

The purpose of this work is divided to two parts. We 

first prove for a Toeplitz-type matrix that the number 

of independent cofactors is exactly        ⁄  for n 

even and        ⁄  for n odd. This reduces the 

number of distinct cofactors to a little bit greater than 

the quarter of the total number    of cofactors, which 

means that, practically, only these distinct entries of 

the adjoint matrix need to be calculated[5]. Further, 

these distinct elements have a certain arrangement 

along each diagonal on the upper half of the matrix. 

Second when the matrix is reduced to a Jacobi-type 

matrix   , two equivalent formulae for the 

determinant of    are given, one of them in terms of 

the eigen values of the matrix. Moreover, it is proved 

that the independent cofactors     of    are exactly 

given by:  

                           (    )   

                   
   

 
  

When n is odd or n/2 when n is even, and b is some 

entry of   . 

So that the problem of finding the inverse of a Jacobi-

matrix is reduced to that of finding the determinant of 

  , i = 1,2, …, n. [6] 

2- The Adjoint of A Toeplitz-type matrix:  

Suppose    [   ] is a Toeplitz matrix of order n 

having the form:  

                . [4] 

Let     denote the submatrix of order n-1 obtained by 

deleting the ith row and the jth column of   , and let  

              (   ) be the cofactor of    . It is 

well-known that the inverse   
   of    is given by:  
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          [   ]

 
, where t denote the transpose of 

the matrix = [   ], by symmetry of   . 

This means that     for all i > j are redundant. The 

following lemma proves that about the half of the 

remaining cofactors are redundant too.  

In all what follows    denotes a reversing matrix of 

order n(secondary diagonal) , namely:  

   [

     
     
    
     

] 

Lemma 2.1: [3] 

Consider the matrix    [      ]. Then for all 

         
                . 

Proof:  

Let            denote the row vectors of   , and 

           the column vectors. Then, by symmetry 

of   ,       
 , and by the structured pattern of   , 

           . It, thus follows that:  

             
 … (2.1) 

and  

   (        )
 
… (2.2) 

(2.1) and (2.2) imply immediately that,  

                    
     ,  

from which,  

                                   . 

Theorem 2.1: 

Consider the matrix    [ |   |]. If K denotes the 

number of independent cofactors of   , then :  

  {
                  ⁄

                   ⁄
  

These independent cofactors are the elements     

with                   
   

 
 when n is odd 

or 
 

 
 when n is even. [6] 

Proof:  

Suppose n is odd. Put n = 2r + 1 , r = 1, 2, …. . It 

results from( lemma 2.1) that the independent 

cofactors are the (i, j) elements     with       

               .  

Thus  

  ∑ ∑       
     
   

   
    ∑ ∑       

      
   

   
     

 ∑            
     

         

 
      

 
  

Now, let n be even, n = 2r with r a positive integer. 

Then the independent cofactors are those     with i = 

1,2, …, r, i j  n-i+1, so that  

  ∑ ∑       
     
   

 
    ∑ ∑          

      
   

 
     

         
      

 
  

Remark 2.1 

The independent cofactors are exactly the entries of 

the adjoint matrix indicated by the hachured area 

 

  
   

 
 or 

 

 
 according to n odd or even, 

respectively.[7] 

3- The Jacobi-type matrix:[8] 

In all this section we suppose that the matrix    

[ |   |] is now reduced to a Jacobi-type matrix where 

 |   |=0 whenever |   |   . Precisely, we suppose 

a matrix    [   ] such that :  

    {

     

  |   |   
           

 … (3.1)  

3-1 The determinant of   : 

Let           . Then by expansion about the first 

column, it can be shown that    satisfies the 

difference equation of second order:  

                , n = 2,3, … 

with the two boundary conditions             
The roots of the auxiliary equation            

are,  

     
  √      

 
 which with the boundary conditions 

give the solution.  

   
 

    √      
 *(  √      )

   
 

(  √      )
   

+, n0 … (3.2) 

Expanding the binominals in (3.2),    reduced to :  

      ∑ (
   
   

)       
           

 √        

 (
 

 
)
 
∑ (

   
    

)
*
 

 
+

      (   
  

  )
 

    

     *
 

 
+                               

 

 
  

Expansion of the above binomial again yields.  

   (
 

 
)
 
∑ ∑      (

   
    

) (
 
 
) ( 

  

  )
 

 
   

*
 

 
+

     

   (
 

 
)
 
∑      ( 

  

  )
 

∑ (
   
    

) (
 
 
)

*
 

 
+

   

*
 

 
+

     

The last summation can be proved to be exactly 

(
   

 
)      , which leads to the expression:  

   ∑      (
   

 
)         

*
 

 
+

      

n  0 , *
 

 
+ the greatest integer  

 

 
  … (3.3) 

3-2 The Eigen Values of   :  

If  is an Eigen value of    if  satisfies the linear 

equation       , with Z a nonzero column vector 

of dimension n, which is the Eigen vector 

corresponding to . To find the Eigen values of    

we are motivated by the approach relating to this 

problem to the characteristic-value problem of a finite 
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homogeneous boundary difference system of 

equations (See [9]). 

In theorem 3.1 below we prove that the n eigen 

values of    are exactly the ne eigen values of a 

system of ne difference equtions with two boundary 

conditions, and hence can be determined from the 

general solution of the system.  

Theorem 3.1:  

Let    be the Jacobi-type matrix given in (3.1). The n 

eigen values   , m = 1,2, …, n of    are exactly the 

n eigen values of the different equation:  

                               
with,  

                 

Hence,  

           
  

   
          .  

Proof:  

Let Z =             
 . Write the equation        

in the expansion form 

az1 + bz2   = z1 

bz1 + az2 + bz3   = z2  

…………………………………… 

 + bzm-1 + azm + bzm+1  = zm  

…………………………………… 

bzn-1 + azn  = zn  

which is equivalent to the homogeneous system of 

different equations 

bzm+1 + azm + bzm-1 = zm ,  m = 1,2, … , n.  

with the two homogeneous boundary conditions z0 = 

0 , zm+1 = 0 .  

For such a system, no nonzero solution exists unless 

 takes on one of a set of eigen values 1, …, n 

which are exactly the required eigen values of Bn. In 

fact no nonzero solution to the above system exists 

unless |
   

  
|    or equivalently unless  = a - 2b cos 

. In this case the general solution to the system is zm 

= c1 cos m . The condition z0 = 0 implies c1 = 0 , and 

the second condition zm+1 = 0 leads to c2 sin (n+1) = 

0, which unless  takes a value for which sin(n+1) = 

0, the only solution is c2 = 0, in which case zm = 0, m 

= 1,2, … , n.  

However, if (n+1) = m , m = 1,2, … , c2 is arbitrary 

and zm 0.  

Thus zm  0 whenever   
  

   
, m = 1,2, …, n for in 

fact, all the other values of m lead either to the trival 

solution. when m=0, n+1, 2(n+1), …, or to solutions 

identical to those obtained: when m takes on one of 

the integers in the intervals (n+1, 2(n+1), 3(n+1)), … 

etc.  

From all what preceeds , it follows that the required 

eigen values are :  

           
  

   
                   

Corollary 3.1: 

It can be easily shown that :  

   ∏ *        
  

   
+ 

            

which is another expression of det (Bn).  

 

3-3 The Inverse of   :  

As proved in theorem 2.1, to find adj Bn it suffices to 

calculate the cofactors Bij, j = i, i+1, …., n-i+1, i = 1, 

2, …, 
   

 
 for n odd or 

 

 
 for n even. Observe that 

when deleting the ith row of Bn , for any fixed i , the 

obtained submatrix gives the following cofactors Bij , 

j = i, i+1, …, n-i+1, where,  

Bij = (-1)
2i

 det (Bi-1) det (Bn-i) , j = i , … (3.5) 

Bij = (-1)
i+j

 det (Cij) det (Bn-j), j = i+1, … , n-i+1  

with Cij a square matrix of order (j-1) satisfying the 

relation:  

det (Cij) = b det (Cij-1), j = i+1, …, n-i+1. … (3.6)  

det (Cij) = det (Bi-1), j=i  

(3.6) is clearly a first order different system of 

equations with boundary condition. It can be easily 

shown that:  

   (   )         (    )                 

 … (3.7) 

Varying i, (3.5) together with (3.7) imply, thus, that:  

                           (    )       

      

      
   

 
    

 

 
 as n odd or even.  

Clearly, this formula reflects the symmetry of 

cofactors proved before for the more general case by 

lemma 2.1. We can thus state the theorem:  

Theorem 3.2: 

For the matrix    given in (3.1), the independent 

cofactors     are exactly:  

                           (    )  j = i, j+1, 

…, n-i+1,  

i = 1,2, …, 
   

 
 or 

 

 
 as n odd or even.  

Hence, if   
   = [   ] denotes the inverse of   , then  

                           (    )        , 

j = i, …, n-i+1, i = 1,2, …, 
   

 
 or 

 

 
 as n odd or even.  

Remark 3.1: 

1- It follows from theorem 3.2 that, to find     it 

suffices to calculate the determinants of B1, B2, … Bn 

which can be calculated using either formula (3.3) or 

(3.4).  

2- A statement similar to that of B
ij

 in the theorem but 

for the inverse of the covariance matrix of a first 

order moving average process has been observed 

before by Arato [7] and then used shaman 
 
[10]. 

4- Applications  

Below are two examples of statistical models for 

which the involved covariance matrix is of the 

Toeplitz of Jacobi types studied in this work.  

Example (1):  

Suppose y1, y2, … , yn is an observed time series 

generated by a stationary autoregressive process of 

order p given by:  

                            , with      a 

white noise process, that is              

 (    )  {
 
  

    
    

  

This means that yi have bounded means and 

variances, precisely for all i,  
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                  {
  

  

    
    

  

Put,  

   (         )
 
  

   [

         

         

   
             

] 

   (      )
 
  

Then, given y1, ……., yp, the least squares estimate of 

   is given by,  

  ̂  (  
   

  )
  

  
   , which, under the Gaussian 

assumption of the process, is consistent, 

asymptotically normally distributed, namely:  

 ( ̂    )
 
→   (   

   
  ), where,  

Ap = [ ai-j ] , which can be consistently estimated by 

  
   .  

Ap is obviously a matrix of the Eoeplitz-type studied 

in section 2.  

It is well-known that 
 
[1] the asymptotic theory is not 

altered if   
    is replaced by the matrix   

  

[ |   |
 ] with   

  
 

 
∑       

   
   , k = 0,1, …, p-1, in 

which   
  is again of the same pattern as Ap. [11] 

,[12]. 

Lemma 2.1 and theorem 2.1 are useful in calculating 

the inverse of   
  which is indispensable for making 

any inference concerning   .  

Example (2):  

We consider the stationary normal first order moving 

average stochastic process which is very common in 

time series analysis.  

Here, if xi, i =1, …, n, is an observed finite series, 

then  

           , with    a gaussian white noise, and 

  | |   , is the parameter to be estimated.  

Put X = (xi, …., xn)
t
. Then, var X = Bn a matrix of the 

Jacobi type as given in section 3 , with a =      
   , b =     and              . 
The log-likelihood function is thus:  

       
 

 
       

 

 
     

    .  

Clearly, the exact estimation of  is not an easy 

problem as long as the exact inverse of Bn is not 

available. Theorem 3.2 together with corollary 3.1 

can be applied to obtain   
  .  
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 معكوس المصفوفات النمطية مع تطبيقات عمى النماذج الإحصائية
 هبه هاني عبدالله

 ، تكريت ، العراق لمبنات ، جامعة تكريتقسم الرياضيات ، كمية التربية 

 الممخص  
وهذا النوع يثبت فيه العدد الدقيق او   Toeplitz قد بحثنا في البداية انعكاس نوعين من المصفوفات النمطية : النوع الاول هو المصفوفات من نوع 

عدد فردي. اما النوع الثاني هو   nعندما تكون           عدد وزجي و nعندما تكون   4/(n +2)المضبوط من المعاملات المستقمة ويساوي
وقد برهنا في  النوع الذي يظهر عند تخفيض المصفوفة الى مصفوفة من نوع جاكوبي، وهناك صيغتين متكافئة في الحصول عمى المحددات.

لذلك قد انخفضت مشكمة ايجاد المعكوس  بصورة دقيقة الى      و      عبر عنه ظاهريا بدلالة     من     دراستنا عمى ان العامل المستقل 
 .i=1,…,n ,   واحد من النتائج لمجموع العناصر  الناتجة ل 

 


