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ABSTRACT  
In the present work ,steady two - dimensional laminar forced convection heat transfer with 

parallel flow on a horizontal tube has been analyzed numerically for a wide range of the 

Reynolds numbers of (Re.=.10
2
, 10

3
, 10

4
, and 10

5
) with Amplitude parameter (A) and vibrational 

angle in the range ( wt =
2

,
4
 and

4
3 ). Two types of boundary conditions have been 

considered. The first, when the tube wall is heated with constant uniform temperatures, while the 

second when the wall is heated by applying a uniform heat flux. The results are presented in 

terms of isotherms and streamlines to show the behavior of the fluid flow and temperatures 

fields. In addition, some graphics are presented the relation between average Nusselt number and 

the various parameters. 

This research demonstrated that the rate of heat transfer is increased due to increase of 

amplitude and vibration angle as well as Reynolds number increase. The results also show that 

the average Nusselt number is a strong function of Reynolds number, vibrational angle 

amplitude parameter and the boundary conditions. Two different correlations have been made to 

show the dependence of the average Nusselt number on the Reynolds numbers, vibrational angle 

and amplitude parameter. 

Keywords: Forced Convection – Forced Vibration – Horizontal tube – Finite Difference Method 
 

 الخلاصة:
فٌ هذا اىبحث ، حم إجزاء دراست عذدٍت لاوخقاه اىحزارة باىحمو أىقسزً اىطباقٌ اىمسخقز ثىائٌ اىبعذ بجزٍان مواسً 

Re.= 10لأوبوب أفقٌ ضمه مذى واسع ىعذد رٍىوىذس
2
, 10

3
, 10

4
, 10

5
وىمذى ساوٍت اهخشاس  (A)مع مقذار الإساحت (   (

 
4

3,
2

,
4

wtحث حم اعخماد ووعان مه اىظزوف اىحذٍت. الأوه عىذما ٍنون جذار الأوبوب مسخه إىي . لاجزاء اىب

درجاث حزارة مخخيفت ومىخظمت واىثاوٌ، عىذما ٍنون اىجذار مسخه بمصذر حزارً . حم حمثَو وخائج اىذراست بذلاىت خطوط 

ٌ اىحَش. بالإضافت إىي رسوماث بَاوَت درجاث اىحزارة اىثابخت وخطوط الاوسَاب ىبَان سيوك درجاث اىحزارة واىجزٍان ف

أخزى حمثو علاقت معذه عذد وسيج مع اىمخغَزاث اىمذمورة أعلاي . اوضحج وخائج اىبحث بان معذه اوخقاه اىحزارة ٍشداد وخَجت 

ساوٍت و سىشٍادة ساوٍت الاهخشاس ورقم رٍىوىذس . مذىل بَىج وخائج اىذراست بان معذه عذد وسيج هو داىت قوٍت ىعذد رٍىوىذ

واىظزوف اىحذٍت . ومه خلاه اىىخائج حبَه وجود علاقت قوٍت بَه   معذه عذد وسيج وعذد   (Aالاهخشاس ومقذار الإساحت)

   رٍىوىذس.
 

NOMENCLATURE 

A : Amplitude of vibration (m) 

fC  : Friction coefficient 

D : Diameter of tube (m) 

f : Frequency of vibration (Hz) 

f  : Any arbitrary function, f(r,z) 

H : Free stream ratio 

h : Heat transfer coefficient (W/m
2
.k) 

k : Thermal conductivity (W/m.k) 

L : Length of tube (m) 
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Lc : Characteristic length (m) 

m : Nodes number in axial direction 

Nu : Nusselt number 

Nuz : Average nusselt number 

n : Nodes number in radial direction 

P : Pressure (Pa) 

Pr : Prandtle number  


   

q : Heat flux (W/m
2
) 

Re 
: Reynolds number 









ud

 

R : Dimensionless radial coordinate 

r : Radial coordinate (m) 

T : Temperature (k)  

U : Dimensionless velocity 

u : Axial velocity (m/sec). 

v : Radial velocity (m/sec). 

wt  : Vibration angle 

Z : Dimensionless axial coordinate 

z : Axial coordinate (m) 

 
 

1. INTRODUCTION 
Forced convection is one of the important modes of heat transfer. Forced convection is the 

transportation and exchange of heat due to the mixing motion of different parts of a fluid. Because 

buoyancy forces resulting from the density gradients are too small here, therefore; these forces are 

negligible. The fluctuating motions in the turbulent flow promote heat exchange by convection. 

Consequently, heat transfer in the turbulent flow is higher than in laminar flow and so that the result 

in higher heat transfer coefficients. 

The major technical applications of this work is in the analysis and design of parallel flow heat 

exchanger for the both types(counter and parallel), tubes, channel flow and marine applications. 

Generally, all the studies in this field can be classified into two types. The first type illustrated 

the heat transfer surface is vibrated experimentally and it sub divided for two methods. In the first 

method, the surface is held stationary and vibrations are established in the fluid medium 

surrounding the surface. In the second method, an oscillatory motion is supplied upon the surface 

itself. The second type is theoretically, the flow medium is subjected around vibrational or agitation 

surface [1]. Mariusz Leus and Pawel Gutowski, 2012, studied the influence of tangential-

longitudinal vibrations on the drive force and friction force in sliding motion. It has been 

demonstrated that the use in numerical analyses of Dahl friction model, facilitates precise projection 

of changes in these forces taking place in real systems under the influence of imposed tangential-

longitudinal vibrations [2] . 

Most previous studies, however, have dealt with only natural convection heat transfer with 

mechanical or acoustical vibration. A few investigations treated forced convection heat transfer 

with mechanical or acoustical vibration especially with empirical methods for the outside flow. 

The mass, momentum, and energy conservation equations, that describe the fluid flow and heat 

transfer for forced  convection of laminar, two-dimensional flow are nonlinear and because of this 

nonlinearity, some difficulties have arisen in numerical as well as in analytical studies. One of the 

greatest difficulties with the numerical studies is the problem of divergence of the iterative methods 

since an analytical solution of the actual problem is extremely difficult, if not possible, a number of 

assumptions together with the computational fluid dynamic techniques are used to obtain 

approximate results.[3] 
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The importance of vibrational motion of the heated surface is to increase eddies of the flow 

around the heated surface and may increase the heat transfer coefficient. The intensity of vibration 

represents a control parameter in the vibrational motion. It depends on both the amplitude (A) and 

frequency (f) and the product of these two parameters. [4] 
 

2. MATHMATICAL FORMULATION  
The schematic of the physical model and the coordinate system are shown in Fig. (1). It is a 

horizontal tube. The flow descriptions were external, laminar and incompressible. The vibration 

vector was parallel of the fluid flow direction in which the thermal boundary are of two types. 

The depth of the region is assumed to be sufficiently large so that the flow and the heat transfer 

are two dimensional. The fluid considered is Newtonian and the flow is laminar. For the present 

physical model, governing equations in their primitive form, are given by [5] 
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Since it proves to be more convenient to work in terms of a stream function and vorticity, the 

stream function ψ(r, z) is introduced in the usual manner [6] 
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It is evident from Eq. (5) that the stream function satisfies the continuity equation identically. 

Further more, for this plane flow field, the only non- zero component of the vorticity is: 
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Combining the definition of the vorticity and the velocity components in terms of the stream 

function, and cross- differentiating the Eq.(2) and (3) to reduce the number of equations and 

eliminate the pressure terms, a new set of equations is obtained with independent variables  , and 

T: 
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Now, the mathematical problem formulated above was placed in dimensionless form by 

defining new dimensionless variables [7]: 
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Inserting all the dimensionless variables into Eqs. (7) to (9), yield the following final non- 

dimensional equations: 
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The physical quantities of insert in this problem are the local Nusselt number along the heated 

wall, defined by: 
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And also the average Nusselt number, which is defined as: 



L

zdzNu
L

Nu
0

1
                                                                                       (14) 

And the local friction coefficient is defined as: 
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And also, the shear stress is defined as: 

orr

w
r

u




                                                                                           (16) 

 

Numerical methods have been developed to handle problems involving nonlinearities in the 

describing equations, or complex geometries involving complicated boundary conditions. A finite – 

difference technique is applied to solve the governing equations. These three equations (Esq. (10), 

(11) and (12)) are to be solved in a given region subject to the condition that the values of the 

stream function, temperature and the vorticity, or their derivatives, are prescribed on the boundary 
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of the domain. The finite difference approximation of the governing equations was been on dividing 

the ( 10 *  Z ) interval into (m) equal segment separated by (m+1) nodes. Likewise, the ( *R ) 

interval was divided into (n) segment, regular meshes are shown in fig.(2). Assume that unknown 

variable f ( zr, ) possesses continuous derivatives, so the approximation of second derivative of (f) 

to determine interior point is [8]: 
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And the first derivative central difference is: 
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The usual procedure for obtaining the form of partial differential equation with uniform finite 

– difference method [9] is to approximate all the partial derivatives in the equation by means of 

their Taylors series expansions. Eq.(10) can be approximated using central- difference at the 

representative interior point (i,j) , thus, Eq.(10) can be written for regular mesh as: 
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Also, a central difference formulation can be used for Eqs.(11) and (12). But this problem will 

need to be solved for reasonably high values of Reynolds number ; it is known that such a 

formulation may not be satisfactory owing to the loss of diagonal dominance in the sets of 

difference equations, with resulting difficulties in convergence when using an iterative procedure. 

A forward – backward technique can be introduced to maintain the diagonal dominance 

coefficient of  *

, ji  in Eq. (11) and  *

, ji  in Eq.( 12) which determines the main diagonal elements 

of the resulting linear system; this technique is outlined as follows[10]: 
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If 0 and 0 ,the stream function equation is: 
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If ,0 and 0 ,the stream function equation is: 
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If 0 and ,0 ,the stream function equation is: 
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And finally, If ,0 and ,0 the stream function equation is: 
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And Eq.(12) by 
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to assure the diagonal dominance of the coefficient matrix for( *
, ji ) and ( *

, ji ), which an 

under relaxation technique can be applied to accelerate the convergence of Eq.(18); the expression 

is used in this technique presented in the following: 

)()(  computed*k

ji,

*

,

1*

,

1k *

ji,    k

ji

k

ji  

where the parameter    is the relaxation coefficient for the vorticity. The value of this 

relaxation coefficient is in the range of (0 to 2).[4] 

in order to obtain results of the conversation equations, the above equations (Eqs.(17), (18) 

and (23)) are subjected to the following boundary conditions: 
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Also, the following finite difference equation for the vorticity at a wall is adopted as the 

boundary condition for the vorticity equation: 
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the numerical work start with giving the distributions of stream function and temperature for 

forced convection as the zeroth - order approximation. Then, obtained the zeroth – order 

approximation of vorticity; based on these old fields, equation (17) is used to determine point – by – 

point the new ( * ) field, and equation (18) is used to determine the new ( * ) while the energy 

equation (23) is used to determine the new ( * ) field. The iteration process is terminated under the 

following condition: 
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Where, ( ) stands for either ( *** ,  or ); ( r ) denotes the iteration step. 
 

Results and discussion 
Case (I): 

A horizontal tube under constant wall temperature where the external parallel flow is applied 

with different values of (Re, A and wt . 
 

a- Flow Fields 

The stream lines in the axial and radial directions of constant wall temperature with different 

values of Reynolds number are shown in fig(3( and fig.(4). These figures show the effect of the 

amplitude (A) on the change in the streamlines. These also show the effect of vibration angle ( wt ). 

When the amplitude increases from (1 to 15mm), the stream lines shape will changed like a 

wave at the start point of the tube and it move to its end. This effect shown only near the tube wall. 
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It may effect on the boundary layer of the flow near the tube wall. The influence of amplitude and 

vibration angle vanished its effect until (0.4 *R ) radialy, but still axially. 

The above figures show that, when Re increase, the effect of amplitude and vibration angle on 

the streamlines be clearer axially and radially. 
 

b- Isothermal Lines. 

the figures (5,6) show the influence of Re, A and wt on the Temperature distribution contours at 

constant wall temperature. They are indicating that as Re, A and wt  increased, the change in 

isothermal lines will increase and disturb as shown when A=10 and 15mm. This disturbance 

increase as more as Re increase and wt increase. This means that the heat transfer rate is increase as 

the vibration parameter increase. 
 

c- Heat Transfer Coefficient  

To understand the heat transfer process by forced convection, we must be evaluate the heat 

transfer coefficient (h), but to make the present work having generality, the calculated results must 

be in dimensionless form. Therefore, it must be needed to evaluate Nusselt number (Nu) as a 

function of influence parameters. Figs. (7, 8) show the variation of average Nusselt number versus 

Reynolds number with different values of amplitudes and vibration angle (
2

wt ) parameters on 

the hot wall of the horizontal tube. It is also seen that for range of amplitude less then (10mm), the 

rate of increase in Nu against Re for different values of wt is relatively small. But, Nu increase 

rapidly as Re increase for A more than (10mm) expressing the increase of convective heat transfer. 
 

Case (II)        
A horizontal tube under constant heat flux where the external parallel flow is applied with 

different values of (Re, A and wt . 
 

a- Flow Field 

 As the amplitude increased, the streamlines are disturb more for constant Re. Also the 

vibration angle effect on the streamlines has the same manner of amplitude effect in the first quarter 

of vibration angle then returned to its original effect in the second quarter. 

The Re effect also shown by these figures, that as Re increase, the streamlines more disturb. In 

general, the increase in the distribution of streamlines near the tube wall was because of the 

turbulence of high Re, A and wt . 

b- Isothermal Lines.  

Figs. (9, 10) show the effect of Re, A and wt on isothermal contours. In general, these figures 

observed that as A increase, the isothermal lines disturb and fluid near the tube wall be more heated. 

It’s shown that when ( 2
wt ), the fluid is more heated at the wall because of inverse 

movement of the wall by vibration. 

Finally, two correlation equations have been predicted depending on variation Reynolds number, 

amplitude, and vibration angle for both two cases, by using least square method. 

Case (I): forced convection heat transfer on tube with B.C.1 
04324.038984.002326.0Re987.52 wtANu  ,         R=0.935                                      

Case (II): forced convection heat transfer on tube with B.C.2 
01693758.0339.0015849.0Re213.121 wtANu  ,     R=0.98542  
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6- Conclusions 
The main conclusions of the present work are: 

1- The rate of heat transfer is increased due to increase of amplitude and vibration angle as well as 

Reynolds number increase. 

2- The streamlines is increased due to increase of amplitude and vibration angle until (
2

wt ) as 

well as Reynolds number increase. 

3- For the two cases that have been solved, it has been demonstrated that the average Nusselt 

number is a strong function of Reynolds number, vibration angle ( wt ), and Amplitude, also the 

results show that the average Nusselt number: 

a- Increases as (Re) increases, for a given values of (A) and ( wt ). 

b- Increases as ( wt ) increases except for (
2

wt ) for a given values of (Re) and (A). 

c- Increases as (A) increases, for a given values of (Re) and ( wt ). 

d- zNu  and Nu  for the second thermal boundary conditions (B.C.2) is always higher than that for 

(B.C.1).   

4- For a high value of Reynolds number, the amplitude (A) of the external parallel flow, for a given 

(Re) and ( wt ), a large effect on the heat transfer rate. The peak in average Nusselt number 

depending upon Reynolds number, amplitude and vibrational angle. 
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Fig. (1) Physical model and coordinate system. 
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Fig. (3) Pattern of isotherms for 310Re   and (
2

wt ). 

(a)A=1, (b) A=5, (c) A=10 and (d) A=15mm. Case (I) 

       (a) (b) (c) (d) 

      (a)        (b)      (c)       (d) 

Fig.(4) Pattern of isotherms for 410Re   and (
2

wt ) . 

(a)A=1, (b) A=5, (c) A=10 and (d) A=15mm. Case (I) 
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Fig. (5) Pattern of isotherms for 310Re   and (
2

wt ). 

(a)A=1, (b) A=5, (c) A=10 and (d) A=15mm. Case (I) 
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Fig. (6) Pattern of isotherms for 410Re   and (
2

wt ). 

(a)A=1, (b) A=5, (c) A=10 and (d) A=15mm. Case (I) 

(a) (b) (c) (d) 
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Fig.(6) Pattern of isotherms for 410Re   and (
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wt ) . 

(a)A=1, (b) A=5, (c) A=10 and (d) A=15mm. Case (I) 


