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ABSTRACT 

  In this research, we use artificial neural networks, specifically radial basis 

function neural network (RBFNN) to improve the performance and work of the explicit 

finite differences method (EFDM), where it was compared, the modified method with 

an explicit finite differences method through solving the Murray equation and showing 

by comparing results with the exact solution that the improved method by using  

(RBFNN) is the best and most accurate by giving less error rate through root mean 

square error (RMSE) from the classical method (EFDM). 
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 تعديل طريقة الفروق المنتهية الصريحة باستخدام الشبكة العصبية ذات دالة الأساس الشعاعي 
 عمر صابر قاسم
الموصل جامعة ، كلية علوم الحاسوب والرياضيات  

  30/04/2013تاريخ قبول البحث:                                      30/30/2013تاريخ استلام البحث: 
 الملخص

 Radial Basis)  فممه امملب ب اسممد ب مملوببا ش ممت ا ب بمماالاص ب عيمماتح بداممبكلا تح  تسب ممبب  ممااح تمم          

Function)   لب  ر شدبء   مل طر قح ب فر قلاص ب مكلهتح ب ير سح, حتد ت  مقلارنممح ب بر قممح ب مبمم رخ الا مملوببا 

(  ذ مم  Explicit Finite Differences Method( مع ب بر قح ب ير سح  تفر قلاص ب مكلهتممح )RBFNN ااح )

( شن Exact Solution(,  تاممتن مممن خمملال مقلارنممح ب كلمملا ا مممع ب سممل ب م مما ط )Murrayمن خلال حل معلاد ح )

( اه بلأف ل  بلأكثر دقح من خمملال ط بمملاء بقممل نأمماح خبمم   مقتمملا  RBFNNب بر قح ب مب رخ الا لوببا  ااح )

(RMSE( من ب بر قح بد لتلاد ح )EFDM.) 

 .Murrayمعلاد ح  ;ب فر قلاص ب مكلهتح ; بدابكلا تحب عياتح  الاصب با :احيةلمفتالكلمات ا

1. Introduction: 

      Artificial neural networks (ANN) has been widely used in many researches as a very 

important member of computational intelligence and artificial intelligence. Neural 

networks which include radial basis function (RBF) networks, are to be very efficient in 

approximating nonlinear and multivariable functions when the sample training set is 

selected in a rigorous manner [12]. An (ANN) is applied for solving various problems in 

industrial applications, such as non-linear control, system diagnosis , data classification, 

pattern recognition and function approximation [13]. 

      Finite difference method is one of the most popular methods of numerical solution 

of partial differential equations, which are used to solve many problems that involve 

unknown functions of several variables, where is distributed in space, or distributed in 

space and time [11]. In the finite difference method, we approximate the solution by 

using the numerical operators of the function’s derivatives and finding the solution at 

specific preassigned grids[10]. 
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         The proposed or modified method is a hybrid method which is based on finite 

differences method and an artificial neural network . After we get the numerical solution 

from finite difference approximation, we get the first stage, and then enter the solution 

to the (RBFNN) as a second stage of process, which will be used to find  the solutions 

for these points. Where the modified method gave errors less than from the classical 

method after using the explicit finite difference method in the first stage and the 

(RBFNN) in the second stage to solve Murray equation problem. 

2.Artificial Neural Network (ANN) : 

       A neural network is a parallel system, which is capable of resolving paradigms that 

linear computing cannot. An artificial neural network (ANN) is a system based on the 

operation of biological neural networks [7]. It is composed of a large number of 

interconnected elements (neurons) working in parallel to solve specific problems. A 

given (ANN) is configured for the specific application, such as pattern recognition or 

data classification, through a learning process [8]. Learning in biological systems 

involves adjustments to the synaptic connections that exist between the neurons. Neural 

networks with their ability to derive meaning from imprecise data can be thought as an 

"expert" and used to extract patterns and detect trends that are too complex to be noticed 

by either humans or other computer techniques.[9] and [12]. 

2.1. Neural Network Structure : consistent 

     An artificial neural network is composed of several elements [12] and [13]: 

1. Input layer : The role of the input units is to receive the raw information that is 

fed into the network. 

2. Hidden layers : It is the processing unit for the network. Its activity is 

determined by the activities of the input units and the weights of the connections 

between the input and the first row of the hidden units, or between nodes of 

adjacent hidden layers. 

3. Output layer : The behavior of the output units depends on the activity of the 

last row of the hidden units and the weights between the nodes in this row and 

the output units. 

4. Neuron : It is the basic element of the neural network. It is a communication 

conduit that accepts inputs and produces outputs. In the case when a neuron 

produces output, it becomes active. A neuron will be active when the sum of its 

inputs satisfies the neuron’s activation function. 

3. Radial Basis Function Neural Networks (RBFNN) : 

        A radial basis function network is an (ANN) that uses radial basis functions as 

activation functions. It is a linear combination of radial basis functions [6], (RBF) 

network provides a powerful alternative to multilayer perceptron (MLP) neural 

networks to approximate or to classify a pattern set. (RBFNN) differs from (MLP) in 

that the overall input output map is constructed from local contributions of Gaussian 

axons, require fewer training samples and train faster than (MLP). The exact 

interpolation of a set of N data points in a multi-dimensional space requires every one of 

the D dimensional input vectors  to be mapped onto the 

corresponding target output [3]. The radial basis function approach introduces a set of 

N basis functions, one for each data point,  which takes the form  where 

 is non-linear function. The output of the mapping is then taken to be a linear 

combination of the basis functions, i.e. 
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Input Layer Hidden Layer 

of  RBF Output Layer 

Layer 
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 =            …(1)  

If we take   ,   and  , then  

     where          …(2) 

           Because of the similar layer-by-layer topology, it is often considered that (RBF) 

networks belong to (MLP) networks. It was proved that (RBF) networks can be 

implemented by (MLP) networks with increased input dimensions [2]. A (RBF) neural 

network configured for software effort estimation has only one implement of the output-

input relation in the eq.(1), which is indeed a composition of the non-linear mapping 

realized by the hidden layer with the linear mapping realized by the output layer output 

neuron.[11] and [8] 

       If we take  is Gaussian radial basis function which is given by the following 

[6]: 

                      …(3) 

     where ,  and  ( ) are basis center and the width of   hidden neuron 

respectively and  denotes the Euclidean distance. 

 

 

 

 

 

 

 

 

 

 
 

Figure. (1) : The General Shape of (RBF) Neural Network Architecture. 

3.1. Determining the Weights of the (RBFNN): 

      From the general error we get [6][8]: 

      …(4) 

    And deriving with respect to w 

                  …(4a) 

                                                                  …(4b) 

      Setting to zero the derivative and finding  w, we obtain: 

                                            …(5) 

        (RBF) networks act as local approximation networks, because the network outputs 

are determined by the specified hidden units in certain local receptive fields  a real-

valued function whose value depends only on the distance from the origin, so that ; or 

alternatively on the distance from some other point c, called a center, so that any 

function  that satisfies the property  is a radial function. The norm is usually Euclidean 

distance, although other distance functions are also possible [3]. 

3.2. Training RBF Networks: 

      The training of a (RBF) network can be formulated as a non-linear unconstrained 

optimization problem given below [2] : 
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     Let , represents the input and output training patterns, k=1,2, ..K , then 

choose   and   , i=1,2...L,  j=1,2...M  , so as to minimize : 

                                …(6) 

     Note that the training problem becomes quadratic once if  ’s (radial basis function 

centers) are known. In general, we have to pass through the following steps [8]: 

1. Adjusting the widths. 

2. Adjusting the centers. 

4. Numerical Solution Using Finite Difference Methods : 

Finite difference methods (FDM) are numerical methods for approximating the 

solutions to differential equations by using finite difference equations to approximate 

derivatives. Assuming the function whose derivatives are to be approximated is 

properly-behaved  by Taylor's theorem [14]. 

        The basic idea of how the finite differences method is the conversion equation 

partial differential to algebraic equation as they are discretization out function to a set of 

specific points and rounded derivatives in the equation partial differential formulas 

finite differences linking values function is known at this point specific. After order 

issue regular format as used this formula to approximate the function values at these 

points [10]. 

4.1.Finite Difference Formulas: 

       Below we list the commonly used finite difference formulas to approximate the first 

order derivative of a function u(x) using Taylor series as below [14] [5]: 

..........)(
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Where,  h  is constant mesh spacing discretized. 

        Recall from calculus that the following approximations are valid for the first 

derivative of u(x). From eq.(7) and by discard the high orders of  h, we get the  forward 

difference approximation : 
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=          …(9) 

       And by the same way, we get the backward difference approximation from eq.(8) : 

h

hxuxu
xu

)()(
)(

−−
=                   …(10) 

By adding eq.(9) and eq.(10) we get a centered difference approximation:  

h

hxuhxu
xu

2

)()(
)(

−−+
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…(11) 

      Similarly by adding eq.(7) and eq.(8) with discard the high orders of  h2 we get the 

centered finite difference approximation for the second derivative of u(x) :
 

2

'' )()(2)(
)(

h

hxuxuhxu
xu

−+−+
=                  …(12) 

http://en.wikipedia.org/wiki/Numerical_methods
http://en.wikipedia.org/wiki/Differential_equations
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Taylor%27s_theorem
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     We will use these approximations to find a numerical solution to the non-linear 

reaction-diffusion equation. 

5. Mathematical Model: 

We consider the nonlinear reaction-diffusion equations with convection term of 

the form [1] and [4]: 

10,10),()()(
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+
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t
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               …(13) 

     Where, ),( txu  is an unknown function, A(u), B(u) and C(u) are arbitrary smooth 

functions. In eq.(13) , we generalized a great number of the well-known non-linear 

second-order evolution equations describing various processes in biology. 

When A(u)=1, 2

321 u-uC(u) ,uB(u)  == , where 21,  and R3 , eq.(13) 

becomes: 
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             …(14) 

which is called the non-linear Murray equation with initial condition: 

bxxFxu = 0,)()0,(                                       …(14a) 

and mixed boundary conditions: [4]  
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Such that F(x) is prescribed space-dependent and G(t), I(t) are prescribed time-

dependent.  

6. Explicit Finite-Difference Method (EFDM): 

      We will apply the classical explicit finite-difference method to solve non-linear 

Murray equation in eq.(14). First we discretized the rectangle  

 10,0:),( = tbxtxR  to )1()1( −− mn  of rectangles along each leg 

)( kt = and )( hx = . 

      Compensate for the derivatives in eq.(14) by the finite difference approximate such 

that : 
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Where, h and k are the space and time discretized . Now, multiply the eq.(15)  by  k  and 

let 2/ hkr =  we get: 
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       Put the terms of level  j+1 in the left and the terms of level  j  in the right we get: 
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   By reordering the equation, we have : 
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      Which will be used to find  the numerical solution for the points of the mesh as 

shown in the Figure (3) [1]: 
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Figure (2): Computational Molecule for The Finite Difference Method for the Murray 

Equation. 

     Where, j
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Then, we get a set of linear equations that have numbers equal with the number 

of unknown in terms of which to obtain the desired numerical solution. 

7. The Modified Method (RBFNN_EFDM): 

The modified method is a proposed method that consists of two stages of 

processor are: 

1- The training Stage. 

2- The testing Stage. 

      The training stage consists of two main parts of the initial processing parts  : 

• Explicit Finite Difference Method (EFDM). 

• Radial Basis Function Neural Network (RBFNN). 

In the training stage, the output of (EFDM) becomes the input of (RBFNN) to get 

the optimal weight and bias. While, the testing stage requires only the optimal weight 

and bias to find the results for any level and any time step (k). 

Where, the architecture of the proposed method (RBFNN_EFDM) in the training 

stage is given by Figure (4), while the proposed method (RBFNN_EFDM) in the testing 

stage is given by Figure (5), and also the general representation of the modified method 

(EFDM_RBFNN) can  be taken as the following form: 
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Figure (3): General Representation of the Proposed Method Architecture. 
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Figure (4) : General Representation of the Proposed Method Architecture in the Training Stage. 
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Figure (5): General Representation of the Proposed Method Architecture in the Testing Stage. 

8. Numerical Results and Discussion: 

In this section, we present the results of non-linear Murray equation by the 

classical explicit finite difference method and compare those with modified method by 

using (RBFNN). Where, we apply these methods to compute solutions numerically and 

compare these solutions with the exact solutions at various times.  
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Initialize the parameters of non-linear  

Murray equation  

Calculate initial conditions & 

exact solution 

Set  j=1 

By EFDM calculate the results of each level j in the 

Murray equation  

Is 

j= m-

1 

  j=1+1 

Simulate the input data  with target  

by using optimal weight & bias in RBFNN 

Save the result of modified method 

RBFNN_EFDM 

End 

Yes 
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After being trained (RBFNN) and get the optimal parameters, we enter (EFDM) 

outputs in each level t to the trained (RBFNN) in testing phase, where all numerical 

computations in training stage, we performed with the space step h=0.1 and the time 

step k=0.001, while the numerical computations in testing stage, we performed with the 

space step h=0.1 and at various times, and we take the parameters  

 in eq(14). where : 

03

)(

12)()0,(
c

ec
xFxu

x

+

+
==



 

                …(19) 

With the mixed boundary conditions as follows: 
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And with the exact solution for eq(14) in the form : 
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Where, 0, 1

1

3 = 



 , and 

0c  is constant such that 0
)(

03
2 +

− t
ec

  and 

1c  is arbitrary constant [4][14]. 

 If we take the  root mean square error (RMSE) as a scale, which is defined in the 

following : 

   

     Assuming that  represents the exact solution for ith value and  is the resulting value 

from solution, we get: 

 

Table (1): Comparison with (RMSE) Scale between (RBFNN_EFDM) and (EFDM) for Solve 

the Murray Equation at t=0: 0.001: 1 

The Test Results 
Modified Method 

(RBFNN_EFDM) 
Classical Method      (EFDM) 

RMSE 5.940007650089429e-15 0.002085439777498 
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Table (2): Comparison with (RMSE) Scale between the Modified (RBFNN_EFDM) and 

(EFDM) Method for Solving  Murray Equation at t=0.1. 

x 
Classical Method 

(CFDM) 

Modified Method 

(RBFNN_FDM) 
Exact Solution 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

RMSE 

1.105332965990298 
1.166346935537792 
1.233787142736782 
1.308326104347700 
1.390707497572141 
1.481753435156384 
1.582372539234274 
1.693568903061077 
1.816452035328295 
1.952247887324579 
2.102311070019368 

1.966967966730e-4 

1.105170918075645 
1.166190215042397 
1.233626967491479 
1.308156105107666 
1.390523540550333 
1.481553634798044 
1.582157447630305 
1.693341855820037 
1.816219630294785 
1.952020573122134 
2.102103825782169 

4.516450977248e-15 

1.105170918075648 
1.166190215042402 
1.233626967491481 
1.308156105107670 
1.390523540550339 
1.481553634798050 
1.582157447630306 
1.693341855820042 
1.816219630294788 
1.952020573122137 
2.102103825782176 

 

Table (3): Comparison with (RMSE) Scale between the Modified (RBFNN_EFDM) and 

(EFDM) Method for Solving  Murray Equation at t=0.5. 

x 
Classical Method 

(CFDM) 

Modified Method 

(RBFNN_FDM) 
Exact Solution 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

RMSE 

   1.650079164442094 
   1.757999257814407 
   1.877295631565723 
   2.009154227434270 
   2.154887135898868 
   2.315945502834315 
   2.493933860329751 
   2.690626017954850 
   2.907982667663615 
   3.148170873564575 
   3.413585637231621 

0.001445013805584 

   1.648721270700132 
   1.756654181063259 
   1.875938494699855 
   2.007768049113636 
   2.153462238794615 
   2.314479220162632 
   2.492430505286891 
   2.689097090440411 
   2.906447280909331 
   3.146656390453782 
   3.412128512579156 

5.175895635334e-15 

   1.648721270700129 
   1.756654181063257 
   1.875938494699852 
   2.007768049113631 
   2.153462238794611 
   2.314479220162627 
   2.492430505286887 
   2.689097090440406 
   2.906447280909324 
   3.146656390453775 

  3.412128512579149 

 

Table (4): Comparison with (RMSE) Scale between the Modified Method (RBFNN_EFDM) 

and the Classical Method (EFDM) for Solving  Murray Equation at t=1. 

X 
Classical Method 

(CFDM) 

Modified Method 

(RBFNN_FDM) 
Exact Solution 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

RMSE 

   2.722374084330388 
   2.931343053538322 
   3.162359652465431 
   3.417708991838341 
   3.699923709244395 
   4.011808133495100 
   4.356465404357867 
   4.737327759724735 
   5.158190248642745 
   5.623248174182395 
   6.137138616017499 

0.004290919146601 

   2.718281828459050 
   2.927279922064840 
   3.158258537051214 
   3.413529385031545 
   3.695647302451920 
   4.007435820252983 
   4.352015422716629 
   4.732834778321521 
   5.153705255176351 
   5.618839066472944 
   6.132891427731622 

2.256488105455e-15 

   2.718281828459047 
   2.927279922064840 
   3.158258537051212 
   3.413529385031545 
   3.695647302451919 
   4.007435820252981 
   4.352015422716628 
   4.732834778321518 
   5.153705255176350 
   5.618839066472940 

   6.132891427731618 
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           Results obtained in the Table (1) represent the root mean square error (RMSE) 

for the Murray equation at times t=0: 0.001 :1 and h=0.1, while the results obtained of 

the problem are displayed in the Tables (2),  (3) and (4)  for times t=0.1 , t=0.5 and t=1 

respectively, with h=0.1 represents results at those times, and the modified method by 

using (RBFNN) at all times have (RMSE) better than the classical explicit finite 

difference method (EFDM). We see an excellent agreement between the modified 

method (RBFNN_EFDM) and exact solution in results for all tables, where the error of 

the solution rapidly decreases as shown in the table (1) and Figures (5) as the following: 

 

Figure (6): An Illustration the Numerical Results of non Linear Murray Equation with 

(t=0:0.1:1) by Using: (a) (CFDM) Method; (b) (RBFNN_FDM) Method;   (c) Exact Solution. 

EACT RBFNN_EFDM  EFDM  
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Appendix A 
 

%  (First Program) : Represent Training Stage of Murray Equation 
% Exact Solution 

clc;clear all;close all 

format long  

c0=1;c1=1;L1=1;L2=1;L3=1; 

z=L1/L2;h=0.1 ;k=0.001 ;n=11; m=1001; 

EX=zeros(n,m);x=0;t=0; 

for j=1:m 

    x=0; 

  for i=1:n 

      R1=L2+c1*exp(((z^2)*t)+(z*x));R2=L3+c0*exp(-L2*t); 

      EX(i,j)=R1/R2;x=x+h; 

   end 

t=t+k; 

end 

r=k/(h^2);U=zeros(n,m); 

% Intial Condition  

x=0;t=0; 

    for i=1:n 

        j=1; 

      R1=L2+c1*exp(((z^2)*t)+(z*x)); 

      R2=L3+c0*exp(-L2*t); 

      U(i,j)=R1/R2; 

  x=x+h; 

    end 

t=k; 

for j=1:m-1 

   for i=1:n 

   if i==1 

       x=0; 

B1=((c1*z*exp((z^2)*t))/(L3+c0*exp(-L2*t))); 

U(i,j+1)=((r-(0.5*L1*r*h*U(i,j)))*(U(i+1,j)-(2*h*B1))) 

+((1-2*r+k*L2-k*L3*U(i,j))* U(i,j)) + ((r+(0.5*L1*r*h 

*U(i,j))) *U(i+1,j)); 

        elseif i==n 

            x=1; 

 B2=(c1*z*exp(((z^2)*t)+z))/(L3+c0*exp(-L2*t)); 

U(i,j+1)=((r-(0.5*L1*r*h*U(i,j)))*U(i-1,j))+ ((1-2*r+k* L2- 

k*L3*U(i,j))*U(i,j))+ (r+(0.5*r*L1*h*U(i,j)))*(U(i-

1,j)+2*h*B2); 

   else 

       M2=(U(i+1,j)-(2*U(i,j))+U(i-1,j))/(h^2); 

       M1=(U(i+1,j)-U(i-1,j))/(2*h); 

       

U(i,j+1)=U(i,j)+(k*M2)+(k*L1*U(i,j)*M1)+(L2*k*U(i,j))-

(L3*k*(U(i,j)^2)); 

    end 

end; 
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t=t+k; 

end 

% RBF Neural Network 

xx=U;yy=EX; 

rand('twister',0);randn('state',0); 

net=newrbe(xx,yy,0.01); 

aa=sim(net,xx); 

om_FDM_training=sqrt(mse(EX-U)) 

om_NN_train=sqrt(mse(aa-EX)) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% (Second Program): Represent Testing Stage of Murray Equation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

h=0.1 ;k=0.001 ; 

n=11;m=1001; 

EX=zeros(n,m); 

x=0;t=0; 

for j=1:m 

    x=0; 

  for i=1:n 

      R1=L2+c1*exp(((z^2)*t)+(z*x)); 

      R2=L3+c0*exp(-L2*t); 

      EX(i,j)=R1/R2; 

  x=x+h; 

   end 

t=t+k; 

end 

x=[0:h:1];t=[0:k:1]; 

[t,x]=meshgrid(t,x); 

figure;surf(x,t,EX);title('Exact') 

r=k/(h^2);U=zeros(n,m); 

% Intial Condition  

x=0;t=0; 

    for i=1:n 

        j=1; 

      R1=L2+c1*exp(((z^2)*t)+(z*x)); 

      R2=L3+c0*exp(-L2*t); 

      U(i,j)=R1/R2;x=x+h; 

    end 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%%%%% (((((((((((((((RBFNN_EFDM))))))))))))))))) 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

kk=1;bb1=[];t=k; 

for j=1:m-1 

   for i=1:n 

 % (((First Stage))) == EFD Method  

   if i==1 

       x=0; 

    B1=((c1*z*exp((z^2)*t))/(L3+c0*exp(-L2*t))); 
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U(i,j+1)=((r-(0.5*L1*r*h*U(i,j)))*(U(i+1,j)-(2*h*B1))) 

+((1-2*r+k*L2-k*L3*U(i,j))* U(i,j)) +((r+(0.5*L1*r*h* 

U(i,j)))*U(i+1,j)); 

        elseif i==n 

            x=1; 

B2=(c1*z*exp(((z^2)*t)+z))/(L3+c0*exp(-L2*t)); 

U(i,j+1)=((r-(0.5*L1*r*h*U(i,j)))*U(i-1,j))+((1-2*r+k*L2-

k*L3*U(i,j))*U(i,j))+ (r+(0.5*r*L1*h*U(i,j)))*(U(i-1,j) 

+2*h*B2); 

   else 

       M2=(U(i+1,j)-(2*U(i,j))+U(i-1,j))/(h^2); 

       M1=(U(i+1,j)-U(i-1,j))/(2*h); 

U(i,j+1)=U(i,j)+(k*M2)+(k*L1*U(i,j)*M1)+(L2*k*U(i,j))-

(L3*k*(U(i,j)^2)); 

    end 

   end; 

t=t+k; 

%(((Second Stage)))== Testing in RBF Neural network 

kk=kk+1; 

input_test=U(:,kk); 

om1=net.IW{1,1}; 

om2=net.b{1}; 

om3=dist(om1,input_test); 

om4=netprod(om3,om2); 

a{1} = radbas(om4); 

om5=net.LW{2,1}; 

om6=net.b{2}; 

aa=[om5 om6] * [a{1}; ones]; 

bb1=[bb1 aa]; 

end 

bb2=[U(:,1) bb1]; 

 %%%% Calculate Root Mean Square Error 

om_FDM_testing=sqrt(mse(EX-U)) 

om_NN_test=sqrt(mse(bb2-EX)) 

x=[0:0.1:1];t=[0:0.1:1];[t,x]=meshgrid(t,x); 

figure;surf(x,t,bb2(:,1:100:1001)); 

title('Modified Method2') 

 


