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Abstract:  
The aim of this paper to introduce the concept of   g-kernel also we introduced the concept 

of the weakly ultra   g-separation of two sets in a topological space using   g-open sets. The   g-

closure is defined in terms of this weakly ultra   g-separation. We also investigate some 

properties of weak separation axioms like   g-Ri-spaces, i = 0,1 and   g-Ti-spaces, i = 0,1,2.  
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 الخلاصة :
و بذيهيت الفصل فىق الضعيف بين تلك الوجوىعاث باستخذام  g   يهذف البحث لذراست هفهىم النىاة لوجوىعاث

ودراست  الوفتىحت في الفضاء التبىلىجي. وهن ثن استخذهنا هذين الوفهىهين لتعزيف الانغلاق لهذه الوجوىعاث g  هجوىعاث 

 و العلاقت بينهن.g-Ti, i=0,1,2   و    g-Ri, i=0,1  هثل   g  بين هجوىعاث  g  بعض خىاص بذيهياث الفصل 

 

1. Introduction: 
In 1970, Levine [2],[3], introduced the concept of generalized closed sets as a generalization of 

closed sets in topological spaces. This concept was found to be useful and many results in general 

topology were improved. In 2014, V. Senthilkumaran, R. Krishnakumar and Y. Palaniappan [5], 

introduced   g-closed set. In this paper, we introduced some properties of   g-separation axioms by 

using some definition of new concept via   g-open sets. Throughout this paper, the closure and the 

interior of A are denoted by cl(A) and int(A), respectively. 
 

2. Preliminaries: 
Before entering to our work, we recall the following definitions, which are useful in the sequel. 

 

Definition 2.1:[4] A subset A of a topological space X is called a  -open set if A⊆int(cl(int(A))) 

and a  -closed set if cl(int(cl(A)))⊆A. 
 

Definition 2.2:[2] A subset A of a topological space X is called a generalized closed set (briefly g-

closed set) if cl(A)⊆U whenever A⊆U and U is open in X. 
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Definition 2.3:[1] A subset A of a topological space X is called   generalized closed set (briefly  g-

closed set) if cl(A)⊆U whenever A⊆U and U is open in X. 
 

Definition 2.4:[5] A subset A of a topological space X is called    generalized closed set (briefly   g-

closed set) if int(cl(int(A)))⊆U whenever A⊆U and U is open in X. The complement of   g-closed 

set in X is   g-open in X. 
 

Definition 2.5:[6] The intersection of all   g-closed sets in X containing A is called    generalized 

closure of A and is denoted by   g-cl(A). 
 

3.   g-Kernel and   g-Ri-Spaces, i = 0, 1: 
Definition 3.1: The intersection of all   g-open subset of X containing A is called the   g-kernel of A 

(briefly   g-ker(A)), this means   g-ker(A)=⋂{G∈   g-O(X):A⊆G}, where O(X) is an open sets in X 
 

Example 3.2: Let X={a,b,c} ,  τ ={φ,{a},{a,b},{a,c,d},X} 

  g-open sets ={φ,{a},{c},{d}, {a,b},{c,d}, {a,d},{a,c},{a,b,d},{a,c,d},X} 

  g-ker{a}={a}⋂{a,b}⋂{a,d}⋂{a,c}⋂{a,b,d}⋂{a,c,d}={a} 

  g-ker{b}={a,b}⋂{a,b,d}={a,b}. 
 

Definition 3.3: In a space (X,τ), a set A is said to be weakly ultra   g-separated from B if there 

exists an   g-open set G such that G∩B=∅ or A∩  g-cl{B}=∅. 
 

By the definition 3.2, we have the following for x, y∈X of a topological space, 

(i)   g- cl{x} = {y :{y}is not weakly ultra   g-separated from{x}} 

(ii)   g-ker{x} = {y :{x}is not weakly ultra   g-separated from{y}}. 
 

Example 3.4: Let X ={a,b,c} ,  τ ={φ,{a},{a,b},{a,c,d},X} 

  g-open sets ={φ,{a},{c},{d},{a,b},{c,d},{a,d},{a,c},{a,b,d},{a,c,d},X} 

{a}is weakly ultra   g-separated from{b}, but {b}is not weakly ultra   g-separated from{a}. 
 

Theorem 3.5: Let (X,τ) be a topological space then x∈  g-cl{y} iff y∈  g-ker{x}for each x ≠ y ∈ X. 
 

Proof: Let (X,τ) be a topological space. And let x∈  g-cl{y}, then for each U is an   g-open set such 

that x∈U implies y∈U this means y∈  g-ker{x}. Let y∈  g-ker{x}, then for each U is an   g-open set 

such that x∈U implies y∈U this means U∩{y}≠∅. Hence x∈  g-cl{y}. 
 

Definition 3.6: A topological space (X,τ) is called an   g-R0-space if for each x ∈X and U   g-open 

set containing x, then   g-cl{x}⊆U. 
 

Example 3.7: Let X ={a,b,c} ,  τ ={φ,{a},{b,c},X} 

  g-open sets ={φ,{a},{b},{c},{a,b},{a,c},{b,c},X}. 
 

Definition 3.8: A topological space (X,τ) is called an   g-R1-space if for each two distinct point x , y 

of X with   g-cl{x} ≠   g-cl{y}, there exist disjoint   g-open sets U,V such that   g-cl{x} ⊆ U and 

  g-cl{y}⊆ V. 
 

Example 3.9: Let X ={a,b,c} ,   τ ={φ,{a},X} 

  g-open sets ={φ,{a},{b},{c},{a,b},{a,c},X}. 
 

Theorem 3.10: Let (X,τ) be a topological space. Then (X,τ) is   g-R0-space if and only if,   g-cl{x} 

=   g-ker{x}, for each x∈X. 
 

Proof:Let (X,τ) be an   g-R0-space, and let y be another point such that y∉  g-cl{x}, implies y∈(  g-

cl{x})
c
 is an   g-open set. By assumption (X,τ) be an   g-R0-space, then   g-cl{y}⊆(  g-cl{x})

c
  [By 

Definition 3.6], there for x∉  g-cl{y} and y∉  g-ker{x} [By Theorem 3.5]. So we get   g-

ker{x}⊆  g-cl{x}.Also since (X,τ) be an   g-R0-space, then    g-cl{x}⊂U for each U   g-open set 
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containing x [By Definition 3.6], implies   g-cl{x}⊆⋂{U:x∈U}. So we get   g-cl{x}⊆  g-ker{x}[By 

Definition 3.1]. Thus   g-cl{x} =   g-ker{x}.   

Conversely, let   g-cl{x} =   g-ker{x}, for each   g-open set U and x ∈U, then    g-ker{x}=   g-

cl{x}⊆U [By Definition 3.1]. Hence by Definition 3.6,(X,τ) is an   g-R0-space. 
 

Theorem 3.11: A topological space (X,τ) is an   g-R0-space if and only if for each F   g-closed set 

and x∈F then   g-ker{x}⊆F. 
 

Proof: Let for each F   g-closed set and x∈F then   g-ker{x}⊆F and let U be an   g-open set, x∈U 

then for each y∉U implies y∈U
c
 is an   g-closed set implies   g-ker{y}⊆U

c
 [By assumption ]. 

Therefore  x∉  g-ker{y} implies y∉  g-cl{x}[By corollary 3.5]. So   g-cl{x} ⊆ U. Thus (X,τ) is an 

  g-R0-space. 

Conversely, let a topological space (X,τ) be a   g-R0-space and F be   g-closed set and x∈F. Then for 

each y∉F implies y∈F
c
 is   g-open set, then   g-cl{y}⊆F

c
 [ since (X,τ) is   g-R0-space ], so   g-

ker{x}=   g-cl{x}. Thus   g-ker{x}⊆F. 
 

Corollary 3.12: A topological space (X,τ) is an   g-R0-space if and only if for each U   g-open set 

and x∈U then   g-cl(  g-ker{x})⊆U. 
 

Proof: Clearly. 
 

Theorem 3.13: Every   g-R1-space is an   g-R0-space. 
 

Proof: Let (X,τ) be an   g-R1-space and let U be an   g-open set, x∈U, then for each y∉U implies 

y∈U
c
 is an   g-closed set and   g-cl{y}⊆U

c
 implies   g-cl{x} ≠   g-cl{y}. Hence by definition 3.8, 

  g-cl{x}⊆ U. Thus(X,τ) is an   g-R0-space. 
 

Theorem 3.14: A topological space (X,τ) is an   g-R1-space if and only if for each 𝑥 ≠ 𝑦 ∈ 𝑋 with 

  g-𝑘𝑒𝑟{𝑥} ≠   g-𝑘𝑒𝑟{𝑦} then there exist   g-closed sets F1, F2 such that   g-𝑘𝑒𝑟{𝑥}⊆𝐹1,  g-

𝑘𝑒𝑟{𝑥}⋂𝐹2 =∅ and   g-𝑘𝑒𝑟{𝑦}⊆ 𝐹2,   g-𝑘𝑒𝑟{𝑦}⋂𝐹1 =∅ and 𝐹1⋃𝐹2 = 𝑋. 
 

Proof: Let a topological space (X,τ) be an   g-R1-space. Then for each 𝑥 ≠ 𝑦∈𝑋 with   g-

𝑘𝑒𝑟{𝑥}≠  g-𝑘𝑒𝑟{𝑦}. Since every   g-R1-space is an   g-R0-space [by theorem 3.13], and by theorem 

3.10,  g-𝑐𝑙{𝑥} ≠   g-𝑐𝑙{𝑦}, then there exist   g-open sets G1,G2 such that   g-𝑐𝑙{𝑥} ⊆ 𝐺1 and   g-

𝑐𝑙{𝑦} ⊆ 𝐺2 and 𝐺1⋂𝐺2 =∅ [Since (X,τ) is   g-R1-space], then 𝐺 
  and 𝐺 

  are   g-closed sets such 

that 𝐺 
 ⋃ 𝐺 

  = 𝑋. Put 𝐹 =𝐺 
  and 𝐹  = 𝐺 

 . Thus, x ∈ 𝐺1 ⊆ 𝐹2 and 𝑦 ∈ 𝐺2 ⊆ 𝐹1 so that   g-𝑘𝑒𝑟{x} ⊆ 

𝐺1 ⊆ 𝐹2 and   g-𝑘𝑒𝑟{𝑦} ⊆ 𝐺2 ⊆𝐹1. 

Conversely, let for each𝑥 ≠ 𝑦 ∈ X with   g-𝑘𝑒𝑟{𝑥}≠   g-𝑘𝑒𝑟{𝑦}, there exist   g-closed sets F1,F2 

such that   g-𝑘𝑒𝑟{𝑥}⊆ 𝐹1,  g-𝑘𝑒𝑟{𝑥}⋂𝐹2 = ∅ and   g-𝑘𝑒𝑟{𝑦}⊆ 𝐹2,   g-𝑘𝑒𝑟{𝑦}⋂𝐹1 =∅ and 𝐹1⋃𝐹2 = 

𝑋, then 𝐹 
  and 𝐹 

  are   g-open sets such that 𝐹 
  ⋂ 𝐹 

  = ∅. Put 𝐹 
  =𝐺2  and 𝐹 

  = 𝐺1. Thus   g-

𝑘𝑒𝑟{𝑥} ⊆ 𝐺1 and   g-𝑘𝑒𝑟{𝑦} ⊆ 𝐺2 and 𝐺1⋂𝐺2 = ∅, so that 𝑥 ∈ 𝐺1 and 𝑦 ∈ 𝐺2  implies 𝑥 ∉  g-𝑐𝑙{𝑦} 

and 𝑦 ∉  g-𝑐𝑙{𝑥}, then   g-cl{𝑥} ⊆𝐺1 and   g-𝑐𝑙{𝑦} ⊆ 𝐺2. Thus,(X,τ) is an   g-R1-space. 
 

Corollary 3.15: A topological space (X,τ) is an   g-R1-space if and only if for each x ≠ y ∈ X with 

  g-cl{x}≠   g-cl{y} there exist disjoint   g-open sets U,V such that   g-cl(  g-ker{x}) ⊆U and   g-

cl(  g-ker{y}) ⊆V. 
 

Proof: Let (X,τ) be an   g-R1-space and let x ≠ y∈X with   g-cl{x}≠   g-cl{y}, then there exist 

disjoint   g-open sets U, V such that   g-cl{x}⊆ U and   g-cl{y}⊆ V.  Also (X,τ) is   g-R0-spece [by 

Theorem 3.13] implies for each x∈X, then   g-cl{x}=   g-ker{x} [By Theorem 3.10], but   g-cl{x}= 

  g-cl(  g-cl{x}) =   g-cl(  g-ker{x}). Thus   g-cl(  g-ker{x}) ⊆ U and   g-cl(  g-ker{y}) ⊆ V. 

Conversely, let for each x ≠ y∈X with   g-cl{x}≠   g-cl{y} there exist disjoint   g-open sets U,V 

such that   g-cl(  g-ker{x})⊆U and   g-cl(  g-ker{y})⊆V. Since {x}⊆   g-ker{x} then   g-cl{x}⊆   g-

cl(  g-ker{x}) for each x∈X. So we get   g-cl{x}⊆U and   g-cl{y}⊆V. Thus, (X,τ) be an   g-R1-

space. 
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4.   g-Ti-Spaces, i = 0, 1, 2: 
Definition 4.1: Let (X,τ)  be a topological space. Then X is called   g-T0-space iff for each pair of 

distinct points in X, there exists a   g-open set in X containing one and not the other. 
  

Example 4.2: Let X={a,b,c} ,  τ ={φ,{a},{a,b},{a,c},X} 

  g-open sets ={φ,{a},{a,b},{a,c},X}. 
 

Definition 4.3: Let (X,τ)  be a topological space. Then X is called   g-T1-space iff for each pair of 

distinct points x and y of X, there exists   g-open sets G,H containing x and y respectively such that 

y∉G and x∉H. 
 

Example 4.4: Let X={a,b,c} ,  τ ={φ,{a},{a,b},X} 

  g-open sets ={φ,{b},{a,b},{a,c},X}. 
 

Definition 4.5: Let (X,τ)  be a topological space. Then X is called   g-T2-space iff for each pair of 

distinct points x and y of X, there exist disjoint   g-open sets G,H in X such that x∈G and y∈H.  
 

Example 4.6: Let X={a,b,c} ,  τ ={φ,{a},{b,c},X} 

  g-open sets ={φ,{a},{b},{c},{a,b},{a,c},{b,c},X}. 
 

Theorem 4.7: A topological space (X,τ) is an   g-T0-space if and only if either y∉  g-ker{x} or 

x∉  g-ker{y}, for each x ≠ y∈ X. 
 

Proof: Let (X,τ) be an   g-T0-space then for each x ≠ y ∈ X, there exists an   g-open set G such that 

either x ∈ G, y ∉ G or x ∉ G, y ∈ G. Thus either x ∈ G, y ∉ G implies y ∉   g-ker{x} or x ∉ G, y∈G 

implies x ∉  g-ker{y}. 

Conversely, let either y ∉  g-ker{x} or x ∉  g-ker{y}, for each x ≠ y∈ X. Then there exists an   g-

open set G such that either x∈ G, y ∉ G or x ∉ G, y ∈ G. Thus (X,τ) is a   g-T0-space. 
 

Theorem 4.8: A topological space (X,τ) is an   g-T0-space if and only if either   g-ker{x} is weakly 

ultra   g-separated from {y} or    g-ker{y} is weakly ultra   g-separated from {x} for each x≠y∈X. 
 

Proof: Let (X,τ) be an   g-T0-space then for each  x≠y∈X, there exists an   g-open set G such that 

x∈G, y∉G or x∉G, y∈G. Now if  x∈G, y∉G implies   g-ker{x} is weakly ultra   g-separated from 

{y}. Or  if x∉G, y∈G implies   g-ker{y} is weakly ultra   g-separated from {x}. 

Conversely, let either   g-ker{x} be weakly ultra   g-separated from {y} or   g-ker{y}be weakly 

ultra   g-separated from {x}. Then there exists an   g-open set G such that   g-ker{x}⊆G and y∉G or 

  g-ker{y}⊆G, x∉G implies x∈G, y∉G or x∉G, y∈G. Thus, (X,τ) is a   g-T0-space.   
 

Theorem 4.9: A topological space (X,τ) is an   g-T1-space if and only if for each x≠y∈X,   g-ker{x} 

is weakly ultra   g-separated from {y} and   g-ker{y} is weakly ultra   g-separated from {x}. 
 

Proof: Let (X,τ) be an   g-T1-space then for each x≠y∈X, there exists an   g-open sets U,V such that 

x∈U, y∉U and x∉V, y∈V. Implies   g-ker{x} is weakly ultra   g-separated from {y} and   g-ker{y} 

is weakly ultra   g-separated from {x}. 

Conversely, let   g-ker{x} be weakly ultra   g-separated from {y} and   g-ker{y} be weakly ultra   g-

separated from {x}. Then there exists an   g-open sets U,V such that   g-ker{x}⊆U, y∉U and   g-

ker{y}⊆V, x∉V implies x∈U, y∉U and x∉V, y∈V. Thus, (X,τ) is a   g-T1-space. 
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Theorem 4.10: A topological space (X,τ) is an   g-T1-space if and only if for each x∈X,   g-

ker{x}={x}. 
 

Proof: Let (X,τ) be an   g-T1-space and let   g-ker{x}≠{x}. Then   g-ker{x} contains another point 

distinct from x say y. So y∈  g-ker{x} implies   g-ker{x} is not weakly ultra   g-separated from {y}. 

Hence by Theorem 4.9, (X,τ) is not an   g-T1-space this is a contradiction. Thus   g-ker{x}={x}. 

Conversely, let   g-ker{x}={x}, for each x∈X and let (X,τ) be not an   g-T1-space. Then by theorem 

4.9,   g-ker{x} is not weakly ultra   g-separated from {y}, this means that for every   g-open set G 

contains   g-ker{x} then y∈G implies y∈⋂{G∈  g-O(X): x∈G} implies y∈  g-ker{x}, this is a 

contradiction. Thus,(X,τ) is a   g-T1-space. 
 

Theorem 4.11: A topological space (X,τ) is an   g-T1-space if and only if for each x ≠ y∈X, y ∉   g-

ker{x} and x ∉  g-ker{y}. 
 

Proof: Let (X,τ) be a   g-T1-space then for each x ≠ y∈ X, there exists an   g-open sets U,V such 

that x∈U, y∉ U or y∈V, x ∉ V. Implies y∉  g-ker{x} and x∉  g-ker{y}. 

Conversely, let y∉  g-ker{x} and x∉  g-ker{y}, for each x ≠ y∈X. Then there exists an   g-open sets 

U,V such that  x∈U, y∉ U and y ∈ V, x ∉ V. Thus (X,τ) is a   g-T1-space. 
 

Theorem 4.12: A topological space (X,τ) is an   g-T1-space if and only if for each x ≠ y∈ X implies 

  g-ker{x}⋂   g-ker{y}= ∅. 
 

Proof: Let a topological space (X,τ) be   g-T1-space. Then   g-ker{x} = {x} and   g- ker{y} = {y} 

[By Theorem 4.10]. Thus   g-ker{x}⋂   g-ker{y} = ∅. 

Conversely, let for each x ≠ y∈X implies   g-ker{x}⋂   g-ker{y} = ∅ and let (X,τ) be not   g-T1-

space then for each x ≠ y∈X implies y∈  g-ker{x} or x∈  g-ker{y}[by theorem 4.10], then   g-

ker{x}⋂   g-ker{y} ≠ ∅, this is a contradiction. Thus, (X,τ) is a   g-T1-space. 
 

Corollary 4.13: Every   g-T2-space is   g-T1-space and every   g-T1-space is an   g-T0-space. 
 

Proof: Clearly. 
 

Theorem 4.14: A topological space (X,τ) is an   g-T1-space if and only if (X,τ) is   g-T0-space and 

  g-R0-space. 
 

Proof: Let (X,τ) be   g-T1-space and let x∈U be and   g-open set, then for each x ≠ y∈X,   g-

ker{x}⋂   g-ker{y} = ∅ [by theorem 4.12] implies x∉  g-ker{y} and y∉  g-cl{x} this means   g-

cl{x}={x}, hence   g-cl{x}⊆U. Thus, (X,τ) is a   g-R0-space. 

Conversely, let (X,τ) be   g-T0-space and   g-R0-space, then for each x ≠ y∈X there exists an   g-

open set U such that x ∈U, y ∉U or x ∉U, y ∈U. Say x ∈U, y ∉U since (X,τ)  is a   g-R0-space, then 

  g-cl{x}⊆U, this means there exists an   g-open set V such that y∈V, x∉V. Thus, (X,τ) is a   g-T1-

space. 
 

Theorem 4.15: A topological space (X,τ) is an   g-T2-space if and only if 

(1) (X,τ) is an   g-T0-space and   g-R1-space. 

(2) (X,τ) is an   g-T1-space and   g-R1-space. 
 

Proof (1): Let (X,τ) be an   g-T2-space then it is an   g-T0-space. Now since (X,τ) be an   g-T2-space 

then for each x ≠ y∈X, there exist disjoint   g-open sets U,V such that x∈U and y∈V implies x∉   g-

cl{y} and y∉  g-cl{x}, therefore   g-cl{x}={x}⊆U and   g-cl{y}={y}⊆V. Thus, (X,τ) is a   g-R1-

space.  

Conversely, let (X,τ) be an   g-T0-space and   g-R1-space, then for each x ≠ y∈X, there exists   g-

open set U such that x∈U, y∉U or y∈U, x∉U, implies   g-cl{x} ≠   g-cl{y}, since (X,τ) is an   g-R1-

space [By assumption], then there exist disjoint   g-open sets G,H such that  x∈G and y∈H [Def. 

3.8]. Thus, (X,τ) is a   g-T2-space. 
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Proof (2): By the same way of part (1) an   g-T2-space is an   g-T1-space and   g-R1-space. 

Conversely, let (X,τ) be   g-T1-space and   g-R1-space, then for each x ≠ y∈X, there exists   g-open 

sets U,V such that x∈U, y∉U and y∈V, x∉V, implies   g-cl{x} ≠   g-cl{y}, since (X,τ) is an   g-R1-

space, then there exist disjoint   g-open sets G,H such that x∈G and y∈H. Thus, (X,τ) is a   g-T2-

space. 
 

Corollary 4.16: A topological   g-T0-space is an   g-T2-space if and only if for each x ≠ y∈X with 

  g-ker{x} ≠   g-ker{y} then there exist   g-closed sets F1, F2 such that   g-ker{x}⊆ F1,   g-ker{x} 

⋂F2 =∅ and   g-ker{y}⊆ F2,   g-ker{y}⋂F1 = ∅ and F1⋃F2 = X. 
 

Proof: By Theorem 3.14 and Theorem 4.15. 
 

Corollary 4.17: A topological   g-T1-space is an   g-T2-space if and only if one of the following 

conditions holds: 

(1) For each x ≠ y∈X with   g-cl{x}≠   g-cl{y} then there exist an   g-open sets U,V such that   g-

cl(  g-ker{x}) ⊆ U and   g-cl(  g-ker{y}) ⊆ V. 

(2) For each x ≠ y∈X with   g-ker{x} ≠   g-ker{y} then there exist   g-closed sets F1,F2 such that   g-

ker{x}⊆ F1,   g-ker{x}⋂F2 = ∅ and   g-ker{y}⊆ F2,   g-ker{y}⋂F1 =∅ and F1⋃F2 = X. 
 

Proof (1): By Corollary 3.15 and Theorem 4.15. 
 

Proof (2): By Theorem 3.14 and Theorem 4.13. 
 

Theorem 4.18: A topological   g-R1-space is an   g-T2-space if and only if one of the following 

conditions holds: 

(1) For each x∈X,   g-ker{x} = {x}. 

(2) For each x ≠ y∈X,   g-ker{x} ≠   g-ker{y} implies   g-ker{x}⋂   g-ker{y} = ∅. 

(3) For each x ≠ y∈X, either x∉  g-ker{y} or y∉  g-ker{x}. 

(4) For each x ≠ y∈X then x∉  g-ker{y} and y∉  g-ker{x}. 
 

Proof (1): Let (X,τ) be an   g-T2-space. Then (X,τ) is a   g-T1-space and   g-R1-space [By theorem 

4.15]. Hence by Theorem 4.10,   g-ker{x} ={x} for each x∈X. 

Conversely, let for each x∈X,   g-ker{x} ={x}, then by Theorem 4.10,(X,τ) is a   g-T1-space. Also 

(X,τ) is an   g-R1-space by assumption. Hence by Theorem 4.15,(X,τ) is an   g-T2- space. 
 

Proof (2): Let (X,τ) be an   g-T2-space. Then (X,τ) is an   g-T1-space [By theorem 4.3]. Hence by 

theorem 4.12,   g-ker{x}⋂   g-ker{y}= ∅ for each x ≠ y∈X. 

Conversely, assume that for each x ≠ y∈X,   g-ker{x} ≠   g-ker{y} implies   g-ker{x}⋂   g-ker{y} = 

∅, so by Theorem 4.12, (X,τ) is an   g-T1-space, also (X,τ) is an   g-R1-space by assumption. Hence 

by Theorem 4.15, (X,τ) is an   g-T2-space. 
 

Proof (3): Let (X,τ) be an   g-T2-space. Then (X,τ) is an   g-T0-space [By Theorem 4.13]. Hence by 

theorem 4.3, either x∉  g-ker{y} or y∉  g-ker{x} for each x ≠ y∈X. 

Conversely, assume that for each x ≠ y∈X, either x∉  g-ker{y} or y∉  g-ker{x} for each x ≠ y∈X, 

so by theorem 4.3,(X,τ) is an   g-T0-space also (X,τ) is an   g-R1-space by assumption. Thus, (X,τ) is 

an   g-T2-space [By Theorem 4.15]. 
 

Proof (4): Let (X,τ) be an   g-T2-space. Then (X,τ) is an   g-T1-space and an   g-R1-space [By 

theorem 4.15]. Hence by Theorem 4.11, x ∉  g-ker{y} and y ∉  g-ker{x}. 

Conversely, let for each x ≠ y∈X then x ∉  g-ker{y} and y ∉  g-ker{x}. Then by Theorem 4.11, 

(X,τ) is an   g-T1-space. Also (X,τ) is an   g-R1-space by assumption. Hence by Theorem 4.15,(X,τ) 

is an   g-T2-space. 
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